Zama Protocol:构建区块链隐私层的全同态加密 (FHE) 独角兽
Zama 已确立其在区块链全同态加密(FHE)领域的绝对领导地位,并在 2025 年 6 月筹集超过 1.5 亿美元资金后,以 10 亿美元的估值成为 全球首个 FHE 独角兽。这家总部位于巴黎的公司并不与区块链竞争 —— 它提供密码学基础设施,使任何 EVM 链都能够在不解密底层数据的情况下处理加密的智能合约。随着其主网于 2025 年 12 月底在以太坊上线,以及 $ZAMA 代币拍卖于 2026 年 1 月 12 日开始,Zama 正处于理论密码学突破向生产就绪型部署迈进的关键拐点。
其战略意义不言而喻:虽然零知识证明证明了计算的正确性,而可信执行环境(TEE)依赖于硬件安全,但 FHE 独特地实现了 对多方加密数据的计算 —— 解决了透明度、隐私和合规性之间的区块链基本三难困境。摩根大通(JP Morgan)等机构已通过 Project EPIC 验证了这种方法,展示了在完全符合监管要求的情况下进行机密代币化资产交易。Zama 作为基础设施而非竞争链的定位,意味着无论最终哪个 L1 或 L2 占据主导地位,它都能捕获价值。
技术架构实现无信任假设的加密计算
全同态加 密代表了密码学的一个突破,虽然自 2009 年以来就在理论上存在,但直到最近才变得实用。“同态”一词是指一种数学特性,即对加密数据执行的操作,在解密后,其结果与对原始明文执行的操作结果完全一致。Zama 的实现采用了 TFHE(Torus 全同态加密),该方案的特点是快速自举(fast bootstrapping) —— 这是重置密文中累积噪声并实现无限计算深度的基础操作。
fhEVM 架构 引入了一种符号执行模型,优雅地解决了区块链的性能限制。智能合约不直接在链上处理实际的加密数据,而是使用轻量级句柄(指针)执行,而实际的 FHE 计算则异步卸载到专门的协处理器。这种设计意味着像以太坊这样的宿主链无需修改,非 FHE 交易不会减速,且 FHE 操作可以并行而非顺序执行。该架构由五个集成组件组成:面向 Solidity 开发者的 fhEVM 库、执行 FHE 计算的协处理器节点、使用 13 个 MPC 节点 进行门限解密的密钥管理服务、用于可编程隐私的访问控制列表(ACL)合约,以及编排跨链操作的网关。
性能基准测试显示出快速进步。 自举延迟 —— FHE 的关键指标 —— 在 NVIDIA H100 GPU 上从最初的 53 毫秒降至 1 毫秒以下,吞吐量在八个 H100 上达到 每秒 189,000 次自举。目前的协议吞吐量在 CPU 上达到 20+ TPS,足以处理目前所有以太坊加密交易。路线图预计到 2026 年底随着 GPU 迁移,TPS 将达到 500-1,000,并在 2027-2028 年通过专用 ASIC 扩展到 100,000+ TPS。与易受硬件侧信道攻击影响的 TEE 解决方案不同,FHE 的安全性建立在基于格(lattice-based)的密码硬度假设之上,提供 抗量子性。
开发者工具已从 研究走向生产
Zama 的开源生态系统由四个相互关联的产品组成,已吸引了超过 5,000 名开发者,占据了区块链 FHE 约 70% 的市场份额。TFHE-rs 库 提供了纯 Rust 实现,支持通过 CUDA 进行 GPU 加速,通过 AMD Alveo 硬件进行 FPGA 支持,并提供从高级操作到核心密码原语的多级 API。该库支持高达 256 位的加密整数,操作包括算术、比较和条件分支。
Concrete 充当构建在 LLVM/MLIR 基础设施上的 TFHE 编译器,将标准的 Python 程序转换为 FHE 等效电路。开发者不需要密码学专业知识 —— 他们编写普通的 Python 代码,Concrete 会处理电路优化、密钥生成和密文管理的复杂性。对于机器学习应用,Concrete ML 提供了 scikit-learn 模型的直接替代方案,可自动编译为 FHE 电路,支持线性模型、基于树的集成,甚至加密的 LLM 微调。1.8 版本展示了在大约 70 小时内对 100,000 个加密 token 进行 LLAMA 8B 模型的微调。
fhEVM Solidity 库 使开发者能够使用熟悉的语法和加密类型(euint8 到 euint256、ebool、eaddress)编写机密智能合约。例如,加密的 ERC-20 转账使用 TFHE.le() 比较加密余额,并使用 TFHE.select() 进行条件逻辑 —— 所有这些都不会泄露数值。2025 年 9 月与 OpenZeppelin 的合作确立了标准化的机密代币实现、密封拍卖原语和治理框架,加速了企业级应用。