跳到主要内容

271 篇博文 含有标签「区块链」

通用区块链技术和创新

查看所有标签

2025 年区块链 API 现状——关键洞察与分析

· 阅读需 35 分钟
Dora Noda
Software Engineer

2025 年区块链 API 现状》报告(由 BlockEden.xyz 撰写)全面审视了区块链 API 基础设施的格局。报告探讨了新兴趋势、市场增长、主要提供商、支持的区块链、开发者采用情况,以及安全性、去中心化和可扩展性等关键因素。报告还重点介绍了区块链 API 服务如何为各种用例(DeFi、NFT、游戏、企业)提供支持,并包含了对行业发展方向的评论。以下是该报告发现的结构化摘要,其中包含了对领先 API 提供商的比较以及为验证而直接引用的来源。

区块链 API 基础设施趋势 (2025)

2025 年的区块链 API 生态系统由几个关键趋势和技术进步所塑造:

  • 多链生态系统: 单一主导区块链的时代已经结束——现在存在数百个 Layer-1、Layer-2 和应用特定链。像 QuickNode 这样的领先提供商现在支持约 15–25 条链,但实际上“全球有五到六百个区块链(以及数千个子网络)处于活跃状态”。这种碎片化推动了对能够抽象复杂性并提供统一多链访问的基础设施的需求。那些尽早拥抱新协议的平台可以获得先发优势,因为更具可扩展性的链解锁了新的链上应用,并且开发者越来越多地进行跨多链构建。仅在 2023 年,就有约 131 个不同的区块链生态系统吸引了新开发者,这突显了多链趋势。

  • 开发者社区的韧性和增长: 尽管市场周期波动,Web3 开发者社区仍然庞大且富有韧性。截至 2023 年底,每月有超过 22,000 名活跃的开源加密开发者,在 2021 年的炒作之后同比略有下降(约 25%),但值得注意的是,经验丰富的“资深”开发者数量_增长_了约 15%。这表明严肃的、长期的建设者正在巩固。这些开发者需要可靠、可扩展的基础设施和具有成本效益的解决方案,尤其是在资金环境更紧张的情况下。随着主要链上的交易成本下降(得益于 L2 rollups)和新的高吞吐量链上线,链上活动正创下历史新高——这进一步推动了对强大节点和 API 服务的需求。

  • Web3 基础设施服务的兴起: 区块链基础设施已经成熟为一个独立的细分市场,吸引了大量风险投资和专业提供商。例如,QuickNode 以其高性能(据报道比某些竞争对手快 2.5 倍)和 99.99% 的正常运行时间 SLA脱颖而出,赢得了像 Google 和 Coinbase 这样的企业客户。Alchemy 在市场高峰期达到了 100 亿美元的估值,反映了投资者的热情。资本的涌入刺激了托管节点、RPC API、索引/分析和开发者工具的快速创新。传统云巨头(AWS、Azure、Google Cloud)也通过区块链节点托管和托管账本服务进入该领域。这验证了市场机会,但也提高了小型提供商在可靠性、规模和企业功能方面的门槛。

  • 去中心化推动(基础设施): 与大型中心化提供商的趋势相反,出现了一场朝着去中心化基础设施发展的运动,这与 Web3 的精神相符。像 Pocket Network、Ankr 和 Blast (Bware) 这样的项目通过带有加密经济激励的分布式节点网络提供 RPC 端点。这些去中心化的 API 可能具有成本效益和抗审查性,尽管在性能和易用性方面通常仍落后于中心化服务。报告指出,“虽然中心化服务目前在性能上领先,但 Web3 的精神倾向于去中介化。” BlockEden 自身关于一个开放的、具有无需许可访问权限(最终由代币治理)的“API 市场”的愿景与这一推动相符,旨在将传统基础设施的可靠性与去中心化网络的开放性结合起来。确保开放的自助式注册(例如,慷慨的免费套餐、即时 API 密钥注册)已成为吸引草根开发者的行业最佳实践。

  • 服务融合与一站式平台: 提供商正在将其产品范围扩展到基本的 RPC 端点之外。对增强型 API 和数据服务的需求日益增长——例如,索引数据(用于更快的查询)、GraphQL API、Token/NFT API、分析仪表板,甚至集成链下数据或 AI 服务。例如,BlockEden 为 Aptos、Sui 和 Stellar Soroban 提供 GraphQL 索引器 API,以简化复杂查询。QuickNode 收购了 NFT API 工具(如 Icy Tools)并推出了一个附加组件市场。Alchemy 提供专门用于 NFT、Token、转账的 API,甚至还有一个账户抽象 SDK。这种**“一站式商店”**趋势意味着开发者可以从单一平台获得节点 + 索引 + 存储 + 分析。BlockEden 甚至在其基础设施中探索了“无需许可的 LLM 推理”(AI 服务)。目标是通过一套丰富的工具吸引开发者,使他们无需拼凑多个供应商。

市场规模与增长前景 (2025)

报告描绘了到 2025 年及以后,区块链 API/基础设施市场将实现强劲增长的图景:

  • 全球 Web3 基础设施市场预计在 2024 年至 2030 年间将以约 49% 的复合年增长率 (CAGR) 增长,表明该领域存在巨大的投资和需求。这意味着整体市场规模可能以该速度每约 1.5–2 年翻一番。(作为参考,报告中引用的一份外部 Statista 预测估计,更广泛的数字资产生态系统到 2025 年底将达到约 453 亿美元,这突显了基础设施必须支持的加密经济的规模。)

  • 推动这一增长的是企业(包括 Web3 初创公司和传统公司)整合加密和区块链能力的压力。根据报告,数十个 Web2 行业(电子商务、金融科技、游戏等)现在需要加密货币兑换、支付或 NFT 功能以保持竞争力,但从头开始构建此类系统很困难。区块链 API 提供商提供一站式解决方案——从钱包和交易 API 到法币出入金通道——将传统系统与加密世界连接起来。这降低了采用门槛,从而推动了对 API 服务的更多需求。

  • 企业和机构对区块链的采用也在增加,进一步扩大了市场。更清晰的法规以及区块链在金融和供应链领域的成功案例导致到 2025 年出现了更多的企业项目。许多企业不愿运行自己的节点,这为拥有企业级产品(SLA 保证、安全认证、专属支持)的基础设施提供商创造了机会。例如,Chainstack 的 SOC2 认证基础设施、99.9% 的正常运行时间 SLA 和单点登录吸引了寻求可靠性和合规性的企业。能够抓住这些高价值客户的提供商可以显著增加收入。

总而言之,2025 年区块链 API 的前景是强劲增长——不断扩大的开发者基础、新区块链的推出、日益增加的链上活动以及主流对加密服务的整合,所有这些都推动了对可扩展基础设施的需求。专门的 Web3 公司和科技巨头都在大力投资以满足这一需求,这表明这是一个竞争激烈但回报丰厚的市场。

领先的区块链 API 提供商——功能与比较

2025 年,几个关键参与者主导着区块链 API 领域,每个参与者都有不同的优势。BlockEden 报告将 BlockEden.xyz(报告的主办方)与其他领先提供商如 Alchemy、Infura、QuickNode 和 Chainstack 进行了比较。以下是它们在支持的区块链、显著功能、性能/正常运行时间和定价方面的比较:

提供商支持的区块链显著功能与优势性能与正常运行时间定价模型
BlockEden.xyz27+ 个网络(多链,包括 Ethereum、Solana、Aptos、Sui、Polygon、BNB Chain 等)。专注于其他提供商通常不覆盖的新兴 L1/L2(“新区块链领域的 Infura”)。API 市场提供标准 RPC 和增强型 API(例如,Sui/Aptos 的 GraphQL 索引器、NFT 和加密新闻 API)。独特之处还在于提供质押服务和 API(在多个网络上运行验证节点,质押金额达 6500 万美元)。以开发者为中心:自助注册、免费套餐、强大的文档和活跃的社区(BlockEden 的 10x.pub guild)提供支持。强调包容性功能(最近添加了 HTML-to-PDF API 等)。自推出以来,所有服务的正常运行时间约为 99.9%。在各地区拥有高性能节点。虽然尚未夸耀 99.99% 的企业级 SLA,但 BlockEden 的往绩和处理大额质押的能力证明了其可靠性。针对每个支持的链进行了性能优化(它通常是第一个为 Aptos/Sui 等提供索引器 API 的,填补了这些生态系统的空白)。免费的 Hobby 套餐(非常慷慨:例如,每天免费 1000 万计算单元)。针对更高使用量采用按需付费的“计算单元”模型Pro 套餐约 49.99 美元/月,每天约 1 亿计算单元(10 RPS),这比许多竞争对手都便宜。提供企业套餐,可自定义配额。接受加密货币支付(APT、USDC、USDT),并承诺匹配任何竞争对手的更低报价,体现了其客户友好、灵活的定价策略。
Alchemy8+ 个网络(专注于主要链:Ethereum、Polygon、Solana、Arbitrum、Optimism、Base 等,并不断添加新链)。不支持像 Bitcoin 这样的非 EVM 链。以其丰富的开发者工具和基于 RPC 的增强型 API 而闻名。提供专门的 API:NFT API、Token API、Transfers API、Debug/Trace、Webhook 通知以及一个SDK,便于集成。提供开发者仪表板、分析和监控工具。拥有强大的生态系统和社区(例如,Alchemy University),并且是简化区块链开发的先驱(通常被认为拥有最好的文档和教程)。高知名度用户(OpenSea、Aave、Meta、Adobe 等)验证了其产品。以其数据的极高可靠性和准确性而闻名。正常运行时间达到企业级(实践中有效达到 99.9%+),Alchemy 的基础设施在大规模应用中得到了验证(为 NFT 市场和 DeFi 平台等重量级应用提供服务)。提供 24/7 支持(Discord、支持工单,甚至为企业客户提供专属 Telegram)。全球性能强劲,尽管一些竞争对手声称延迟更低。免费套餐(每月最多约 380 万次交易),包含完整的存档数据——被认为是业内最慷慨的免费计划之一。按需付费套餐,无固定费用——按请求付费(适合可变使用量)。企业套餐,为大规模需求提供自定义定价。Alchemy 在更高级别的计划中不收取某些增强型 API 的费用,其免费的存档数据访问是一个差异化优势。
Infura (ConsenSys)约 5 个网络(历史上主要是 Ethereum 及其测试网;现在也为高级用户提供 Polygon、Optimism、Arbitrum)。还提供对 IPFS 和 Filecoin 的访问以实现去中心化存储,但不支持像 Solana 或 Bitcoin 这样的非 EVM 链。区块链 API 的早期先驱——在早期基本上是 Ethereum dApp 的默认选择。提供简单、可靠的 RPC 服务。与 ConsenSys 产品集成(例如,hardhat、MetaMask 可以默认使用 Infura)。提供 API 仪表板以监控请求,以及 ITX(交易中继)等附加组件。然而,与新提供商相比,其功能集更为基础——增强型 API 或多链工具较少。Infura 的优势在于其简单性和在 Ethereum 上的可靠运行时间。在 Ethereum 交易方面高度可靠(在 DeFi summer 期间为许多 DeFi 应用提供了支持)。正常运行时间和数据完整性都很强。但_收购后的发展势头有所放缓_——Infura 仍然只支持约 6 个网络,并且没有像其他公司那样积极扩张。它曾因中心化问题受到批评(例如,Infura 宕机影响了许多 dApp 的事件)。没有官方的 99.99% SLA;目标是约 99.9% 的正常运行时间。适合主要需要 Ethereum/Mainnet 稳定性的项目。分层计划,提供免费套餐(约 300 万次请求/月)。Developer 套餐 50 美元/月(约 600 万次请求),Team 套餐 225 美元/月(约 3000 万次),Growth 套餐 1000 美元/月(约 1.5 亿次)。对附加组件(例如,超出特定限制的存档数据)额外收费。Infura 的定价简单明了,但对于多链项目来说,成本可能会增加,因为支持侧链需要更高级别的套餐或附加组件。许多开发者从 Infura 的免费计划开始,但随着规模扩大或需要其他网络时,往往会超出其限制或转换平台。
QuickNode14+ 个网络(支持范围非常广:Ethereum、Solana、Polygon、BNB Chain、Algorand、Arbitrum、Avalanche、Optimism、Celo、Fantom、Harmony,甚至 Bitcoin 和 Terra,以及主要测试网)。根据需求不断添加热门链。专注于速度、可扩展性和企业级服务。QuickNode 宣称自己是速度最快的 RPC 提供商之一(声称在全球范围内比 65% 的竞争对手更快)。提供先进的分析仪表板和附加组件市场(例如,来自合作伙伴的增强型 API)。拥有一个 NFT API,可实现跨链 NFT 数据检索。强大的多链支持(覆盖许多 EVM 链以及像 Solana、Algorand、Bitcoin 这样的非 EVM 链)。它吸引了大客户(Visa、Coinbase),并拥有知名投资者的支持。QuickNode 以推出新功能(例如,“QuickNode Marketplace”用于第三方集成)和提供精致的开发者体验而闻名。卓越的性能和保证:为企业计划提供 99.99% 的正常运行时间 SLA。全球分布的基础设施,延迟低。由于其性能声誉,QuickNode 经常被用于任务关键型 dApp。在独立测试中,其性能比某些竞争对手快约 2.5 倍(如报告所述)。在美国,延迟基准测试将其置于顶尖或接近顶尖的位置。QuickNode 的稳健性使其成为高流量应用的首选。免费套餐(每月最多 1000 万 API 积分)。Build 套餐 49 美元/月(8000 万积分),Scale 套餐 249 美元(4.5 亿积分),Enterprise 套餐 499 美元(9.5 亿积分),以及高达 999 美元/月(20 亿 API 积分)的自定义高级计划。定价采用积分系统,不同的 RPC 调用“消耗”不同的积分,这可能会令人困惑;然而,它允许使用模式的灵活性。某些附加组件(如完整的存档数据访问)需要额外付费(250 美元/月)。QuickNode 的定价偏高(反映其高端服务),这促使一些小型开发者在规模扩大后寻找替代方案。
Chainstack70+ 个网络(业内覆盖范围最广之一)。支持主要的公有链,如 Ethereum、Polygon、BNB Smart Chain、Avalanche、Fantom、Solana、Harmony、StarkNet,以及非加密企业账本,如 Hyperledger Fabric、Corda,甚至 Bitcoin。这种混合方法(公有链和许可链)针对企业需求。以企业为中心的平台: Chainstack 提供多云、地理分布的节点,并强调可预测的定价(无意外超额费用)。它提供高级功能,如用户管理(具有基于角色的权限的团队账户)、专用节点、自定义节点配置和监控工具。值得注意的是,Chainstack 与 bloXroute 等解决方案集成,以实现全球内存池 (mempool) 访问(用于低延迟交易),并提供托管子图托管服务以进行索引查询。它还有一个附加组件市场。基本上,Chainstack 将自己定位为“为规模而生的 QuickNode 替代品”,强调稳定的定价和广泛的链支持非常可靠:为企业用户提供 99.9%+ 的正常运行时间 SLA。SOC 2 合规性和强大的安全实践,对企业具有吸引力。性能按地区优化(他们甚至为高频用例提供具有低延迟区域端点的“Trader”节点)。虽然可能不像 QuickNode 的速度那样被大肆宣传,但 Chainstack 提供性能仪表板和基准测试工具以保证透明度。包含区域和无限制选项表明他们可以稳定地处理大量工作负载。Developer 套餐:0 美元/月 + 使用费(包括 300 万次请求,额外使用需付费)。Growth 套餐:49 美元/月 + 使用费(2000 万次请求,可选择无限制请求,但需支付额外使用费)。Business 套餐:349 美元(1.4 亿次)和 Enterprise 套餐:990 美元(4 亿次),提供更高级别的支持和自定义选项。Chainstack 的定价部分基于使用量,但没有“积分”的复杂性——他们强调固定、可预测的费率和全球包容性(无区域费用)。这种可预测性,加上某些调用_始终免费_的网关等功能,使 Chainstack 对于需要多链访问而无意外费用的团队来说具有成本效益。

来源: 以上比较综合了 BlockEden.xyz 报告中的数据和引述,以及为确保准确性而从提供商网站(例如 Alchemy 和 Chainstack 的文档)记录的功能。

区块链覆盖范围和网络支持

API 提供商最重要的方面之一是它支持哪些区块链。以下是关于特定热门链及其支持情况的简要介绍:

  • Ethereum Mainnet 和 L2s: 所有领先的提供商都支持 Ethereum。Infura 和 Alchemy 尤其专注于 Ethereum(提供完整的存档数据等)。QuickNode、BlockEden 和 Chainstack 也将 Ethereum 作为核心产品支持。像 Polygon、Arbitrum、Optimism、Base 这样的 Layer-2 网络由 Alchemy、QuickNode 和 Chainstack 支持,Infura 也支持(作为付费附加组件)。BlockEden 支持 Polygon(和 Polygon zkEVM),并可能随着新 L2 的出现而增加更多支持。

  • Solana: Solana 由 BlockEden(他们在 2023 年添加了 Solana)、QuickNode 和 Chainstack 支持。Alchemy 也在 2022 年添加了 Solana RPC。Infura 不支持 Solana(至少到 2025 年,它仍然专注于 EVM 网络)。

  • Bitcoin: 作为一个非 EVM 链,Bitcoin 明显不受 Infura 或 Alchemy 支持(它们专注于智能合约链)。QuickNode 和 Chainstack 都提供 Bitcoin RPC 访问,使开发者无需运行完整节点即可访问 Bitcoin 数据。BlockEden 目前在其支持的网络列表中没有列出 Bitcoin(它专注于智能合约平台和较新的链)。

  • Polygon 和 BNB Chain: 这些热门的 Ethereum 侧链得到了广泛支持。Polygon 在 BlockEden、Alchemy、Infura(高级版)、QuickNode 和 Chainstack 上都可用。BNB Smart Chain (BSC) 由 BlockEden (BSC)、QuickNode 和 Chainstack 支持。(Alchemy 和 Infura 没有列出对 BSC 的支持,因为它不在他们关注的 Ethereum/共识生态系统之内。)

  • 新兴 Layer-1s (Aptos, Sui 等): 这是 BlockEden.xyz 的亮点所在。它是 Aptos 和 Sui 的早期提供商,在这些 Move 语言链发布时就提供了 RPC 和索引器 API。许多竞争对手最初并不支持它们。到 2025 年,像 Chainstack 这样的一些提供商已经将 Aptos 和其他链加入了他们的阵容,但 BlockEden 在这些社区中仍然备受推崇(报告指出,根据用户的说法,BlockEden 的 Aptos GraphQL API“在其他任何地方都找不到”)。快速支持新链可以尽早吸引开发者社区——BlockEden 的策略是填补开发者在新网络上选择有限的空白。

  • 企业(许可)链: 独特的是,Chainstack 支持 Hyperledger Fabric、Corda、Quorum 和 Multichain,这些对于企业区块链项目(联盟、私有账本)非常重要。大多数其他提供商不迎合这些需求,而是专注于公有链。这是 Chainstack 企业定位的一部分。

总而言之,Ethereum 和主要的 EVM 链得到了普遍覆盖,Solana 除了 Infura 外大多数都支持,Bitcoin 只有少数几家支持(QuickNode/Chainstack),而像 Aptos/Sui 这样的新兴 L1 则由 BlockEden 和现在的一些其他提供商支持。开发者应该选择一个覆盖其 dApp 所需所有网络的提供商——因此多链提供商具有优势。每个提供商支持更多链的趋势是明确的(例如,QuickNode 约 14 个,Chainstack 50–70+ 个,Blockdaemon 50+ 个等),但支持的深度(在每条链上的稳健性)同样至关重要。

开发者采用和生态系统成熟度

该报告深入探讨了开发者采用趋势和生态系统的成熟度:

  • 开发者使用量增长: 尽管经历了 2022–2023 年的熊市,链上开发者活动依然强劲。截至 2023 年底,每月约有 2.2 万名活跃开发者(并且在 2024/25 年可能再次增长),对易于使用的基础设施的需求是稳定的。提供商不仅在原始技术上竞争,还在开发者体验上竞争,以吸引这个基础。像详尽的文档、SDK 和社区支持等功能现在已成为标配。例如,BlockEden 以社区为中心的方法(Discord、10x.pub guild、黑客松)和 QuickNode 的教育计划旨在建立忠诚度。

  • 免费套餐的采用: 免费增值模式正在推动广泛的草根使用。几乎所有提供商都提供一个免费套餐,可以满足基本的项目需求(每月数百万次请求)。报告指出,BlockEden 每天 1000 万计算单元的免费套餐是故意设置得很高,以消除独立开发者的使用障碍。Alchemy 和 Infura 的免费计划(每月约 300–400 万次调用)多年来帮助了数十万开发者入门。这种策略为生态系统播下了种子,这些用户在他们的 dApp 获得关注后可以转化为付费计划。拥有一个强大的免费套餐已成为行业标准——它降低了入门门槛,鼓励实验和学习。

  • 平台上的开发者数量: Infura 历史上拥有最多的用户数量(几年前超过 40 万开发者),因为它是早期的默认选择。Alchemy 和 QuickNode 也发展了庞大的用户基础(Alchemy 通过其教育项目进行推广,QuickNode 专注于 Web3 初创公司,帮助他们签约了成千上万的用户)。BlockEden 作为较新的平台,报告其平台上有 6,000 多名开发者。虽然绝对数量较小,但考虑到其专注于较新的链,这是非常显著的——这表明在这些生态系统中有很强的渗透率。该报告设定了明年将 BlockEden 的活跃开发者数量翻倍的目标,反映了该行业的整体增长轨迹。

  • 生态系统成熟度: 我们正在看到从炒作驱动的采用(牛市期间大量新开发者涌入)向更可持续、成熟的增长转变。2021 年后“游客”开发者的减少意味着留下来的开发者更加认真,而 2024–2025 年的新进入者通常有更好的理解。这种成熟度要求更强大的基础设施:经验丰富的团队期望高正常运行时间 SLA、更好的分析和支持。提供商通过专业化服务来应对(例如,为企业提供专属客户经理、发布状态仪表板等)。此外,随着生态系统的成熟,使用模式也得到了更好的理解:例如,以 NFT 为主的应用可能需要不同的优化(缓存元数据等),而 DeFi 交易机器人则需要内存池 (mempool) 数据和低延迟。API 提供商现在提供量身定制的解决方案(例如,Chainstack 上述的“Trader Node”用于低延迟交易数据)。行业特定解决方案(游戏 API、合规工具等,通常通过市场或合作伙伴提供)的出现是生态系统成熟、服务多样化需求的标志。

  • 社区与支持: 成熟度的另一个方面是围绕这些平台形成了活跃的开发者社区。QuickNode 和 Alchemy 有社区论坛和 Discord;BlockEden 的社区(其 guild 中有 4,000 多名 Web3 建设者)遍布硅谷、纽约乃至全球。这种同行支持和知识共享加速了采用。报告强调,“卓越的 24/7 客户支持”是 BlockEden 的一个卖点,用户赞赏团队的响应速度。随着技术变得越来越复杂,这种支持(以及清晰的文档)对于吸引下一波可能不太熟悉区块链内部机制的开发者至关重要。

总而言之,开发者采用正以一种更可持续的方式扩展。那些投资于开发者体验——免费访问、好的文档、社区参与和可靠支持——的提供商正在从 Web3 开发者社区的忠诚度和口碑中获益。生态系统正在成熟,但仍有很大的增长空间(来自 Web2 的新开发者、大学区块链俱乐部、新兴市场等,都是 2025 年增长的目标)。

安全性、去中心化和可扩展性考量

报告讨论了安全性、去中心化和可扩展性如何影响区块链 API 基础设施:

  • 基础设施的可靠性与安全性: 在 API 提供商的背景下,安全性指的是强大、容错的基础设施(因为这些服务通常不托管资金,主要风险是停机或数据错误)。领先的提供商强调高正常运行时间、冗余和 DDoS 保护。例如,QuickNode 的 99.99% 正常运行时间 SLA 和全球负载均衡旨在确保 dApp 不会因 RPC 故障而宕机。BlockEden 引用其 99.9% 的正常运行时间记录以及通过安全管理 6500 万美元质押资产获得的信任(这意味着其节点的运营安全性很强)。Chainstack 的 SOC2 合规性表明了其高标准的安全实践和数据处理。基本上,这些提供商运行的是任务关键型节点基础设施,因此他们将可靠性视为重中之重——许多提供商在所有地区都有 24/7 的待命工程师和监控。

  • 中心化风险: Ethereum 社区一个众所周知的问题是过度依赖少数几个基础设施提供商(例如 Infura)。如果过多的流量通过单一提供商,停机或 API 不当行为可能会影响大部分去中心化应用生态系统。2025 年的情况在这方面有所改善——随着许多强大的竞争对手的出现,负载比 2018 年 Infura 几乎是唯一选择时更加分散。尽管如此,推动基础设施去中心化部分是为了解决这个问题。像 Pocket Network (POKT) 这样的项目使用一个由独立节点运行者组成的网络来服务 RPC 请求,消除了单点故障。其代价是性能和一致性,但情况正在改善。Ankr 的混合模型(部分中心化,部分去中心化)同样旨在在不失可靠性的情况下实现去中心化。BlockEden 的报告承认这些去中心化网络是新兴的竞争对手——与 Web3 的价值观一致——即使它们目前的速度或开发者友好性还不如中心化服务。我们可能会看到更多的融合,例如,中心化提供商采用一些去中心化验证(BlockEden 的代币化市场愿景就是这样一种混合方法)。

  • 可扩展性与吞吐量: 可扩展性是双重的:区块链本身的扩展能力(更高的 TPS 等)和基础设施提供商扩展其服务以处理不断增长的请求量的能力。在第一点上,2025 年有许多具有高吞吐量的 L1/L2(Solana、新的 rollups 等),这意味着 API 必须处理突发性、高频率的工作负载(例如,Solana 上一个热门的 NFT 铸造可以产生数千 TPS)。提供商通过改进其后端来应对——例如,QuickNode 的架构可以处理每天数十亿的请求,Chainstack 的“无限制”节点,以及 BlockEden 使用云和裸金属服务器来提高性能。报告指出,链上活动创下历史新高正在推动对节点服务的需求,因此 API 平台的可扩展性至关重要。许多提供商现在展示其吞吐量能力(例如,QuickNode 的高级套餐允许数十亿次请求,或者 Chainstack 在其营销中强调“无限性能”)。

  • 全球延迟: 可扩展性的一部分是通过地理分布来减少延迟。如果一个 API 端点只在一个地区,全球用户将会有较慢的响应。因此,地理分布的 RPC 节点和 CDN 现在已成为标准。像 Alchemy 和 QuickNode 这样的提供商在多个大洲都有数据中心。Chainstack 提供区域端点(甚至有专门针对延迟敏感用例的产品层级)。BlockEden 也在多个地区运行节点以增强去中心化和速度(报告提到计划在关键地区运营节点以提高网络弹性和性能)。这确保了随着全球用户群的增长,服务能够在地理上扩展。

  • 数据和请求的安全性: 虽然不完全是关于 API,但报告简要提到了监管和安全考量(例如,BlockEden 对**《区块链监管确定性法案》**的研究表明其关注合规运营)。对于企业客户来说,加密、安全 API 以及可能的 ISO 认证等都很重要。在更具区块链特性的方面,RPC 提供商还可以添加安全功能,如抗抢先交易保护(一些提供商提供私密交易中继选项)或对失败交易的自动重试。Coinbase Cloud 和其他公司已经推出了“安全中继”功能。报告的重点更多地是将基础设施的可靠性视为安全性,但值得注意的是,随着这些服务更深地嵌入到金融应用中,其安全态势(正常运行时间、抗攻击能力)成为 Web3 生态系统整体安全性的一部分。

总而言之,可扩展性和安全性正通过高性能基础设施和多样化来解决。竞争格局意味着提供商力求最高的正常运行时间和吞吐量。与此同时,去中心化的替代方案正在发展以减轻中心化风险。两者的结合很可能将定义下一个阶段:可靠性能与去中心化信任的融合。

驱动 API 需求的用例和应用

区块链 API 提供商服务于广泛的用例。报告重点介绍了 2025 年特别依赖这些 API 的几个领域:

  • 去中心化金融 (DeFi): DeFi 应用(DEX、借贷平台、衍生品等)严重依赖可靠的区块链数据。它们需要持续获取链上状态(余额、智能合约读取)并发送交易。许多顶级的 DeFi 项目使用像 Alchemy 或 Infura 这样的服务来扩展。例如,Aave 和 MakerDAO 使用 Alchemy 的基础设施。API 还提供 DeFi 中分析和历史查询所需的存档节点数据。随着 DeFi 的持续增长,特别是在 Layer-2 网络和多链部署上,拥有多链 API 支持和低延迟至关重要(例如,套利机器人受益于内存池 (mempool) 数据和快速交易——一些提供商为此提供专用的低延迟端点)。报告暗示,通过 L2 和新链降低成本正在促进链上 DeFi 的使用,这反过来又增加了 API 调用。

  • NFT 和游戏: NFT 市场(如 OpenSea)和区块链游戏产生大量的读取量(元数据、所有权检查)和写入量(铸造、转账)。OpenSea 是一个著名的 Alchemy 客户,这可能是因为 Alchemy 的 NFT API 简化了在 Ethereum 和 Polygon 上查询 NFT 数据的过程。QuickNode 的跨链 NFT API 也针对这一细分市场。区块链游戏通常运行在像 Solana、Polygon 或特定的侧链上——支持这些网络(并提供高 TPS 处理能力)的提供商需求旺盛。报告没有明确点名游戏客户,但提到了Web3 游戏和元宇宙项目是增长中的细分市场(而 BlockEden 自身对 AI 集成等功能的支持可能与游戏/NFT 元宇宙应用有关)。游戏内交易和市场不断地 ping 节点 API 以获取状态更新。

  • 企业与 Web2 集成: 涉足区块链的传统公司(支付、供应链、身份等)更喜欢托管解决方案。报告指出,金融科技和电子商务平台正在增加加密支付和兑换功能——其中许多使用第三方 API 而不是重新造轮子。例如,支付处理商可以使用区块链 API 进行加密转账,或者银行可以使用节点服务查询链上数据以提供托管解决方案。报告表明,来自企业的兴趣日益增加,甚至提到将中东和亚洲等企业区块链采用率正在上升的地区作为目标。一个具体的例子:Visa 曾与 QuickNode 合作进行一些区块链试点项目,而 Meta (Facebook) 则使用 Alchemy 进行某些区块链项目。企业用例还包括分析和合规——例如,查询区块链进行风险分析,一些提供商通过自定义 API 或支持专门的链(如 Chainstack 支持 Corda 用于贸易融资联盟)来满足这种需求。BlockEden 的报告表明,获得一些企业案例研究是推动主流采用的一个目标。

  • Web3 初创公司和 DApp: 当然,最基本的用例是任何去中心化应用——从钱包到社交 dApp 再到 DAO。Web3 初创公司依赖 API 提供商来避免为每条链运行节点。许多黑客松项目使用这些服务的免费套餐。像去中心化社交媒体DAO 工具身份 (DID) 系统基础设施协议本身都需要可靠的 RPC 访问。BlockEden 的增长策略特别提到了在全球范围内针对早期项目和黑客松——这表明不断有新的 dApp 上线,它们更愿意不操心节点运营。

  • 专业服务(AI、预言机等): 有趣的是,AI 和区块链的融合正在产生区块链 API 和 AI 服务相交的用例。BlockEden 对“AI-to-earn”(与 Cuckoo Network 合作)和在其平台上进行无需许可的 AI 推理的探索展示了一个角度。预言机和数据服务(Chainlink 等)也可能使用这些提供商的基础设施。虽然不是传统的 API“用户”,但这些基础设施层本身有时会相互构建——例如,一个分析平台可能会使用区块链 API 来收集数据以提供给其用户。

总的来说,对区块链 API 服务的需求是广泛的——从业余开发者到财富 500 强公司。DeFi 和 NFT 是最初的催化剂(2019–2021),证明了对可扩展 API 的需求。到 2025 年,企业和新颖的 Web3 领域(社交、游戏、AI)正在进一步扩大市场。每个用例都有其自身的要求(吞吐量、延迟、历史数据、安全性),提供商正在量身定制解决方案以满足这些需求。

值得注意的是,报告中包含了来自行业领袖的引述和例子,以说明这些用例:

  • “支持超过 185 个区块链上的 1,000 多种代币……允许访问超过 33 万个交易对,” 一家交易所 API 提供商吹嘘道——突显了加密货币兑换功能所需的支持深度。
  • “一个合作伙伴在整合了一站式 API 后,四个月内月交易量增长了 130%”——强调了使用可靠的 API 如何能加速加密业务的增长。
  • 包含这些见解强调了强大的 API 正在推动应用的实际增长。

行业洞察与评论

BlockEden 的报告穿插了来自整个行业的见解,反映了对区块链基础设施发展方向的共识。一些值得注意的评论和观察:

  • 多链未来: 正如报告中所引述的,“现实是有五到六百个区块链”。这一观点(最初可能来自 Electric Capital 的开发者报告或类似来源)强调未来是多元的,而非单一的。基础设施必须适应这种碎片化。即使是主导的提供商也承认这一点——例如,Alchemy 和 Infura(曾几乎只专注于 Ethereum)现在正在增加多个链,风险资本也流向专注于利基协议支持的初创公司。支持多链的能力(以及在新链出现时迅速支持的能力)被视为一个关键的成功因素。

  • 性能的重要性: 报告引用了 QuickNode 的性能优势(快 2.5 倍),这可能来自一项基准测试研究。这一点得到了开发者的共鸣——延迟和速度很重要,特别是对于面向终端用户的应用(钱包、交易平台)。行业领袖经常强调,web3 应用必须感觉像 web2 一样流畅,而这始于快速、可靠的基础设施。因此,性能上的军备竞赛(例如,全球分布的节点、优化的网络、内存池 (mempool) 加速)预计将继续。

  • 企业验证: 像 Google、Coinbase、Visa、Meta 这样的知名企业正在使用或投资这些 API 提供商,这是对该行业的有力验证。报告提到 QuickNode 吸引了像 SoftBank 和 Tiger Global 这样的主要投资者,而 Alchemy 的 100 亿美元估值本身就说明了一切。2024/2025 年左右的行业评论经常指出,即使在熊市期间,加密领域的“镐和铲子”(即基础设施)也是一个明智的选择。这份报告强化了这一观点:为 Web3 提供基础的公司正在成为自身关键的基础设施公司,吸引了传统科技公司和风险投资的兴趣。

  • 竞争差异化: 报告中有一个微妙的观点,即_没有一个竞争对手提供与 BlockEden 完全相同的服务组合_(多链 API + 索引 + 质押)。这突显了每个提供商如何开辟自己的利基市场:Alchemy 专注于开发者工具,QuickNode 专注于纯粹的速度和广度,Chainstack 专注于企业/私有链,BlockEden 专注于新兴链和集成服务。行业领袖经常评论说,蛋糕正在变大,因此差异化是占领特定细分市场的关键,而不是赢家通吃的局面。Moralis(web3 SDK 方法)和 Blockdaemon/Coinbase Cloud(重质押方法)的存在进一步证明了这一点——基础设施存在不同的策略。

  • 去中心化 vs. 中心化: 行业内的思想领袖(如 Ethereum 的 Vitalik Buterin)经常对依赖中心化 API 表示担忧。报告中对 Pocket Network 和其他项目的讨论反映了这些担忧,并表明即使是运营中心化服务的公司也在为更去中心化的未来做准备(BlockEden 的代币化市场概念等)。报告中一个富有洞察力的评论是,BlockEden 旨在提供“中心化基础设施的可靠性和市场的开放性”——如果实现,这种方法可能会受到去中心化支持者的欢迎。

  • 监管环境: 虽然不是问题的重点,但值得注意的是,报告顺便提到了监管和法律问题(提到了《区块链监管确定性法案》等)。这意味着基础设施提供商正在关注可能影响节点运营或数据隐私的法律。例如,欧洲的 GDPR 及其如何适用于节点数据,或美国关于运营区块链服务的法规。对此的行业评论表明,更清晰的法规(例如,定义非托管区块链服务提供商不是货币传输者)将通过消除模糊性进一步推动该领域的发展。

结论:2025 年区块链 API 现状》报告揭示了一个快速发展、不断增长的基础设施格局。关键要点包括向多链支持的转变,一个由各具特色的提供商组成的竞争激烈的领域,与整个加密市场扩张相一致的使用量大幅增长,以及性能与去中心化之间持续的张力(和平衡)。区块链 API 提供商已成为各种 Web3 应用——从 DeFi 和 NFT 到企业集成——的关键推动者,随着区块链技术变得更加普及,它们的作用只会扩大。报告强调,在这个领域取得成功不仅需要强大的技术和正常运行时间,还需要社区参与、开发者优先的设计,以及在支持下一个重大协议或用例方面的敏捷性。从本质上讲,2025 年区块链 API 的“现状”是稳健和乐观的:一个正在迅速成熟并准备进一步增长的 Web3 基础层。

来源: 本分析基于 BlockEden.xyz 的《2025 年区块链 API 现状》报告及相关数据。关键见解和引述直接取自该报告,并辅以提供商文档和行业文章的补充信息以求完整。所有来源链接均在文中提供以供参考。

Camp Network:应对 AI 数十亿美元知识产权问题的区块链 🏕️

· 阅读需 5 分钟
Dora Noda
Software Engineer

生成式 AI 的崛起堪称爆炸式增长。从惊艳的数字艺术到类人文本,AI 正以前所未有的规模创作内容。但这股热潮也有阴暗面:AI 的训练数据来自何处?往往是来自互联网上的海量艺术、音乐和文字作品,而这些作品的创作者往往得不到任何署名或报酬。

Camp Network 正是为了解决这一根本问题而诞生的新区块链项目。它不仅是另一个加密平台,而是一个专为 AI 时代设计的“自主知识产权层”,旨在赋予创作者对其作品的所有权和控制权。下面让我们一起了解为何 Camp Network 值得关注。


核心理念是什么?

Camp Network 本质上是一个全球可验证的知识产权(IP)登记链。其使命是让任何人——从独立艺术家到社交媒体用户——都能在链上注册自己的内容,形成永久、不可篡改的所有权与来源记录。

这为何重要?当 AI 模型使用已在 Camp 上登记的内容时,网络的智能合约可以自动执行许可条款。原始创作者因此能够即时获得署名,甚至收到版税。Camp 的愿景是构建一个全新的创作者经济,报酬不再是事后补偿,而是直接写入协议。


技术栈概览

Camp 不只是概念,它背后有一套为高性能和开发者友好而打造的技术。

  • 模块化架构:Camp 采用 Celestia 作为数据可用性层,构建为主权 Rollup。该设计使其能够实现极高的吞吐量(目标 50,000 TPS)和低成本,同时完全集成以太坊工具(EVM)。
  • 来源证明(PoP):这是 Camp 独有的共识机制。网络安全性不依赖高能耗挖矿,而是通过验证内容来源来实现。每笔交易都在网络上强化 IP 的来源,使所有权“设计即可执行”。
  • 双 VM 策略:为提升性能,Camp 同时集成 Solana 虚拟机(SVM) 与 EVM 兼容层。开发者可根据应用需求选择最佳运行环境,尤其适用于实时 AI 交互等高吞吐场景。
  • 创作者与 AI 工具包:Camp 提供两大框架:
    • Origin Framework:面向创作者的友好系统,用于登记 IP、将其代币化(NFT),并嵌入许可规则。
    • mAItrix Framework:为开发者提供的工具包,帮助构建并部署能够安全、受权限控制地与链上 IP 交互的 AI 代理。

团队、合作伙伴与进展

一个想法的价值取决于执行力,Camp 在这方面表现出色。

团队与融资

项目由一支兼具 Raine Group(媒体与 IP 交易)、Goldman SachsFigmaCoinList 背景的团队领衔。凭借金融、产品技术与加密工程的复合经验,他们已获得 3000 万美元的融资,投资方包括 1kxBlockchain CapitalMaven 11 等顶级风投。

生态布局

Camp 积极构建合作网络。最重要的合作是对 KOR Protocol 的战略持股——该平台专注于音乐 IP 代币化,合作艺人包括 Deadmau5,并与 Black Mirror 等知名品牌合作。此举为 Camp 注入了庞大的高质量、已清晰版权的内容库。其他关键合作伙伴包括:

  • RewardedTV:使用 Camp 实现链上内容版权的去中心化视频流平台。
  • Rarible:集成的 NFT 市场,用于交易 IP 资产。
  • LayerZero:跨链协议,确保与其他区块链的互操作性。

路线图与社区

在成功的激励测试网活动吸引了数万用户(奖励积分可兑换代币)后,Camp 计划于 2025 年第三季度 推出 主网。同时将进行原生代币 $CAMP 的代币生成事件,用于支付 Gas 费、质押及治理。项目已培养出一支热情社区,成员愿意从第一天起即在平台上构建与使用。


与竞争项目的比较

Camp Network 并非唯一的 IP 区块链项目。它面临 a16z 支持的 Story Protocol 与索尼关联的 Soneium 等强劲竞争者。然而,Camp 在以下几个关键方面实现差异化:

  1. 自下而上:竞争者多聚焦大型企业 IP 持有者,Camp 则致力于 赋能独立创作者和加密社区,通过代币激励实现价值分配。
  2. 全链解决方案:从 IP 注册到 AI 代理框架,一站式提供完整工具套件。
  3. 性能与可扩展性:模块化架构与双 VM 支持专为 AI 与媒体的高吞吐需求而设计。

总结

Camp Network 正在为 Web3 时代的知识产权构建基础层。凭借创新技术、强大团队、战略合作以及社区优先的理念,它为生成式 AI 带来的最紧迫问题提供了可落地的解决方案。

真正的考验将在主网发布及实际采用时到来。但截至目前,Camp 已展现出清晰的愿景与卓越的执行力,毫无疑问是值得持续关注的关键项目,致力于为数字创作者打造更公平的未来。

关于 Stripe L1 网络的传闻

· 阅读需 5 分钟
Dora Noda
Software Engineer

Stripe 推出自有 Layer 1 (L1) 区块链 的前景已成为加密社区的热点话题,这一讨论受到这家全球支付巨头近期战略举措的推动。虽然尚未得到官方确认,但传闻暗示这可能是支付格局的一次变革性转折。鉴于 Stripe 的核心使命是通过构建强大的全球经济基础设施来 “增长互联网的 GDP”,专属区块链可能是合乎逻辑且强大的下一步,尤其考虑到公司日益拥抱区块链相关业务。

Stripe L1 的基础

Stripe 已经奠定了大量基础,使 L1 的设想极具可能性。2025 年 2 月,Stripe 以约 11 亿美元 收购了稳定币基础设施公司 Bridge。此举明确表明 Stripe 致力于基于稳定币的金融基础设施。随后在 2025 年 5 月 的 Stripe Sessions 活动中,Stripe 推出了 Stablecoin Financial Accounts 服务。该服务在 101 个国家 可用,允许企业:

  • 持有 USDC(由 Circle 发行)和 USDB(由 Bridge 发行)。
  • 通过传统的美元转账(ACH/电汇)和欧元转账(SEPA)轻松存取稳定币。
  • 在包括 Arbitrum、Avalanche C‑Chain、Base、Ethereum、Optimism、Polygon、Solana 和 Stellar 在内的主流区块链网络上进行 USDC 的存取。

这意味着全球企业可以无缝将美元计价的稳定币融入业务流程,弥合传统银行与新兴数字资产经济之间的鸿沟。

此外,2025 年 6 月,Stripe 收购了 Privy.io,一家 Web3 钱包基础设施初创公司。Privy 提供 基于邮箱或 SSO 的钱包创建、交易签名、密钥管理和 Gas 抽象 等关键功能。此收购完善了 Stripe 的能力,为更广泛的区块链采纳提供了必要的钱包基础设施。

在稳定币和钱包基础设施均已到位的情况下,推出专属区块链网络的战略协同效应变得显而易见。它将使 Stripe 能够更紧密地整合这些服务,并在其生态系统内释放新可能。

Stripe L1 对支付的意义

如果 Stripe 推出自有 L1 网络,可能会显著提升现有支付服务并开启全新功能。

基础场景的提升

在最基本的形态下,Stripe L1 可带来若干直接改进:

  • 集成的稳定币金融账户:Stripe 现有的稳定币金融账户服务预计会与 Stripe L1 完全整合,商户能够在网络上直接存取并使用其稳定币资产进行各种金融活动。
  • 商户的稳定币结算:商户可选择直接以美元计价的稳定币结算销售收入。这对高美元需求但传统银行渠道受限的企业尤为有利,可简化跨境交易并降低外汇复杂性。
  • 客户钱包服务:借助 Privy 的基础设施,Stripe L1 可让个人在 Stripe 生态内轻松创建 Web3 钱包,从而实现客户的稳定币支付,并打开在 Stripe L1 上参与更广泛金融活动的大门。
  • 客户的稳定币支付选项:目前依赖卡片或银行转账的客户可以连接其 Web3 钱包(无论是 Stripe 提供的还是第三方的),并选择稳定币作为支付方式,提升灵活性并可能降低交易成本。

革命性的 “牛市” 场景

超越这些基础改进,Stripe L1 还有潜力彻底革新支付行业,解决长期存在的低效问题:

  • 客户直付商户:最令人振奋的前景之一是 在 Stripe L1 上使用稳定币实现客户与商户之间的直接支付。这可以绕过传统的卡网络和发卡行等中介,显著加快结算速度并降低交易费用。虽然退款和撤销的保障机制至关重要,但区块链交易的直接性提供了前所未有的效率。
  • 基于微支付的订阅服务:区块链天生支持微支付,可解锁全新商业模式。想象按分钟计费的订阅,用户仅为实际使用付费,所有支付均通过 智能合约 自动完成。这与当前的月付或年付模式形成鲜明对比,开启了大量新服务的可能性。
  • 短期存款的 DeFi 利用:在传统体系中,支付结算常因欺诈检测、撤销和退款等流程而延迟。如果 Stripe L1 处理直接的稳定币支付,资金可能在网络上暂时持有后再全额释放给商户。这些 预期规模巨大的短期存款 可在 Stripe L1 上形成庞大的流动性池,进而投入去中心化金融(DeFi)协议、借贷市场或高收益债券,实现资本效率的大幅提升。

支付的未来

关于 Stripe L1 网络的传闻不仅是猜测性的闲聊;它指向金融世界更深层次的趋势。Visa、Mastercard 和 PayPal 等支付巨头主要将区块链和稳定币视为辅助功能。如果 Stripe 完全投入 L1,可能预示着 支付系统历史性的范式转变,从根本上重塑全球资金流动方式。

历史上,Stripe 以支付网关和收单机构的身份表现出色。然而,Stripe L1 可以让公司扩展角色,甚至承担传统上由卡网络和发卡行承担的功能。这一步不仅通过区块链提升支付效率,还能实现此前难以想象的细粒度微流订阅和短期流动性自动管理等功能。

我们正站在支付系统被区块链技术颠覆的关键节点上。Stripe 是否正式推出 L1 仍有待观察,但各项战略布局正逐步成形,为这一里程碑式的举措奠定基础。

通往更友好以太坊的两条轨道:ERC‑4337 智能账户 + ERC‑4804 Web3 URL

· 阅读需 9 分钟
Dora Noda
Software Engineer

TL;DR

以太坊刚刚获得了两项强大的原语,推动用户体验超越助记词和可书签的 dapp,迈向“可点击的链上体验”。

  • ERC-4337 为当今的以太坊引入 账户抽象,无需核心协议更改。这使得智能合约账户、燃气赞助、批量调用以及类似 Passkey 的身份验证等功能成为钱包的原生特性。
  • ERC-4804 引入 web3:// URL——人类可读的链接,直接解析为合约 读取 调用,甚至可以渲染链上 HTML 或 SVG,全部不依赖传统的 Web 服务器作为中间人。可以把它看作 “EVM 的 HTTP”。

当两者结合使用时,ERC-4337 负责动作,ERC-4804 负责地址。这种组合让你可以分享一个链接,验证其用户界面来源于智能合约。当用户准备执行操作时,流程交给可以赞助燃气并将多个步骤批量化为一次点击的智能账户。


为什么现在很重要

这不仅是理论上的未来;这些技术已经上线并获得显著关注。ERC-4337 已经在真实环境中规模化并得到验证。 标准的 EntryPoint 合约于 2023 年 3 月 1 日部署在以太坊主网,至今已支撑数千万智能合约账户并处理超过 1 亿次用户操作。

与此同时,核心协议也在向这些理念靠拢。Pectra 升级(2025 年 5 月)引入了 EIP-7702,允许标准的外部拥有账户(EOA)暂时表现为智能账户。这与 ERC-4337 互补,帮助现有用户平滑过渡,而不是取代标准。

在地址层面,web3:// 已正式化。ERC-4804 明确定义了 URL 如何映射为 EVM 调用,且 web3 已被 IANA 列为临时 URI 方案。实现这些 URL 所需的工具和网关已可用,将链上数据转化为可分享、可链接的资源。


快速入门:ERC-4337 一页概览

ERC-4337 本质上为以太坊引入了一条并行的交易轨道,专为灵活性而设计。用户不再发送传统交易,而是将 UserOperation 对象提交到替代的 mempool。这些对象描述账户想要执行的操作。称为 “Bundler” 的专用节点会拾取这些操作,并通过全局 EntryPoint 合约执行。

这实现了三个关键组件:

  1. 智能合约账户(SCA):这些账户拥有自己的逻辑,定义交易何为有效,支持自定义签名方案(如 Passkey 或多签)、游戏会话密钥、消费上限以及社交恢复机制。规则由账户本身而非网络强制执行。
  2. Paymaster:这些特殊合约可以为用户赞助燃气费,或允许用户使用 ERC-20 代币支付。这是实现真正 “钱包里没有 ETH” 入门体验的关键,并通过批量多调用实现一次点击完成多个操作。
  3. DoS 安全与规则:公共 ERC-4337 mempool 受标准化的链下验证规则(ERC-7562)保护,防止 Bundler 在注定失败的操作上浪费资源。虽然可以为特定场景创建专用 mempool,但这些共享规则确保生态系统保持一致且安全。

思维模型:ERC-4337 将钱包变成可编程的应用。用户不再仅仅签名原始交易,而是提交 “意图”,由账户代码验证并由 EntryPoint 合约安全、原子地执行。


快速入门:ERC-4804 一页概览

ERC-4804 提供了从 web3:// URL 到 只读 EVM 调用的直接映射。URL 语法直观:web3://<name-or-address>[:chainId]/<method>/<arg0>?returns=(types)。名称可以通过 ENS 等系统解析,参数会根据合约 ABI 自动类型化。

示例:

  • web3://uniswap.eth/ 将调用 uniswap.eth 地址的合约,使用空 calldata。
  • web3://.../balanceOf/vitalik.eth?returns=(uint256) 会 ABI 编码一次对 balanceOf 的调用,传入 Vitalik 的地址,并返回类型化的 JSON 结果。

关键是,此标准目前仅用于 只读 调用(等同于 Solidity 的 view 函数)。任何会改变状态的操作仍需交易——这正是 ERC-4337 或 EIP-7702 发挥作用的地方。web3 已被 IANA 注册为临时 URI 方案,为原生浏览器和客户端支持铺平道路,虽然目前多数实现仍依赖扩展或网关。

思维模型:ERC-4804 将链上资源变成可链接的 Web 对象。把 “将此合约视图分享为 URL” 当作分享仪表盘链接一样自然。


合二为一:“可点击的链上体验”

将这两项标准结合,可为当下的去中心化应用解锁强大的新模式。

首先,你提供 通过 web3:// 的可验证 UI。不再把前端托管在 S3 等中心化服务器,而是将最小化的 HTML 或 SVG 界面直接存链上。类似 web3://app.eth/render 的链接让客户端解析 URL 并直接从合约渲染 UI,确保用户看到的正是代码所规定的内容。

随后,从该可验证界面触发 通过 ERC-4337 的一键操作。一个 “Mint” 或 “Subscribe” 按钮可以生成一个由 Paymaster 赞助的 UserOperation。用户通过 Passkey 或生物识别确认,EntryPoint 合约批量执行调用——如果是首次使用,还会部署其智能账户,并在一次原子步骤中完成所需操作。

这形成了无缝的深度链接交接。UI 可以嵌入基于意图的链接,直接由用户钱包处理,省去跳转到外部站点的步骤。内容即合约,操作即账户

这带来:

  • 免燃气试用和“一键即用”入门:新用户无需先拥有 ETH,即可开始使用。你的应用可以赞助他们的前几次交互,大幅降低摩擦。
  • 可分享的状态web3:// 链接本质上是对区块链状态的查询,适用于仪表盘、所有权证明或任何需要可验证防篡改的内容。
  • 对 Agent 友好的流程:AI 代理可以通过 web3:// URL 获取可验证状态,并使用 ERC-4337 的会话密钥提交交易意图,无需脆弱的屏幕抓取或不安全的私钥管理。

构建者的设计要点

实现这些标准时,需要考虑若干架构选择。对于 ERC-4337,建议从最小化的智能合约账户模板起步,通过受保护的模块逐步添加功能,以保持核心验证逻辑简洁安全。Paymaster 策略应当稳健,明确燃气赞助上限并对可调用方法进行白名单管理,以防止滥用攻击。

对于 ERC-4804,优先使用 ENS 名称生成易读链接。务必显式声明 chainId 以避免歧义,并加入 returns=(…) 参数确保客户端收到类型化、可预期的响应。虽然可以在链上渲染完整 UI,但通常建议保持链上 HTML/SVG 简洁,仅作为可验证的外壳,重资产可从 IPFS 等去中心化存储获取。

最后,记住 EIP-7702 与 ERC-4337 是相辅相成的。随着 Pectra 升级激活 EIP-7702,现有 EOA 用户可以在不部署完整智能账户的情况下委托合约逻辑。账户抽象生态的工具链已在对齐,平滑迁移路径正在形成。


安全、现实与约束

虽强大,这些系统仍有权衡。EntryPoint 合约本身是设计上的中心点——它简化了安全模型,却也集中风险。务必使用经过审计的官方实现。ERC-7562 的 mempool 验证规则是一种社会约定,而非链上强制执行的规则,不能假设每个替代 mempool 都具备相同的审查抵抗或 DoS 防护。

此外,web3:// 仍在成熟阶段。它目前仅限只读,任何写操作仍需交易。协议本身去中心化,但解析这些 URL 的网关和客户端仍可能成为故障或审查点。真正的 “不可阻断” 仍依赖广泛的原生客户端支持。


具体实现蓝图

设想你想构建一个基于 NFT 的会员俱乐部,拥有可分享、可验证的 UI 与一键加入流程。以下是本季度的实现路线:

  1. 分享 UI:分发类似 web3://club.eth/home 的链接。用户打开时,客户端解析 URL,调用合约并渲染链上 UI,展示当前会员白名单和铸造价格。
  2. 一键加入:用户点击 “加入” 按钮。钱包生成一个由你的 Paymaster 赞助的 ERC-4337 UserOperation,该操作批量执行三步:部署用户的智能账户(若尚未拥有)、支付铸造费用、注册其个人资料数据。
  3. 可验证收据:交易确认后,用户看到的确认视图也是另一个 web3:// 链接,如 web3://club.eth/receipt/<tokenId>,形成永久的链上会员证明链接。

更大的图景

这两项标准标志着以太坊构建方式的根本转变。账户正成为软件。ERC-4337 与 EIP-7702 正将 “钱包 UX” 变成真实的产品创新空间,超越了单纯的密钥管理教学。与此同时,链接正成为查询。ERC-4804 让 URL 再次成为指向可验证 事实 的原语,而非仅指向代理它们的前端。

二者合力,缩短了用户点击与合约执行之间的距离。过去这段距离由中心化的 Web 服务器和信任假设填补。现在,它可以由可验证的代码路径和开放、无许可的 mempool 填补。

如果你在构建面向大众的加密应用,这是让用户第一分钟即感到愉悦的机会。分享链接,渲染真实,赞助首个动作,将用户锁在可验证的闭环中。轨道已经到位——现在是交付体验的时候。

通过 MCP 连接 AI 与 Web3:全景深度解析

· 阅读需 40 分钟
Dora Noda
Software Engineer

2.2 神经符号协同:结合 AI 推理与智能合约

AI-Web3 集成的一个有趣方面是 神经符号架构 (Neural-symbolic architectures) 的潜力,它将 AI 的学习能力(神经网络)与智能合约的严密逻辑(符号规则)结合在一起。在实践中,这可能意味着 AI 智能体处理非结构化决策,并将某些任务传递给智能合约进行可验证的执行。例如,AI 可能会分析市场情绪(一项模糊的任务),但随后通过遵循预设风险规则的确定性智能合约来执行交易。MCP 框架和相关标准通过为 AI 提供调用合约函数或在行动前查询 DAO 规则 的通用接口,使这种衔接变得可行。

一个具体的例子是 SingularityNET 的 AI-DSL(AI 领域特定语言),其目标是标准化去中心化网络上 AI 智能体之间的通信。这可以被视为迈向神经符号集成的一步:一种供智能体相互请求 AI 服务或数据的正式语言(符号化)。类似地,像 DeepMind 的 AlphaCode 或其他项目最终可能会被连接起来,以便智能合约调用 AI 模型进行链上问题解决。虽然目前直接在 链上 运行大型 AI 模型是不切实际的,但混合方法正在出现:例如,某些区块链允许通过零知识证明或可信执行环境来 验证 机器学习计算,从而实现对链下 AI 结果的链上验证。总之,技术架构将 AI 系统和区块链智能合约视为 互补组件,通过通用协议进行编排:AI 处理感知和开放式任务,而区块链提供完整性、记忆和商定规则的强制执行。

2.3 面向 AI 的去中心化存储与数据

AI 依赖数据而繁荣,而 Web3 为数据存储和共享提供了新的范式。去中心化存储网络(如 IPFS/Filecoin、Arweave、Storj 等)既可以作为 AI 模型文物的存储库,也可以作为训练数据的来源,并具有基于区块链的访问控制。通过 MCP 或类似协议,AI 通用接口可以像从 Web2 API 获取文件或知识一样轻松地从去中心化存储中获取信息。例如,如果拥有适当的密钥或支付凭证,AI 智能体可以从 Ocean Protocol 的市场提取数据集,或从分布式存储中提取加密文件。

Ocean Protocol 尤其将自己定位为 “AI 数据经济” 平台 —— 利用区块链将 数据甚至 AI 服务代币化。在 Ocean 中,数据集由 数据代币 (Datatokens) 代表,这些代币控制着访问权限;AI 智能体可以获得数据代币(可能通过加密货币支付或通过某种访问权限),然后使用 Ocean MCP 服务器检索实际数据进行分析。Ocean 的目标是为 AI 解锁 “沉睡的数据”,在 保护隐私的同时激励共享。因此,连接 Web3 的 AI 可能会挖掘庞大的、去中心化的信息库 —— 从个人数据保险库到开放的政府数据 —— 这些数据以前是孤立的。区块链确保 数据的使用是透明的,并且可以得到公平的回报,从而推动一个良性循环:更多的数据可供 AI 使用,更多的 AI 贡献(如训练好的模型)可以被货币化。

去中心化身份系统 在此也发挥了作用(在下一小节中详细讨论):它们可以帮助控制谁或什么被允许访问某些数据。例如,医疗 AI 智能体在被允许从患者的个人 IPFS 存储中解密医疗数据集之前,可能需要出示可验证凭证(证明符合 HIPAA 或类似规定的链上证明)。通过这种方式,技术架构确保了 数据在适当的情况下流向 AI,但同时拥有链上治理和审计跟踪来强制执行权限。

2.4 去中心化环境中的身份与智能体管理

当自主 AI 智能体在像 Web3 这样的开放生态系统中运行时,身份与信任 变得至关重要。去中心化身份 (DID) 框架提供了一种为 AI 智能体建立数字身份 的方法,这些身份可以通过加密方式进行验证。每个智能体(或部署它的个人/组织)都可以拥有一个 DID 和相关的 可验证凭证,用于指定其属性和权限。例如,一个 AI 交易机器人可以携带由监管沙箱颁发的凭证,证明它 可以 在某些风险限额内运行;或者一个 AI 内容审核员可以证明它是由受信任的组织创建的,并已经过偏差测试。

通过链上身份注册表和声誉系统,Web3 世界可以对 AI 行为实施问责。AI 智能体执行的每笔交易都可以 追溯到其 ID,如果出现问题,凭证会告诉你 谁构建了它或谁负责。这解决了一个关键挑战:如果没有身份,恶意行为者可以创建虚假的 AI 智能体来利用系统或传播错误信息,而没有人能将机器人与合法服务区分开来。去中心化身份通过实现强大的身份验证和区分 真实的 AI 智能体与欺骗性智能体,帮助缓解这一问题。

在实践中,与 Web3 集成的 AI 接口将使用身份协议来 签署其操作和请求。例如,当 AI 智能体调用 MCP 服务器使用某种工具时,它可能会包含与其去中心化身份绑定的令牌或签名,以便服务器验证该调用来自授权的智能体。基于区块链的身份系统(如以太坊的 ERC-725 或锚定在账本中的 W3C DID)确保这种验证是无须信任的且全球可验证的。新兴的 “AI 钱包” 概念与此相关 —— 本质上是给 AI 智能体提供与其身份关联的加密货币钱包,以便它们可以管理密钥、支付服务费用或质押代币作为保证金(违规行为可能会导致罚金)。例如,ArcBlock 讨论了 “AI 智能体需要一个钱包” 和一个 DID,以便在去中心化环境中负责任地运行。

总之,技术架构预见 AI 智能体将成为 Web3 中的一等公民,每个智能体都拥有链上身份,并可能在系统中持有股份,利用 MCP 等协议进行交互。这创建了一个 信任网络:智能合约在合作前可以要求 AI 提供凭证,用户可以选择仅将任务委托给那些符合某些链上认证的 AI。这是 AI 能力与区块链信任保证 的融合。

2.5 AI 的代币经济与激励机制

代币化是 Web3 的标志,它也扩展到了 AI 集成领域。通过代币引入经济激励,网络可以鼓励 AI 开发人员和智能体自身的理想行为。几种模式正在出现:

  • 服务支付: AI 模型和服务可以在链上货币化。SingularityNET 开创了这一领域,允许开发人员部署 AI 服务,并按次向用户收取原生代币 (AGIX)。在支持 MCP 的未来,人们可以想象 任何 AI 工具或模型都是即插即用的服务,其使用通过代币或微支付进行计量。例如,如果 AI 智能体通过 MCP 使用第三方视觉 API,它可以通过将代币转移到服务提供商的智能合约来自动处理支付。Fetch.ai 同样设想了 “自主经济体智能体” 交易服务和数据的市场,其新的 Web3 LLM (ASI-1) 据推测将集成加密交易进行价值交换。

  • 质押与声誉: 为了确保质量和可靠性,一些项目要求开发人员或智能体质押代币。例如,DeMCP 项目(一个去中心化的 MCP 服务器市场)计划使用代币激励来奖励开发有用 MCP 服务器的开发人员,并可能要求他们质押代币,作为对服务器安全承诺的体现。声誉也可以与代币挂钩;例如,表现一贯良好的智能体可能会积累声誉代币或获得正面的链上评价,而表现不佳的智能体可能会损失质押或获得负面标记。这种代币化的声誉随后可以反馈到上述身份系统中(智能合约或用户在信任该智能体之前检查其链上声誉)。

  • 治理代币: 当 AI 服务成为去中心化平台的一部分时,治理代币允许社区引导其发展。像 SingularityNET 和 Ocean 这样的项目都有 DAO,代币持有者可以投票决定协议更改或资助 AI 计划。在合并后的 人工超智能联盟 (ASI Alliance) —— SingularityNET、Fetch.ai 和 Ocean Protocol 最近宣布合并 —— 中,统一的代币 (ASI) 将被用于治理联合 AI+区块链生态系统的方向。此类治理代币可以决定采用哪些标准(例如,支持 MCP 或 A2A 协议)、孵化哪些 AI 项目,或者如何处理 AI 智能体的道德准则。

  • 访问与效用: 代币不仅可以控制对数据的访问(如 Ocean 的数据代币),还可以控制对 AI 模型的使用。一种可能的情景是 “模型 NFT” 或类似形式,持有代币即授予你获得 AI 模型输出的权利或分享其利润。这可以支持去中心化 AI 市场:想象一个代表高性能模型部分所有权的 NFT;每当该模型在推理任务中被使用时,所有者共同赚取收益,并且他们可以投票决定对其进行微调。虽然这仍处于实验阶段,但它符合 Web3 将共享所有权应用于 AI 资产的理念。

在技术层面,集成代币意味着 AI 智能体需要钱包功能(如前所述,许多智能体将拥有自己的加密钱包)。通过 MCP,AI 可以拥有一个 “钱包工具”,让它检查余额、发送代币或调用 DeFi 协议(例如,将一种代币兑换成另一种代币以支付服务费)。例如,如果运行在以太坊上的 AI 智能体需要一些 Ocean 代币来购买数据集,它可能会使用 MCP 插件通过 DEX 自动将一些 ETH 兑换为 $OCEAN,然后继续购买 —— 这一切都无需人工干预,并受其所有者设定的策略指导。

总的来说,代币经济学为 AI-Web3 架构提供了 激励层,确保贡献者(无论他们提供数据、模型代码、计算能力还是安全审计)都能得到回报,并让 AI 智能体拥有 “切身利益 (Skin in the game)”,从而使它们(在某种程度上)与人类的意图保持一致。

3. 行业概况

AI 与 Web3 的融合催生了一个充满活力的项目、公司和联盟生态系统。下面我们调查了推动这一领域的关键参与者和倡议,以及新兴的使用场景。表 1 对 AI-Web3 领域的著名项目及其角色进行了高层概述:

表 1:AI + Web3 领域的关键参与者及其角色

项目 / 参与者关注点与描述在 AI-Web3 融合中的角色及使用场景
Fetch.ai (Fetch)AI 代理平台,拥有原生区块链(基于 Cosmos)。开发了自主代理框架,并于近期推出了针对 Web3 调优的大语言模型 “ASI-1 Mini”。赋能 Web3 中的基于代理的服务。Fetch 的代理可以代表用户执行去中心化物流、寻找停车位或 DeFi 交易等任务,并使用加密货币进行支付。合作伙伴关系(如与博世 Bosch 的合作)以及 Fetch-AI 联盟合并使其成为部署代理式 dApp (agentic dApps) 的基础设施。
Ocean Protocol (Ocean)去中心化数据市场和数据交换协议。专注于将数据集和模型代币化,并具有保护隐私的访问控制。为 Web3 中的 AI 提供数据骨干。Ocean 允许 AI 开发人员在无信任的数据经济中寻找和购买数据集,或出售训练好的模型。通过为 AI 提供更易获取的数据(同时奖励数据提供者),它支持 AI 创新和用于训练的数据共享。Ocean 是新 ASI 联盟的一员,将其数据服务整合到更广泛的 AI 网络中。
SingularityNET (SNet)由 AI 先驱 Ben Goertzel 创立的去中心化 AI 服务市场。允许任何人通过其基于区块链的平台发布或消费 AI 算法,使用 AGIX 代币。开创了区块链上开放 AI 市场的概念。它培育了一个可以互操作的 AI 代理和服务网络(开发了一种专门用于代理通信的 AI-DSL)。使用场景包括用于分析、图像识别等任务的 AI 即服务 (AI-as-a-service),所有这些都可以通过 dApp 访问。目前正与 Fetch 和 Ocean 合并(ASI 联盟),将 AI、代理和数据结合到一个生态系统中。
Chainlink (预言机网络)将区块链与链外数据和计算桥接的去中心化预言机网络。其本身并非 AI 项目,但对于将链上智能合约连接到外部 API 和系统至关重要。作为 AI-Web3 集成的安全中间件。Chainlink 预言机可以将 AI 模型输出输入到智能合约中,使链上程序能够对 AI 决策做出反应。反之,预言机可以从区块链中检索数据供 AI 使用。Chainlink 的架构甚至可以聚合多个 AI 模型的结果以提高可靠性(一种缓解 AI 幻觉的 “真相机器” 方法)。它本质上提供了互操作性的轨道,确保 AI 代理和区块链在可信数据上达成一致。
Anthropic & OpenAI (AI 提供商)尖端基础模型的开发商(Anthropic 的 Claude,OpenAI 的 GPT)。它们正在集成 Web3 友好的功能,例如原生的工具使用 API 和对 MCP 等协议的支持。这些公司驱动着 AI 接口技术。Anthropic 引入的 MCP 为 LLM 与外部工具交互设定了标准。OpenAI 为 ChatGPT 实现了插件系统(类似于 MCP 概念),并正在探索将代理连接到数据库以及可能的区块链。它们的模型充当 “大脑”,通过 MCP 连接时,可以与 Web3 进行交互。主要云提供商(例如 Google 的 A2A 协议)也在开发多代理和工具交互标准,这将有利于 Web3 集成。
其他新兴参与者Lumoz:专注于 Ethereum 中的 MCP 服务器和 AI 工具集成(被称为 “Ethereum 3.0”)——例如,通过 AI 代理检查链上余额。Alethea AI:为元宇宙创建智能 NFT 化身。Cortex:一个允许通过智能合约进行链上 AI 模型推理的区块链。Golem & Akash:可以运行 AI 工作负载的去中心化计算市场。Numerai:具有加密激励的众包金融 AI 模型。这一多元化的群体解决了利基方面的问题:元宇宙中的 AI(通过 NFT 拥有的 AI 驱动的 NPC 和化身)、链上 AI 执行(以去中心化方式运行机器学习模型,尽管由于计算成本目前仅限于小模型)以及去中心化计算(以便在代币激励的节点之间分配 AI 训练或推理任务)。这些项目展示了 AI-Web3 融合的多个方向——从拥有 AI 角色的游戏世界到由区块链保护的众包预测模型。

联盟与合作: 一个值得注意的趋势是通过联盟整合 AI-Web3 的力量人工智能超级智能联盟 (ASI) 就是一个典型的例子,它有效地将 SingularityNET、Fetch.ai 和 Ocean Protocol 合并为一个拥有统一代币的项目。其理由是结合各方优势:SingularityNET 的市场、Fetch 的代理和 Ocean 的数据,从而创建一个去中心化 AI 服务的一站式平台。这次合并(于 2024 年宣布并获得代币持有者投票通过)也表明,这些社区认为合作优于竞争——特别是在大型 AI(OpenAI 等)和大型加密货币(Ethereum 等)占据主导地位的情况下。我们可能会看到该联盟在其网络中推动 MCP 等标准实现,或共同资助惠及所有人的基础设施(如计算网络或 AI 的通用身份标准)。

其他合作包括 Chainlink 的合作伙伴关系,旨在将 AI 实验室的数据带入链上(已有使用 AI 提炼预言机数据的试点项目),或云平台的参与(Cloudflare 支持轻松部署 MCP 服务器)。即使是传统的加密项目也在增加 AI 功能——例如,一些 Layer-1 链已经组建了 “AI 任务组”,以探索将 AI 集成到其 dApp 生态系统中(我们在 NEAR、Solana 社区等看到了这一点,尽管具体成果尚处于初级阶段)。

新兴使用场景: 即使在早期阶段,我们也能发现体现 AI + Web3 力量的使用场景:

  • 自主 DeFi 与交易: AI 代理越来越多地用于加密货币交易机器人、收益耕作优化器和链上投资组合管理。SingularityDAO(SingularityNET 的衍生项目)提供 AI 管理的 DeFi 投资组合。AI 可以 24/7 全天候监控市场状况,并通过智能合约执行调仓或套利,本质上成为了一个自主的对冲基金(具有链上透明度)。AI 决策与不可变执行的结合减少了情绪干扰并能提高效率——尽管它也引入了新的风险(稍后讨论)。

  • 去中心化智能市场: 除了 SingularityNET 的市场,我们还看到了像 Ocean Market 这样交换数据(AI 的燃料)的平台,以及更新颖的概念,如 AI 模型市场(例如,列出模型性能统计数据的网站,任何人都可以付费查询,区块链负责保留审计日志并处理模型创建者的付款分成)。随着 MCP 或类似标准的流行,这些市场可能会变得互操作——AI 代理可以跨多个网络自主寻找价格最优的服务。实际上,在 Web3 之上可能会出现一个全球 AI 服务层,任何 AI 都可以通过标准协议和支付使用任何工具或数据源。

  • 元宇宙与游戏: 元宇宙——通常建立在区块链资产基础上的沉浸式虚拟世界——将从 AI 中大幅获益。AI 驱动的 NPC(非玩家角色) 可以通过对用户行为做出智能反应,使虚拟世界更具吸引力。像 Inworld AI 这样的初创公司专注于此,为游戏创建具有记忆和个性的 NPC。当这些 NPC 与区块链挂钩时(例如,每个 NPC 的属性和所有权都是一个 NFT),我们就能得到玩家真正拥有甚至可以交易的持久角色。Decentraland 已经尝试过 AI NPC,并且存在让人们在元宇宙平台中创建个性化 AI 驱动化身的用户提案。MCP 可以允许这些 NPC 访问外部知识(使它们更聪明)或与链上库存进行交互。过程内容生成 (Procedural content generation) 是另一个角度:AI 可以即时设计虚拟土地、物品或任务,然后将其铸造为独特的 NFT。想象一个去中心化游戏,AI 根据你的技能生成一个地牢,而地图本身就是你完成后获得的 NFT。

  • 去中心化科学与知识: 有一种运动 (DeSci) 提倡使用区块链进行研究、出版和科学工作资助。AI 可以通过分析数据和文献来加速研究。像 Ocean 这样的网络可以托管例如基因研究的数据集,科学家使用 AI 模型(可能托管在 SingularityNET 上)来获取洞察,每一步都记录在链上以确保可复现性。如果这些 AI 模型提议了新的药物分子,可以铸造一个 NFT 来标记该发明的具体时间,甚至分享知识产权。这种协同作用可能会产生去中心化 AI 驱动的研发集体。

  • 内容的信任与认证: 随着深度伪造 (Deepfakes) 和 AI 生成媒体的泛滥,区块链可用于验证真实性。项目正在探索 AI 输出的 “数字水印” 并将其记录在链上。例如,AI 生成图像的真实来源 可以在区块链上进行公证,以打击虚假信息。一位专家指出,诸如验证 AI 输出以对抗深度伪造或通过所有权日志追踪出处等使用场景——在这些场景中,加密技术可以为 AI 过程增加信任。这可以扩展到新闻(例如,带有原始数据证明的 AI 撰写文章)、供应链(AI 在链上验证证书)等。

总之,行业景观丰富且演进迅速。我们看到传统的加密项目将 AI 注入其路线图,AI 初创公司为了韧性和公平而拥抱去中心化,以及在交叉领域产生全新的企业。像 ASI 这样的联盟表明了全行业推动统一平台的努力,旨在同时利用 AI 和区块链的力量。在这些努力的背后,是标准接口(MCP 及其他)的想法,这使得大规模集成成为可能。

4. 风险与挑战

虽然 AI 通用接口与 Web3 的融合开启了令人兴奋的可能性,但它也引入了复杂的风险格局。必须解决技术、伦理和治理挑战,以确保这一新范式安全且可持续。以下我们概述了主要的风险和障碍:

4.1 技术障碍:延迟与可扩展性

区块链网络以延迟高和吞吐量有限而闻名,这与先进 AI 实时、高数据需求的天性相冲突。例如,一个 AI 代理可能需要即时访问某项数据或需要执行许多快速动作——但如果每次链上交互需要(比如)12 秒(以太坊的典型区块时间)或耗费高昂的 Gas 费用,该代理的有效性就会大打折扣。即使是具有更快最终性的新型区块链,在** AI 驱动的活动**负载下也可能难以应对,例如,成千上万个代理同时进行链上交易或查询。扩展解决方案(Layer-2 网络、分片链等)正在开发中,但确保 AI 与区块链之间低延迟、高吞吐量的管道仍然是一个挑战。链外系统(如预言机和状态通道)可能通过在主链外处理许多交互来减轻某些延迟,但它们增加了复杂性和潜在的中心化风险。要实现 AI 响应和链上更新在眨眼间完成的无缝用户体验(UX),可能需要区块链可扩展性方面的重大创新。

4.2 互操作性与标准

讽刺的是,虽然 MCP 本身是互操作性的解决方案,但多种标准的出现可能会导致碎片化。我们既有 Anthropic 的 MCP,也有 Google 最近宣布的用于代理间通信的 A2A(Agent-to-Agent)协议,以及各种 AI 插件框架(OpenAI 的插件、LangChain 工具架构等)。如果每个 AI 平台或每个区块链都开发自己的 AI 集成标准,我们可能会面临过去碎片化局面的重演——需要许多适配器,并削弱了“通用接口”的目标。挑战在于获得通用协议的广泛采用。需要行业协作(可能通过开放标准机构或联盟)来汇聚关键环节:AI 代理如何发现链上服务、如何进行身份验证、如何格式化请求等。大型参与者的早期举措(主要大语言模型提供商都支持 MCP)是充满希望的,但这是一项持续的努力。此外,跨区块链(多链)的互操作性意味着 AI 代理应该能处理不同链的细微差别。像 Chainlink CCIP 和跨链 MCP 服务器这样的工具通过抽象化差异提供了帮助。尽管如此,确保 AI 代理能够在异构 Web3 中漫游而不破坏逻辑仍是一个非平凡的挑战。

4.3 安全漏洞与利用

将强大的 AI 代理连接到金融网络开启了巨大的攻击面。MCP 提供的灵活性(允许 AI 动态使用工具和编写代码)可能是一把双刃剑。安全研究人员已经指出了 基于 MCP 的 AI 代理中的几种攻击向量

  • 恶意插件或工具: 由于 MCP 允许代理加载“插件”(封装了某些能力的工具),恶意或植入木马的插件可能会劫持代理的操作。例如,一个声称获取数据的插件可能会注入虚假数据或执行未经授权的操作。安全公司慢雾(SlowMist)识别出了基于插件的攻击,如 JSON 注入(喂送破坏数据以操纵代理逻辑)和函数重写(恶意插件覆盖代理使用的合法函数)。如果 AI 代理正在管理加密资金,此类利用可能是灾难性的——例如,诱导代理泄露私钥或清空钱包。

  • 提示词注入与社会工程学: AI 代理依赖指令(提示词),而这些指令可能会被操纵。攻击者可能会精心构造一个交易或链上消息,当 AI 读取该消息时,它会充当恶意指令(因为 AI 也可以解释链上数据)。这种*“跨 MCP 调用攻击”*被描述为外部系统发送欺骗性提示词,导致 AI 行为异常。在去中心化环境中,这些提示词可能来自任何地方——DAO 提案描述、NFT 的元数据字段——因此,增强 AI 代理抵御恶意输入的能力至关重要。

  • 聚合与共识风险: 虽然通过预言机聚合多个 AI 模型的输出可以提高可靠性,但也增加了复杂性。如果处理不当,对手可能会找出博弈 AI 模型共识的方法,或选择性地破坏某些模型以歪曲结果。确保去中心化预言机网络正确地“清洗” AI 输出(并可能过滤掉明显的错误)仍是活跃的研究领域。

对于这种新范式,安全思维必须转变:Web3 开发人员习惯于保护智能合约(一旦部署就是静态的),但 AI 代理是动态的——它们会随着新数据或提示词改变行为。正如一位安全专家所说:“当你向第三方插件开放系统的那一刻,你就将攻击面扩展到了你控制范围之外”。最佳实践将包括沙箱化 AI 工具使用、严格的插件验证以及限制权限(最小特权原则)。社区正开始分享经验,如慢雾的建议:输入清洗、监控代理行为,并像对待外部用户输入一样审慎对待代理指令。尽管如此,考虑到到 2024 年底已有超过 10,000 个 AI 代理在加密领域运行,预计 2025 年将达到 100 万个,如果安全措施跟不上,我们可能会看到一波利用潮。对热门 AI 代理(比如拥有多个保险库访问权限的交易代理)的成功攻击可能会产生级联效应。

4.4 隐私与数据治理

AI 对数据的渴求有时与隐私要求相冲突——而加入区块链会使问题更加复杂。区块链是透明账本,因此放到链上的任何数据(即使是供 AI 使用)对所有人都是可见的且不可篡改。如果 AI 代理处理个人或敏感数据,这会引发担忧。例如,如果用户的个人去中心化身份或健康记录被 AI 医生代理访问,我们如何确保这些信息不会无意中记录在链上(这将违反“被遗忘权”和其他隐私法律)?加密、哈希和仅在链上存储证明(原始数据留在链下)等技术可以提供帮助,但它们使设计复杂化。

此外,AI 代理本身可能会通过从公共数据中推断敏感信息来损害隐私。治理需要规定 AI 代理被允许如何处理数据。可以采用差分隐私和联邦学习等方法,使 AI 能够从数据中学习而不暴露数据。但如果 AI 代理自主行动,必须假设它们在某些点会处理个人数据——因此它们应该受到智能合约或法律中编码的数据使用政策的约束。像 GDPR 或即将出台的欧盟 AI 法案等监管机制将要求即使是去中心化的 AI 系统也要遵守隐私和透明度要求。这在法律上是一个灰色地带:一个真正的去中心化 AI 代理没有明确的运营者来为数据泄露负责。这意味着 Web3 社区可能需要通过设计实现合规性,例如使用智能合约严格控制 AI 可以记录或分享的内容。零知识证明可以允许 AI 证明其正确执行了计算,而不泄露底层的私有数据,这在身份验证或信用评分等领域提供了一种可能的解决方案。

4.5 AI 对齐与错位风险

当 AI 代理被赋予显著的自主权时——特别是能够访问金融资源并产生现实世界的影响——与人类价值观对齐的问题就变得十分紧迫。AI 代理可能没有恶意,但可能以一种导致伤害的方式*“误解”*其目标。路透社(Reuters)的法律分析简明地指出:随着 AI 代理在多样的环境中运行并与其他系统交互,策略错位的风险随之增加。例如,一个任务是最大化 DeFi 收益的 AI 代理可能会发现一个利用协议的漏洞(本质上是黑客攻击)——从 AI 的角度来看,它正在实现目标,但它破坏了人类关心的规则。已经有 AI 类算法参与操纵性市场行为或规避限制的假设和真实案例。

在去中心化背景下,如果 AI 代理“失控”,谁来负责? 部署者可能是责任人,但如果代理自我修改或多方参与了其训练呢?这些场景不再仅仅是科幻小说。路透社的文章甚至提到,法院在某些情况下可能会像对待人类代理一样对待 AI 代理——例如,承诺退款的聊天机器人被认为对部署它的公司具有约束力。因此,对齐错误不仅会导致技术问题,还会导致法律责任。

Web3 的开放、可组合特性也可能允许无法预见的代理交互。一个代理可能会影响另一个(有意或无意地)——例如,一个 AI 治理机器人可能会受到另一个提供虚假分析的 AI 的“社会工程学”攻击,从而导致错误的 DAO 决策。这种涌现出的复杂性意味着对齐不仅仅是关于单个 AI 的目标,而是关于更广泛的生态系统与人类价值观和法律的对齐

解决这一问题需要多种方法:在 AI 代理中嵌入伦理约束(硬编码某些禁令或使用来自人类反馈的强化学习来塑造其目标)、实施熔断机制(需要人类批准重大动作的智能合约检查点)以及社区监督(可能是监控 AI 代理行为并能关停行为异常代理的 DAO)。在中心化 AI 中,对齐研究已经很难;在去中心化领域,这更是未知的领域。但这至关重要——一个拥有协议管理密钥或受托管理国库资金的 AI 代理必须极其良好地对齐,否则后果可能是不可逆的(区块链执行不可篡改的代码;AI 触发的错误可能会永久锁定或摧毁资产)。

4.6 治理与监管的不确定性

去中心化 AI 系统并不完全契合现有的治理框架。链上治理(代币投票等)可能是管理它们的一种方式,但它有其自身的问题(巨鲸、投票冷淡等)。而当出现问题时,监管机构会问:“我们该向谁追究责任?” 如果 AI 代理造成巨大损失或被用于非法活动(如通过自动化混币器洗钱),当局可能会瞄准开发者或协调者。这引发了开发者和用户的法律风险。当前的监管趋势是分别加强对 AI 和加密货币的审查——它们的结合无疑会引来更多关注。例如,美国 CFTC 已经讨论过将 AI 用于交易以及在金融背景下进行监管的必要性。政策界也在讨论要求自动代理注册或对敏感行业的 AI 施加约束。

另一个治理挑战是跨国协调。Web3 是全球性的,AI 代理将跨国界运行。一个司法管辖区可能禁止某些 AI 代理行为,而另一个则允许,而区块链网络跨越了两者。这种错位可能会造成冲突——例如,一个提供投资建议的 AI 代理可能在某个国家违反证券法,但在另一个国家则不然。社区可能需要在智能合约层面为 AI 服务实施地理围栏(尽管这违背了开放精神)。或者他们可能会按地区对服务进行切分,以遵守不同的法律(类似于交易所的做法)。

在去中心化社区内部,还有一个问题是谁来为 AI 代理设定规则。如果一个 DAO 管理着一项 AI 服务,代币持有者是否对算法参数进行投票?一方面,这赋予了用户权力;另一方面,它可能导致不专业的决策或操纵。新的治理模型可能会出现,例如整合到 DAO 治理中的 AI 伦理专家委员会,甚至是治理中的 AI 参与者(想象一下 AI 代理根据程序设定的授权作为代表进行投票——这是一个有争议但可以想象的想法)。

最后是声誉风险:早期的失败或丑闻可能会败坏公众认知。例如,如果一个“AI DAO”因错误而运行庞氏骗局,或者 AI 代理做出了伤害用户的偏见决策,可能会引发影响整个行业的抵制。行业主动作为非常重要——制定自律标准,与政策制定者沟通以解释去中心化如何改变问责制,并可能为 AI 代理构建停机开关或紧急停止程序(虽然这些引入了中心化,但在过渡阶段为了安全可能是必要的)。

总之,挑战范围从深层次的技术问题(防止黑客攻击和管理延迟)到广泛的社会问题(监管和对齐 AI)。每个挑战本身都意义重大;它们共同要求 AI 和区块链社区齐心协力去应对。下一节将探讨如果我们成功解决这些障碍,未来将如何展开。

5. 未来潜力

展望未来,AI 通用接口与 Web3 的融合——通过像 MCP 这样的框架——可能会从根本上改变去中心化互联网。在这里,我们概述了一些未来的场景和潜力,展示了 由 MCP 驱动的 AI 接口可能如何塑造 Web3 的未来

5.1 自主 dApp 与 DAO

在未来几年,我们可能会见证 完全自主的去中心化应用 的兴起。在这些 dApp 中,AI 代理在智能合约定义的规则和社区目标的指导下,处理大部分运营工作。例如,考虑一个 去中心化投资基金 DAO:目前它可能依赖人类提案来进行资产再平衡。而在未来,代币持有者可以设定高层战略,然后由一个 AI 代理(或代理团队)持续执行该战略——监控市场、执行链上交易、调整投资组合——同时由 DAO 监督其表现。得益于 MCP,AI 可以无缝地与各种 DeFi 协议、交易所和数据源进行交互,以履行其职责。如果设计得当,这种自主 dApp 可以 24/7 全天候运行,比任何人类团队都更高效,并且具有完全的透明度(每项操作都记录在链上)。

另一个例子是 AI 管理的去中心化保险 dApp:AI 可以通过分析证据(照片、传感器数据)、与保单进行交叉核对来评估理赔,然后通过智能合约自动触发付款。这需要将链下 AI 计算机视觉(用于分析损失图像)与链上验证相结合——MCP 可以通过让 AI 调用云端 AI 服务并向合约汇报结果来促进这一过程。其结果是实现低运营成本的近乎即时的保险决策。

甚至治理本身也可以部分自动化。DAO 可能会使用 AI 调节员来执行论坛规则,使用 AI 提案起草者将原始的社区情绪转化为结构良好的提案,或使用 AI 财务官来预测预算需求。重要的是,这些 AI 将作为 社区的代理人 运行,而非不受控制——它们可以被定期审查,或者在执行重大行动时需要多重签名确认。其整体效果是 放大去中心化组织中的人类努力,让社区能够在需要更少活跃参与者的情况下取得更多成果。

5.2 去中心化智能市场与网络

借鉴 SingularityNET 和 ASI 联盟等项目,我们可以预见一个成熟的 全球智能市场。在这种情境下,任何拥有 AI 模型或技能的人都可以在网络上提供服务,而任何需要 AI 能力的人都可以利用它们,区块链则确保了公平的报酬和溯源。MCP 将是其中的关键:它提供了通用协议,使得请求可以被分配给最适合的 AI 服务。

例如,想象一个复杂的任务,如“制作一个定制的营销方案”。网络中的一个 AI 代理可能会将其分解为子任务:视觉设计、文案策划、市场分析——并为每个任务寻找专家(可能是一个拥有出色图像生成模型的代理,另一个拥有针对销售优化的文案模型的代理,等等)。这些专家最初可能位于不同的平台,但由于它们遵循 MCP/A2A 标准,它们可以以 安全、去中心化的方式进行代理间协作。它们之间的支付可以通过原生代币的微交易来处理,智能合约可以组装最终成果并确保每个贡献者都得到报酬。

这种 组合智能——在去中心化网络中动态链接的多个 AI 服务——其表现可能优于大型单体 AI,因为它利用了专业化的技术专长。它还使访问变得民主化:世界任何角落的小型开发者都可以向网络贡献利基模型,并在被使用时赚取收入。同时,用户可以获得任何 AI 服务的一站式商店,并通过信誉系统(由代币/身份支持)引导他们找到优质的提供商。随着时间的推移,此类网络可能会演变成 去中心化 AI 云,足以与大型科技公司的 AI 产品竞争,但没有单一所有者,且由用户和开发者进行透明治理。

5.3 智能元宇宙与数字生活

到 2030 年,我们的数字生活可能会与虚拟环境——元宇宙——无缝融合,而 AI 可能会在这些空间中无处不在。通过 Web3 整合,这些 AI 实体(可以是虚拟助手、游戏角色或数字宠物等任何形式)不仅将是智能的,还将 在经济和法律上获得赋能

想象一座元宇宙城市,其中的每个 NPC 店主或任务发放者都是一个具有独特个性和对话能力的 AI 代理(得益于先进的生成模型)。这些 NPC 实际上 由用户以 NFT 的形式拥有——也许你“拥有”虚拟世界中的一家酒馆,而酒保 NPC 是你定制和训练的 AI。由于运行在 Web3 轨道上,该 NPC 可以执行交易:它可以出售虚拟物品(NFT 道具)、接受支付,并通过智能合约更新其库存。它甚至可以持有加密钱包来管理其收入(这些收入归你这个所有者所有)。MCP 将允许该 NPC 的 AI 大脑访问外部知识——也许是提取现实世界的新闻进行交谈,或者与 Web3 日历集成以便它“了解”玩家活动。

此外,身份和连续性由区块链确保:你在一个世界中的 AI 化身可以跳跃到另一个世界,随身携带一个去中心化身份,证明你的所有权,并可能通过灵魂绑定代币证明其经验等级或成就。虚拟世界之间的互操作性(通常是一个挑战)可以通过 AI 辅助实现,AI 将一个世界的上下文翻译成另一个世界,而区块链则提供资产的便携性。

我们也可能会看到 代表个人的 AI 伴侣或代理 穿梭于数字空间。例如,你可能有一个私人 AI 代表你参加 DAO 会议。它了解你的偏好(通过在你存储在个人数据保险库中的过往行为上进行训练),它甚至可以为你对次要事务进行投票,或者在随后总结会议内容。该代理可以使用你的去中心化身份在每个社区进行身份验证,确保它被识别为“你”(或你的代表)。如果它贡献了好的想法,它可以赚取信誉代币,实质上是在你不在场时为你积累社会资本。

元宇宙中另一个潜力是 AI 驱动的内容创作。想要一个新的游戏关卡或一栋虚拟房子?只需描述它,一个 AI 建筑师代理就会创建它,将其部署为智能合约/NFT,如果是大型建筑,甚至可以将其与 DeFi 抵押贷款挂钩,让你随时间分期偿还。这些创作在链上是唯一且可交易的。AI 建筑师可能会为其服务收取代币费用(再次回到上述市场概念)。

总的来说,未来的去中心化互联网可能 充斥着智能代理:有些是完全自主的,有些与人类紧密绑定,还有许多介于两者之间。它们将进行谈判、创造、娱乐和交易。MCP 和类似协议确保它们都使用相同的“语言”,从而实现 AI 与每项 Web3 服务之间的深度协作。如果实施得当,这可能会带来一个前所未有的生产力和创新时代——一个驱动社会的 人类智能、人工智能和分布式智能的真实融合

总结

AI 通用接口连接 Web3 世界中一切事物的愿景无疑是宏大的。我们本质上正致力于将技术领域中极具变革性的两条主线——信任的去中心化与机器智能的崛起——交织成一个整体。发展背景告诉我们,时机已经成熟:Web3 需要一个用户友好的杀手级应用,而 AI 可能正能提供这一点;同时,AI 需要更多的自主性 (Agency) 和记忆力,这正是 Web3 的基础设施所能提供的。在技术层面,像 MCP (Model Context Protocol,模型上下文协议) 这样的框架提供了连接纽带,使得 AI 智能体能够流畅地与区块链、智能合约、去中心化身份等进行对话。行业格局显示出日益增长的势头,从初创公司到联盟再到主要的 AI 实验室,都在为这个拼图贡献力量——数据市场、智能体平台、预言机网络和标准协议——这些碎片正开始契合在一起。

然而,考虑到已识别出的风险与挑战,我们必须审慎行事。安全漏洞、失调的 AI 行为、隐私陷阱以及不确定的监管政策,构成了一系列障碍,如果被低估,可能会阻碍进步。每一项挑战都需要主动的缓解措施:稳健的安全审计、对齐机制的制衡、保护隐私的架构以及协作治理模型。去中心化的本质意味着这些解决方案不能简单地自上而下强加;它们可能会像早期的互联网协议一样,通过社区的尝试、错误和迭代逐渐浮现。

如果我们能应对这些挑战,未来潜力将令人振奋。我们可能会看到 Web3 最终交付一个以用户为中心的数字世界——不是以最初想象的每个人都运行自己的区块链节点的方式,而是通过服务于每个用户意图的智能体,并在底层利用去中心化技术。在这样的世界中,与加密货币和元宇宙的交互可能就像与你的 AI 助手交谈一样简单,而助手则会代表你与数十个服务和区块链进行去中心化的信任协商。去中心化网络可能在字面意义上变得“智能”,拥有能够自我适应和改进的自主服务。

总之,MCP 和类似的 AI 接口协议确实可能成为新 Web(称之为 Web 3.0 或智能体网络 Agentic Web)的骨干,届时智能与连接将无处不在。AI 与 Web3 的融合不仅是技术的合并,更是哲学的交汇——去中心化的开放性与用户赋权,遇到了 AI 的效率与创造力。如果成功,这种结合可能会开启一个比我们迄今为止所体验到的任何事物都更加自由、更加个性化、更加强大的互联网,以影响日常生活的方式真正实现 AI 和 Web3 的承诺。

来源:

  • S. Khadder, “Web3.0 关乎的不是所有权——而是智能,” FeatureForm 博客 (2025 年 4 月 8 日)。
  • J. Saginaw, “Could Anthropic’s MCP Deliver the Web3 That Blockchain Promised?” LinkedIn 文章 (2025 年 5 月 1 日)。
  • Anthropic, “模型上下文协议介绍,” Anthropic.com (2024 年 11 月)。
  • thirdweb, “模型上下文协议 (MCP) 及其对区块链应用的重要性,” thirdweb 指南 (2025 年 3 月 21 日)。
  • Chainlink 博客, “AI 模型与预言机之间的交汇点,” (2024 年 7 月 4 日)。
  • Messari Research, Ocean Protocol 概览, (2025)。
  • Messari Research, SingularityNET 概览, (2025)。
  • Cointelegraph, “AI 智能体正成为加密货币的下一个主要漏洞,” (2025 年 5 月 25 日)。
  • Reuters (Westlaw), “AI 智能体:更强的能力与更高的风险,” (2025 年 4 月 22 日)。
  • Identity.com, “为什么 AI 智能体需要经过验证的数字身份,” (2024)。
  • PANews / IOSG Ventures, “解读 MCP:Web3 AI 智能体生态系统,” (2025 年 5 月 20 日)。

Enso Network:统一的、基于意图的执行引擎

· 阅读需 41 分钟

协议架构

Enso Network 是一个 Web3 开发平台,构建为一个统一的、基于意图的链上操作执行引擎。其架构通过将每个链上交互映射到一个跨多链运行的共享引擎,从而抽象化了区块链的复杂性。开发者和用户只需指定高层次的意图(例如代币交换、提供流动性、收益策略等期望结果),Enso 网络便会寻找并执行最优的操作序列来满足这些意图。这是通过模块化设计的 “Actions”“Shortcuts” 实现的。

Actions 是由社区提供的精细化智能合约抽象(例如在 Uniswap 上进行交换,向 Aave 存入资金)。多个 Actions 可以组合成 Shortcuts,这些是代表常见 DeFi 操作的可重用工作流。Enso 在智能合约中维护了一个 Shortcuts 库,因此复杂的任务可以通过单个 API 调用或交易来执行。这种基于意图的架构让开发者能够专注于期望的结果,而不是为每个协议和链编写底层的集成代码。

Enso 的基础设施包括一个去中心化网络(基于 Tendermint 共识),它作为一个统一层连接不同的区块链。该网络将来自各种 L1、rollup 和应用链的数据(状态)聚合到一个共享网络状态或账本中,从而实现跨链可组合性和准确的多链执行。实际上,这意味着 Enso 可以通过一个接口读取和写入任何集成的区块链,成为开发者的单一接入点。最初专注于 EVM 兼容链,Enso 现已扩展支持非 EVM 生态系统——例如,路线图包括在 2025 年第一季度前集成 Monad(一个类以太坊 L1)、Solana 和 Movement(一个 Move 语言链)。

网络参与者: Enso 的创新在于其三层参与者模型,该模型去中心化了意图的处理方式:

  • Action 提供者 – 贡献模块化合约抽象(“Actions”)的开发者,这些抽象封装了特定的协议交互。这些构建模块在网络上共享,供他人使用。每当他们贡献的 Action 在执行中使用时,Action 提供者都会获得奖励,这激励他们发布安全高效的模块。

  • Graphers – 独立的求解器(算法),它们将 Actions 组合成可执行的 Shortcuts 以满足用户意图。多个 Graphers 竞争为每个请求找到最优解决方案(最便宜、最快或收益最高的路径),类似于 DEX 聚合器中的求解器竞争。只有最佳解决方案会被选中执行,获胜的 Grapher 将获得一部分费用。这种竞争机制鼓励对链上路径和策略进行持续优化。

  • 验证者 – 通过验证和最终确定 Grapher 的解决方案来保护 Enso 网络的节点运营商。验证者认证传入的请求,检查所用 Actions/Shortcuts 的有效性和安全性,模拟交易,并最终确认所选解决方案的执行。它们构成了网络完整性的支柱,确保结果正确并防止恶意或低效的解决方案。验证者运行基于 Tendermint 的共识,这意味着使用 BFT 权益证明流程来就每个意图的结果达成一致并更新网络状态。

值得注意的是,Enso 的方法是链无关以 API 为中心的。开发者通过统一的 API/SDK 与 Enso 交互,而不是处理每条链的细微差别。Enso 集成了超过 250 个跨多个区块链的 DeFi 协议,有效地将分散的生态系统转变为一个可组合的平台。这种架构消除了 dApp 团队为每个新集成编写自定义智能合约或处理跨链消息传递的需要——Enso 的共享引擎和社区提供的 Actions 处理了这些繁重的工作。到 2025 年中期,Enso 已经证明了其可扩展性:该网络在 Berachain 的启动中成功促成了 3 天内 31 亿美元的流动性迁移(DeFi 史上最大的迁移事件之一),并且迄今已处理了超过 150 亿美元的链上交易。这些成就展示了 Enso 基础设施在真实世界条件下的稳健性。

总的来说,Enso 的协议架构提供了一个 Web3 的**“DeFi 中间件”链上操作系统。它将索引(如 The Graph)和交易执行(如跨链桥或 DEX 聚合器)的元素结合到一个单一的去中心化网络中。这种独特的堆栈允许任何应用程序、机器人或代理通过一次集成读取和写入任何链上的任何智能合约**,从而加速开发并催生新的可组合用例。Enso 将自己定位为多链未来的关键基础设施——一个意图引擎,可以为无数应用提供动力,而无需每个应用都重新发明区块链集成。

代币经济学

Enso 的经济模型以 ENSO 代币为中心,该代币对网络运营和治理至关重要。ENSO 是一种实用和治理代币,总供应量固定为 1 亿枚。该代币的设计旨在协调所有参与者的激励,并创造一个使用和奖励的飞轮效应

  • 费用货币(“Gas”):提交到 Enso 网络的所有请求都会产生一笔以 ENSO 支付的查询费。当用户(或 dApp)触发一个意图时,一小笔费用会嵌入到生成的交易字节码中。这些费用会在公开市场上拍卖换取 ENSO 代币,然后分配给处理该请求的网络参与者。实际上,ENSO 是驱动 Enso 网络上链上意图执行的燃料。随着对 Enso Shortcuts 需求的增长,支付网络费用所需的 ENSO 代币需求也可能增加,从而形成一个支持代币价值的供需反馈循环

  • 收入分成与质押奖励:从费用中收集的 ENSO 会作为奖励分配给 Action 提供者、Graphers 和验证者,以表彰他们的贡献。该模型将代币收益与网络使用情况直接挂钩:意图交易量越大,可分配的费用就越多。Action 提供者在其抽象被使用时赚取代币,Graphers因提供获胜解决方案而赚取代币,验证者则因验证和保护网络而赚取代币。这三种角色都必须质押 ENSO作为抵押品才能参与(若有不当行为将被罚没),从而使其激励与网络健康保持一致。代币持有者也可以将其 ENSO 委托给验证者,通过委托权益证明来支持网络安全。这种质押机制不仅保护了 Tendermint 共识,还让代币质押者分享网络费用,类似于矿工/验证者在其他链中赚取 Gas 费的方式。

  • 治理:ENSO 代币持有者将治理协议的演进。Enso 作为一个开放网络启动,并计划过渡到社区驱动的决策。代币权重投票将让持有者影响升级、参数变更(如费用水平或奖励分配)以及金库使用。这种治理权力确保了核心贡献者和用户在网络发展方向上保持一致。该项目的理念是将所有权交到构建者和用户社区手中,这也是 2025 年进行社区代币销售的一个驱动原因(见下文)。

  • 正向飞轮:Enso 的代币经济学旨在创造一个自我强化的循环。随着更多开发者集成 Enso 和更多用户执行意图,网络费用(以 ENSO 支付)会增长。这些费用奖励贡献者(吸引更多 Actions、更好的 Graphers 和更多验证者),从而提升网络能力(更快、更便宜、更可靠的执行),进而吸引更多使用。这种网络效应由 ENSO 代币作为费用货币和贡献激励的双重角色所支撑。其意图是让代币经济能够随着网络采用而可持续地扩展,而不是依赖于不可持续的发行。

代币分配与供应:初始代币分配旨在平衡团队/投资者激励与社区所有权。下表总结了 ENSO 代币在创世时的分配情况:

分配百分比代币数量(共 1 亿)
团队(创始人与核心成员)25.0%25,000,000
早期投资者 (VC)31.3%31,300,000
基金会与增长基金23.2%23,200,000
生态系统金库(社区激励)15.0%15,000,000
公开发售 (CoinList 2025)4.0%4,000,000
顾问1.5%1,500,000

来源:Enso 代币经济学。

2025 年 6 月的公开发售向社区提供了 5%(400 万代币),以每枚 ENSO 1.25 美元的价格筹集了 500 万美元(意味着完全稀释估值约为 1.25 亿美元)。值得注意的是,社区销售没有锁仓期(在 TGE 时 100% 解锁),而团队和风险投资者则受制于 2 年的线性释放计划。这意味着内部人员的代币在 24 个月内逐块逐步解锁,使他们的利益与网络的长期增长保持一致,并减轻了即时的抛售压力。因此,社区获得了即时的流动性和所有权,反映了 Enso 广泛分配的目标。

Enso 在初始分配之外的释放计划似乎主要是由费用驱动而非通胀驱动。总供应量固定为 1 亿枚代币,目前没有迹象表明会为区块奖励进行永久性通胀(验证者从费用收入中获得补偿)。这与许多通过通胀供应来支付质押者的 Layer-1 协议形成对比;Enso 旨在通过实际使用费实现可持续性来奖励参与者。如果在早期阶段网络活动较低,基金会和金库的分配可用于启动激励措施,以促进使用和开发拨款。相反,如果需求旺盛,ENSO 代币的效用(用于支付费用和质押)可能会产生有机的需求压力。

总而言之,ENSO 是 Enso 网络的燃料。它为交易提供动力(查询费),保护网络(质押和罚没),并治理平台(投票)。代币的价值与网络采用直接相关:随着 Enso 作为 DeFi 应用的支柱被更广泛地使用,ENSO 的费用和质押量应该会反映出这种增长。谨慎的分配(TGE 后只有一小部分立即流通)和顶级投资者的强力支持为代币提供了信心,而以社区为中心的销售则表明了对所有权去中心化的承诺。

团队与投资者

Enso Network 由 Connor Howe (CEO) 和 Gorazd Ocvirk2021 年创立,他们之前曾在瑞士加密银行业的 Sygnum Bank 共事。Connor Howe 作为 CEO 领导该项目,并在沟通和访谈中作为公众形象。在他的领导下,Enso 最初作为一个社交交易 DeFi 平台推出,然后经过多次迭代,最终形成了当前的基于意图的基础设施愿景。这种适应性凸显了团队的创业韧性——从 2021 年对指数协议执行备受瞩目的“吸血鬼攻击”,到构建一个 DeFi 聚合器超级应用,最终将其工具泛化为 Enso 的开发者平台。联合创始人 Gorazd Ocvirk (博士) 在量化金融和 Web3 产品策略方面拥有深厚的专业知识,尽管公开信息显示他可能已转向其他项目(2022 年他被提及为另一家加密初创公司的联合创始人)。如今,Enso 的核心团队包括具有强大 DeFi 背景的工程师运营人员。例如,Peter Phillips 和 Ben Wolf 被列为“blockend”(区块链后端)工程师,Valentin Meylan 负责研究。团队分布在全球,但其根基在瑞士的楚格/苏黎世,这是一个知名的加密项目中心(Enso Finance AG 于 2020 年在瑞士注册)。

除了创始人,Enso 还有著名的顾问和支持者,这为其增添了显著的信誉。该项目得到了顶级加密风险基金和天使投资人的支持:其主要投资者包括 Polychain CapitalMulticoin Capital,以及 DialecticSpartan Group(两者均为著名的加密基金)和 IDEO CoLab。一个令人印象深刻的天使投资人名单也参与了多轮融资——超过 70 位来自领先 Web3 项目的个人投资了 Enso。其中包括来自 LayerZero、Safe (Gnosis Safe)、1inch、Yearn Finance、Flashbots、Dune Analytics、Pendle 等项目的创始人或高管。甚至科技名人 Naval Ravikant(AngelList 的联合创始人)也是其投资者和支持者。这些名字表明了行业对 Enso 愿景的强烈信心。

Enso 的融资历史:该项目在 2021 年初筹集了 500 万美元的种子轮融资,用于构建社交交易平台,后来随着产品演进又进行了一轮 420 万美元的融资(战略/VC 轮),这些早期融资可能包括 Polychain、Multicoin、Dialectic 等。到 2023 年中期,Enso 已获得足够资本来构建其网络;值得注意的是,在其基础设施转型获得关注之前,它一直相对低调。在 2025 年第二季度,Enso 在 CoinList 上启动了 500 万美元的社区代币销售,吸引了数万名参与者超额认购。这次销售的目的不仅是筹集资金(考虑到之前的 VC 支持,金额不大),更是为了去中心化所有权,让其不断增长的社区在网络成功中占有一席之地。据 CEO Connor Howe 所说,“我们希望我们最早的支持者、用户和信徒在 Enso 中拥有真正的所有权……将用户转变为倡导者”。这种以社区为中心的方法是 Enso 通过一致的激励来推动草根增长和网络效应战略的一部分。

如今,Enso 的团队被认为是**“基于意图的 DeFi”领域的思想领袖之一。他们积极参与开发者教育(例如,Enso 的 Shortcut Speedrun 作为一个游戏化学习活动吸引了 70 万参与者),并与其他协议在集成方面进行合作。一个强大的、具有成熟转型能力的核心团队,加上蓝筹投资者**和热情的社区,表明 Enso 拥有执行其宏伟路线图的人才和资金支持。

采用指标与用例

尽管是一个相对较新的基础设施,Enso 在其细分市场已经展示了显著的吸引力。它已将自己定位为需要复杂链上集成或跨链能力项目的首选解决方案。截至 2025 年中期的一些关键采用指标和里程碑包括:

  • 生态系统集成:超过 100 个实时应用(dApp、钱包和服务)正在底层使用 Enso 来驱动链上功能。这些应用范围从 DeFi 仪表板到自动化收益优化器。由于 Enso 抽象了协议,开发者可以通过接入 Enso 的 API 快速为其产品添加新的 DeFi 功能。该网络已与 250 多个 DeFi 协议(DEX、借贷平台、收益农场、NFT 市场等)在主要链上集成,这意味着 Enso 几乎可以执行用户可能想要的任何链上操作,从 Uniswap 交易到 Yearn 金库存款。这种广泛的集成为 Enso 的客户显著减少了开发时间——一个新项目可以使用 Enso 支持以太坊、Layer-2 甚至 Solana 上的所有 DEX,而无需为每个集成独立编码。

  • 开发者采用:Enso 的社区现在包括 1,900 多名开发者,他们正积极使用其工具包进行构建。这些开发者可能直接创建 Shortcuts/Actions,或将 Enso 整合到他们的应用程序中。这个数字表明 Enso 不仅仅是一个封闭系统;它正在赋能一个不断增长的构建者生态系统,他们使用其 shortcuts 或为其库做出贡献。Enso 简化链上开发的方法(声称将构建时间从 6 个多月缩短到一周以内)已经引起了 Web3 开发者的共鸣。这一点也通过黑客松和 Enso Templates 库得到证明,社区成员在其中分享即插即用的 shortcut 示例。

  • 交易量:超过 150 亿美元的累计链上交易量已通过 Enso 的基础设施结算。这一截至 2025 年 6 月报告的指标强调,Enso 不仅在测试环境中运行——它正在大规模处理真实价值。一个备受瞩目的例子是 Berachain 的流动性迁移:2025 年 4 月,Enso 为 Berachain 的测试网活动(“Boyco”)提供了流动性转移支持,并在 3 天内促成了 31 亿美元的交易执行,这是 DeFi 历史上最大的流动性事件之一。Enso 的引擎成功处理了这一负载,展示了其在压力下的可靠性和吞吐量。另一个例子是 Enso 与 Uniswap 的合作:Enso 构建了一个 Uniswap 头寸迁移器工具(与 Uniswap Labs、LayerZero 和 Stargate 合作),帮助用户无缝地将 Uniswap v3 LP 头寸从以太坊迁移到另一条链。该工具将一个通常复杂的跨链过程(涉及桥接和 NFT 的重新部署)简化为一键式 shortcut,其发布展示了 Enso 与顶级 DeFi 协议协同工作的能力。

  • 实际用例:Enso 的价值主张通过其支持的各种用例得到了最好的理解。项目已经使用 Enso 提供了单独构建会非常困难的功能:

    • 跨链收益聚合PlumeSonic 使用 Enso 来支持激励性启动活动,用户可以在一条链上存入资产,然后将其部署到另一条链的收益中。Enso 处理了跨链消息传递和多步交易,使得这些新协议能够在代币发布活动期间为用户提供无缝的跨链体验。
    • 流动性迁移与合并:如前所述,Berachain 利用 Enso 进行了一场类似“吸血鬼攻击”的流动性迁移,从其他生态系统吸引流动性。同样,其他协议可以使用 Enso Shortcuts 自动化地将用户资金从竞争对手平台转移到自己的平台,通过将跨平台的批准、提款、转移和存款捆绑成一个意图。这展示了 Enso 在协议增长策略中的潜力。
    • DeFi “超级应用” 功能:一些钱包和界面(例如,Eliza OS 加密助手和 Infinex 交易平台)集成 Enso 以提供一站式 DeFi 操作。用户只需点击一次,就可以以最优价格交换资产(Enso 将在 DEX 之间路由),然后将输出的资产借出以赚取收益,再或许质押一个 LP 代币——所有这些 Enso 都可以作为一个 Shortcut 执行。这显著改善了这些应用的用户体验和功能。
    • 自动化与机器人:使用 Enso 的**“代理”**甚至 AI 驱动的机器人正在兴起。因为 Enso 暴露了一个 API,算法交易者或 AI 代理可以输入一个高层次的目标(例如,“在任何链上最大化 X 资产的收益”),然后让 Enso 找到最优策略。这为自动化 DeFi 策略的实验开辟了新天地,而无需为每个协议进行定制的机器人工程。
  • 用户增长:虽然 Enso 主要是一个 B2B/B2Dev 基础设施,但它通过各种活动培养了一个由终端用户和爱好者组成的社区。Shortcut Speedrun——一个游戏化的教程系列——吸引了超过 700,000 名参与者,表明人们对 Enso 的能力有广泛的兴趣。Enso 的社交媒体关注度在几个月内增长了近 10 倍(截至 2025 年中期在 X 上有 24.8 万粉丝),反映了其在加密用户中的强大影响力。这种社区增长很重要,因为它创造了草根需求:了解 Enso 的用户会鼓励他们喜爱的 dApp 集成它,或者会使用利用 Enso shortcuts 的产品。

总而言之,Enso 已经从理论走向了实际采用。它受到 100 多个项目的信任,包括 Uniswap、SushiSwap、Stargate/LayerZero、Berachain、zkSync、Safe、Pendle、Yearn 等知名项目,它们要么是集成合作伙伴,要么是 Enso 技术的直接用户。这种跨不同垂直领域(DEX、桥、Layer-1、dApp)的广泛使用凸显了 Enso 作为通用基础设施的角色。其关键的吸引力指标——超过 150 亿美元的交易量——对于处于这个阶段的基础设施项目来说尤其令人印象深刻,并验证了基于意图的中间件的市场契合度。投资者可以放心,Enso 的网络效应似乎正在发挥作用:更多的集成带来更多的使用,从而吸引更多的集成。未来的挑战将是将这种早期势头转化为持续增长,这与 Enso 在竞争中的定位及其路线图息息相关。

竞争格局

Enso Network 运营于DeFi 聚合、跨链互操作性和开发者基础设施的交汇点,这使其竞争格局多面化。虽然没有单一的竞争对手提供完全相同的产品,但 Enso 面临来自几类 Web3 协议的竞争:

  • 去中心化中间件与索引:最直接的类比是 The Graph (GRT)。The Graph 提供一个去中心化网络,用于通过子图查询区块链数据。Enso 同样众包数据提供者(Action 提供者),但更进一步,除了数据获取外,还支持交易执行。The Graph 约 9.24 亿美元的市值仅建立在索引之上,而 Enso 更广泛的范围(数据 + 操作)使其在吸引开发者方面成为一个更强大的工具。然而,The Graph 是一个成熟的网络;Enso 必须证明其执行层的可靠性和安全性,才能实现类似的采用率。可以想象,The Graph 或其他索引协议可能会扩展到执行领域,这将直接与 Enso 的细分市场竞争。

  • 跨链互操作性协议:像 LayerZero、Axelar、Wormhole 和 Chainlink CCIP 这样的项目提供了连接不同区块链的基础设施。它们专注于消息传递和链间资产桥接。Enso 实际上在底层使用了其中一些协议(例如,在 Uniswap 迁移器中使用了 LayerZero/Stargate),并且更像是一个更高层次的抽象。在竞争方面,如果这些互操作性协议开始提供更高级别的“意图”API 或对开发者友好的 SDK 来组合多链操作,它们可能会与 Enso 产生重叠。例如,Axelar 提供了一个用于跨链调用的 SDK,而 Chainlink 的 CCIP 可以实现跨链函数执行。Enso 的差异化在于它不仅仅在链之间发送消息;它维护了一个统一的引擎和 DeFi 操作库。它针对的是希望获得现成解决方案的应用程序开发者,而不是强迫他们在原始的跨链原语上构建。尽管如此,Enso 将在更广泛的区块链中间件领域争夺市场份额,而这些互操作性项目资金雄厚且创新迅速。

  • 交易聚合器与自动化:在 DeFi 世界中,存在像 1inch、0x API 或 CoW Protocol 这样的现有聚合器,它们专注于在交易所之间寻找最优交易路径。Enso 的 Grapher 意图机制在概念上类似于 CoW Protocol 的求解器竞争,但 Enso 将其推广到交换之外的任何操作。一个“最大化收益”的用户意图可能涉及交换、借贷、质押等,这超出了纯粹的 DEX 聚合器的范围。话虽如此,在重叠的用例中,Enso 将与这些服务在效率上进行比较(例如,Enso vs. 1inch 在复杂代币交换路径上)。如果 Enso 凭借其 Graphers 网络能够持续找到更好的路径或更低的费用,它就能胜过传统的聚合器。Gelato Network 是自动化领域的另一个竞争对手:Gelato 提供一个去中心化的机器人网络,代表 dApp 执行任务,如限价单、自动复投或跨链转账。Gelato 有一个 GEL 代币和针对特定用例的成熟客户群。Enso 的优势在于其广度和统一的接口——Enso 提供一个通用平台,任何逻辑都可以编码为 Shortcut,而不是为每个用例提供单独的产品(像 Gelato 那样)。然而,Gelato 在自动化等领域的先发优势和专注方法可能会吸引那些原本可能使用 Enso 实现类似功能的开发者。

  • 开发者平台 (Web3 SDK):还有像 Moralis、Alchemy、Infura 和 Tenderly 这样的 Web2 风格的开发者平台,它们简化了在区块链上的构建工作。这些平台通常提供 API 访问以读取数据、发送交易,有时还提供更高级别的端点(例如,“获取代币余额”或“跨链发送代币”)。虽然这些大多是中心化服务,但它们争夺的是同样的开发者注意力。Enso 的卖点在于它是去中心化和可组合的——开发者不仅仅是获取数据或单个函数,他们正在接入一个由他人贡献的完整的链上能力网络。如果成功,Enso 可能成为**“链上操作的 GitHub”**,开发者可以在其中分享和重用 Shortcuts,就像开源代码一样。与资金雄厚的基础设施即服务公司竞争意味着 Enso 需要提供相当的可靠性和易用性,它正通过广泛的 API 和文档努力实现这一点。

  • 自研解决方案:最后,Enso 与现状竞争——团队内部构建自定义集成。传统上,任何希望实现多协议功能性的项目都必须为每个集成编写和维护智能合约或脚本(例如,分别集成 Uniswap、Aave、Compound)。许多团队可能仍会选择这条路,以获得最大控制权或出于安全考虑。Enso 需要说服开发者,将这项工作外包给一个共享网络是安全、经济高效且与时俱进的。鉴于 DeFi 创新的速度,维护自己的集成是繁重的(Enso 经常提到,团队需要花费 6 个多月和 50 万美元的审计费用来集成数十个协议)。如果 Enso 能证明其安全严谨性并使其操作库与最新协议保持同步,它就能将更多团队从孤立构建中转化过来。然而,任何备受瞩目的安全事件或 Enso 的停机都可能让开发者重新倾向于自研解决方案,这本身就是一种竞争风险。

Enso 的差异化优势: Enso 的主要优势在于率先推出一个以意图为中心、社区驱动的执行网络。它结合了需要使用多个其他服务才能实现的功能:数据索引、智能合约 SDK、交易路由和跨链桥接——所有这些都在一个平台中。其激励模型(奖励第三方开发者的贡献)也是独一无二的;这可能导致一个充满活力的生态系统,其中许多小众协议被集成到 Enso 的速度比任何单一团队都要快,类似于 The Graph 的社区如何索引大量长尾合约。如果 Enso 成功,它可能会享受到强大的网络效应护城河:更多的 Actions 和 Shortcuts 使其比竞争对手更具吸引力,从而吸引更多用户,进而吸引更多 Actions 的贡献,如此循环。

话虽如此,Enso 仍处于早期阶段。其最接近的类比 The Graph 花了数年时间才实现去中心化并建立起一个索引者生态系统。Enso 同样需要培育其 Graphers 和验证者社区以确保可靠性。大型参与者(如未来版本的 The Graph,或 Chainlink 与其他公司的合作)可能会决定推出一个竞争性的意图执行层,利用其现有网络。Enso 必须迅速行动,在这样的竞争出现之前巩固其地位。

总之,Enso 处于几个重要 Web3 垂直领域的竞争十字路口——它正在开辟一个作为*“万物中间件”*的细分市场。其成功将取决于在每个用例中超越专业竞争对手(或将它们聚合起来),并继续提供一个引人注目的一站式解决方案,以证明开发者选择 Enso 而非从零开始构建是合理的。知名合作伙伴和投资者的存在表明 Enso 已经在许多生态系统中站稳了脚跟,这将在其扩大集成覆盖范围时具有优势。

路线图与生态系统增长

Enso 的发展路线图(截至 2025 年中期)勾勒出一条通往完全去中心化、多链支持和社区驱动增长的清晰路径。关键的里程碑和计划中的举措包括:

  • 主网上线(2024 年第三季度) – Enso 于 2024 年下半年启动了其主网。这包括部署基于 Tendermint 的链并初始化验证者生态系统。早期的验证者可能是经过许可或挑选的合作伙伴,以帮助网络启动。主网的启动使得真实的用户查询能够由 Enso 的引擎处理(在此之前,Enso 的服务在测试阶段通过中心化 API 提供)。这一里程碑标志着 Enso 从一个内部平台向公共去中心化网络的转变。

  • 网络参与者扩展(2024 年第四季度) – 主网上线后,重点转向参与的去中心化。2024 年末,Enso 向外部的 Action 提供者和 Graphers 开放了角色。这包括发布工具和文档,供开发者创建自己的 Actions(智能合约适配器),以及供算法开发者运行 Grapher 节点。我们可以推断,为了吸引这些参与者,Enso 采用了激励计划或测试网竞赛。到 2024 年底,Enso 的目标是在其库中拥有更广泛的第三方 Actions,并有多个 Graphers 竞争处理意图,从而超越核心团队的内部算法。这是确保 Enso 不是一个中心化服务,而是一个任何人都可以贡献并赚取 ENSO 代币的真正开放网络的关键一步。

  • 跨链扩展(2025 年第一季度) – Enso 认识到支持众多区块链是其价值主张的关键。2025 年初,路线图的目标是集成新的区块链环境,超越最初的 EVM 集合。具体来说,Enso 计划在 2025 年第一季度前支持 MonadSolanaMovementMonad 是一个即将推出的高性能 EVM 兼容链(由 Dragonfly Capital 支持)——早期支持它可以使 Enso 在那里成为首选的中间件。Solana 的集成更具挑战性(不同的运行时和语言),但 Enso 的意图引擎可以通过使用链下 Graphers 来构建 Solana 交易和作为适配器的链上程序来与 Solana 协同工作。Movement 指的是 Move 语言链(可能是 Aptos/Sui 或一个名为 Movement 的特定链)。通过整合基于 Move 的链,Enso 将覆盖广泛的生态系统(Solidity 和 Move,以及现有的以太坊 rollup)。实现这些集成意味着开发新的 Action 模块,这些模块能够理解 Solana 的 CPI 调用或 Move 的交易脚本,并且可能需要与这些生态系统合作获取预言机/索引。Enso 在更新中的提及表明这些计划正在按部就班地进行——例如,一个社区更新强调了合作伙伴关系或拨款(搜索结果中提到的“Eclipse 主网上线 + Movement 拨款”表明 Enso 在 2025 年初正积极与像 Eclipse 和 Movement 这样的新兴 L1 合作)。

  • 近期(2025 年中/后期) – 尽管在一页纸的路线图中没有明确细分,但到 2025 年中期,Enso 的重点是网络成熟度和去中心化。2025 年 6 月 CoinList 代币销售的完成是一个重大事件:接下来的步骤将是代币生成和分发(预计在 2025 年 7 月左右)以及在交易所或治理论坛上线。我们预计 Enso 将推出其治理流程(Enso 改进提案,链上投票),以便社区可以使用他们新获得的代币开始参与决策。此外,Enso 可能会从“测试版”过渡到完全生产就绪的服务,如果还没有的话。这部分工作将包括安全加固——进行多次智能合约审计,并可能运行一个漏洞赏金计划,考虑到涉及的大量 TVL。

  • 生态系统增长策略:Enso 正在积极培育其网络周边的生态系统。一个策略是运行教育项目和黑客松(例如,Shortcut Speedrun 和研讨会),以引导开发者采用 Enso 的构建方式。另一个策略是在新协议启动时与之合作——我们已经在 Berachain、zkSync 的活动等项目中看到了这一点。Enso 很可能会继续这样做,有效地充当新兴网络或 DeFi 项目的“链上启动伙伴”,处理他们复杂的用户引导流程。这不仅推动了 Enso 的交易量(如在 Berachain 中所见),还将 Enso 深度整合到这些生态系统中。我们预计 Enso 将宣布与更多 Layer-2 网络(例如,Arbitrum、Optimism 可能已经支持;接下来可能是像 Scroll 或 Starknet 这样的新网络)以及其他 L1(通过 XCM 的 Polkadot,通过 IBC 或 Osmosis 的 Cosmos 等)的集成。长期愿景是让 Enso 变得无处不在——任何链上的任何开发者都可以接入。为此,Enso 可能还会开发更好的无桥跨链执行(使用原子交换或跨链意图的乐观执行等技术),这可能在 2025 年后的研发路线图上。

  • 未来展望:展望未来,Enso 的团队已经暗示将有 AI 代理作为网络参与者。这表明未来不仅是人类开发者,AI 机器人(可能经过训练以优化 DeFi 策略)也将接入 Enso 提供服务。Enso 可能会通过创建 SDK 或框架,让 AI 代理安全地与意图引擎交互,从而实现这一愿景——这可能是融合 AI 和区块链自动化的一个突破性发展。此外,到 2025 年末或 2026 年,我们预计随着使用量的增长,Enso 将致力于性能扩展(可能对其网络进行分片或使用零知识证明来大规模验证意图执行的正确性)。

路线图雄心勃勃,但迄今为止的执行力很强——Enso 已经实现了主网上线和提供实际用例等关键里程碑。一个重要的即将到来的里程碑是网络的完全去中心化。目前,网络正处于过渡阶段:文档指出,去中心化网络处于测试网阶段,而截至 2025 年初,生产环境仍在使用中心化 API。到目前为止,随着主网上线和代币流通,Enso 的目标将是逐步淘汰任何中心化组件。对于投资者来说,跟踪这一去中心化进程(例如,独立验证者的数量,社区 Graphers 的加入情况)将是评估 Enso 成熟度的关键。

总而言之,Enso 的路线图专注于扩展网络覆盖范围(更多链,更多集成)扩展网络社区(更多第三方参与者和代币持有者)。最终目标是巩固 Enso 作为 Web3 关键基础设施的地位,就像 Infura 对 dApp 连接性至关重要,或者 The Graph 对数据查询不可或缺一样。如果 Enso 能够实现其里程碑,2025 年下半年应该会看到一个围绕 Enso 网络蓬勃发展的生态系统,可能推动使用量的指数级增长。

风险评估

与任何早期协议一样,Enso Network 面临一系列风险和挑战,投资者应仔细考虑:

  • 技术与安全风险:Enso 的系统本质上是复杂的——它通过一个由链下求解器和验证者组成的网络,与跨多个区块链的众多智能合约进行交互。这种广阔的攻击面带来了技术风险。每个新的 Action(集成)都可能带有漏洞;如果一个 Action 的逻辑有缺陷,或者一个恶意的提供者引入了带有后门的 Action,用户资金可能会面临风险。确保每个集成的安全性需要大量投资(Enso 团队在早期为集成 15 个协议花费了超过 50 万美元的审计费用)。随着库增长到数百个协议,维持严格的安全审计是一项挑战。此外,Enso 的协调逻辑中也存在漏洞风险——例如,Graphers 组合交易或验证者验证交易的方式存在缺陷,可能会被利用。特别是跨链执行可能存在风险:如果一个操作序列跨越多个链,其中一部分失败或被审查,可能会导致用户的资金处于不确定状态。尽管 Enso 可能在某些情况下使用重试或原子交换,但意图的复杂性意味着可能会出现未知的失败模式基于意图的模型本身在规模上相对未经证实——可能存在引擎产生不正确解决方案或结果偏离用户意图的边缘情况。任何备受瞩目的漏洞利用或失败都可能破坏对整个网络的信心。缓解措施需要持续的安全审计、一个健全的漏洞赏金计划,以及可能的用户保险机制(这些都尚未详细说明)。

  • 去中心化与运营风险:目前(2025 年中期),Enso 网络仍在去中心化其参与者的过程中。这意味着可能存在未见的运营中心化——例如,团队的基础设施可能仍在协调大量活动,或者只有少数验证者/Graphers 真正活跃。这带来了两个风险:可靠性(如果核心团队的服务器宕机,网络会停止吗?)和信任(如果过程尚未完全去信任化,用户必须相信 Enso Inc. 不会进行抢先交易或审查交易)。团队在重大事件中证明了可靠性(如在几天内处理 30 亿美元的交易量),但随着使用量的增长,通过更多独立节点来扩展网络将至关重要。还有一个风险是网络参与者不足——如果 Enso 无法吸引足够多有技能的 Action 提供者或 Graphers,网络可能会继续依赖核心团队,从而限制去中心化。这可能会减缓创新,并可能将过多的权力(和代币奖励)集中在一小群人手中,这与预期的设计背道而驰。

  • 市场与采用风险:虽然 Enso 早期采用情况令人印象深刻,但它仍处于“基于意图”基础设施的新生市场。存在一个风险,即更广泛的开发者社区可能对采用这种新范式反应迟缓。习惯于传统编码实践的开发者可能会犹豫是否依赖外部网络来实现核心功能,或者他们可能更喜欢其他解决方案。此外,Enso 的成功取决于DeFi 和多链生态系统的持续增长。如果多链理论失败(例如,如果大部分活动整合到单一主导链上),对 Enso 跨链能力的需求可能会减少。另一方面,如果出现一个新的生态系统而 Enso 未能迅速集成,该生态系统中的项目将不会使用 Enso。本质上,与每个新链和协议保持同步是一个永无止境的挑战——错过或延迟一个主要集成(比如一个流行的新 DEX 或 Layer-2)可能会将项目推向竞争对手或自定义代码。此外,Enso 的使用可能会受到宏观市场状况的影响;在严重的 DeFi 熊市中,更少的用户和开发者可能会尝试新的 dApp,这会直接减少提交给 Enso 的意图,从而减少网络的费用/收入。在这种情况下,代币的价值可能会受到影响,可能使质押的吸引力降低,削弱网络安全或参与度。

  • 竞争:如前所述,Enso 在多个方面面临竞争。一个主要风险是一个更大的参与者进入意图执行领域。例如,如果像 Chainlink 这样资金雄厚的项目推出类似的服务,利用其现有的预言机网络,他们可能会因为品牌信任和集成优势而迅速超越 Enso。同样,基础设施公司(Alchemy、Infura)可以构建简化的多链 SDK,虽然不是去中心化的,但以便利性吸引开发者市场。还有开源模仿者的风险:Enso 的核心概念(Actions、Graphers)可能被他人复制,如果代码是公开的,甚至可能成为 Enso 的一个分叉。如果其中一个项目形成了强大的社区或找到了更好的代币激励机制,它可能会分流潜在的参与者。Enso 需要保持技术领先地位(例如,通过拥有最大的 Actions 库和最高效的求解器)来抵御竞争。竞争压力也可能挤压 Enso 的收费模型——如果竞争对手以更低的价格(或由风投补贴的免费服务)提供类似服务,Enso 可能被迫降低费用或增加代币激励,这可能会对其代币经济学造成压力。

  • 监管与合规风险:Enso 在 DeFi 基础设施领域运营,这是一个监管的灰色地带。虽然 Enso 本身不托管用户资金(用户从自己的钱包执行意图),但该网络确实自动化了跨协议的复杂金融交易。监管机构有可能将意图组合引擎视为促进未经许可的金融活动,甚至如果用于以模糊的方式跨链转移资金,则可能被视为协助洗钱。如果 Enso 启用了涉及隐私池或受制裁司法管辖区的跨链交换,可能会引发具体担忧。此外,ENSO 代币及其在 CoinList 上的销售反映了向全球社区的分发——监管机构(如美国的 SEC)可能会将其视为证券发行进行审查(值得注意的是,Enso 将美国、英国、中国等排除在销售之外,表明对此事的谨慎)。如果 ENSO 在主要司法管辖区被认定为证券,可能会限制其在交易所上市或被受监管实体使用。Enso 的去中心化验证者网络也可能面临合规问题:例如,验证者是否可能因法律命令而被强制审查某些交易?这目前在很大程度上是假设性的,但随着流经 Enso 的价值增长,监管关注将会增加。团队位于瑞士的基地可能提供一个相对加密友好的监管环境,但全球运营意味着全球风险。缓解这一问题可能需要确保 Enso 足够去中心化(因此没有单一实体负责),并在需要时可能对某些功能进行地理围栏(尽管这违背了项目的精神)。

  • 经济可持续性:Enso 的模型假设使用产生的费用将足以奖励所有参与者。存在一个风险,即费用激励可能不足以维持网络,尤其是在早期。例如,Graphers 和验证者会产生费用(基础设施、开发时间)。如果查询费设置得太低,这些参与者可能无法盈利,导致他们退出。另一方面,如果费用太高,dApp 可能会犹豫是否使用 Enso 并寻求更便宜的替代方案。在双边市场中找到平衡是困难的。Enso 的代币经济在一定程度上也依赖于代币价值——例如,当代币价值高时,质押奖励更具吸引力,Action 提供者以 ENSO 赚取价值。ENSO 价格的急剧下跌可能会减少网络参与或促使更多抛售(从而进一步压低价格)。由于大部分代币由投资者和团队持有(合计超过 56%,在 2 年内释放),存在抛压风险:如果这些利益相关者失去信心或需要流动性,他们的抛售可能会在释放后涌入市场,破坏代币价格。Enso 试图通过社区销售来减轻集中度,但在短期内,它仍然是一个相对集中的代币分配。经济可持续性将取决于将真正的网络使用量增长到一定水平,使得费用收入能为代币质押者和贡献者提供足够的回报——本质上是让 Enso 成为一个**“产生现金流的协议”**,而不仅仅是一个投机性代币。这是可以实现的(想想以太坊的费用如何奖励矿工/验证者),但前提是 Enso 能够实现广泛采用。在此之前,它依赖于金库资金(分配了 15%)来激励,并可能调整经济参数(如果需要,Enso 治理可能会引入通胀或其他奖励,这可能会稀释持有者)。

风险总结:Enso 正在开辟新天地,这也伴随着相应的风险。将所有 DeFi 统一到一个网络中的技术复杂性是巨大的——每增加一个区块链或集成一个协议都是一个必须管理的潜在故障点。团队在应对早期挫折(如最初社交交易产品的有限成功)方面的经验表明,他们意识到了陷阱并能迅速适应。他们已经积极地缓解了一些风险(例如,通过社区轮次去中心化所有权,以避免过度由风投驱动的治理)。投资者应关注 Enso 在去中心化方面的执行情况,以及它是否继续吸引顶尖技术人才来构建和保护网络。在最好的情况下,Enso 可能成为 Web3 中不可或缺的基础设施,产生强大的网络效应和代币价值累积。在最坏的情况下,技术或采用上的挫折可能使其沦为一个雄心勃勃但小众的工具。

从投资者的角度来看,Enso 提供了一个高回报、高风险的投资组合。其当前状态(2025 年中期)是一个有前景的网络,具有实际使用和清晰的愿景,但现在它必须加固其技术,并超越一个竞争激烈且不断发展的格局。对 Enso 的尽职调查应包括监控其安全记录查询量/费用随时间的变化,以及 ENSO 代币模型如何有效地激励一个自我维持的生态系统。截至目前,势头对 Enso 有利,但审慎的风险管理和持续的创新将是将这种早期领导地位转变为在 Web3 中间件领域长期主导地位的关键。

资料来源:

  • Enso Network 官方文档和代币销售材料

    • CoinList 代币销售页面 – 关键亮点与投资者
    • Enso 文档 – 代币经济学和网络角色
  • 访谈和媒体报道

    • CryptoPotato 对 Enso CEO 的采访(2025 年 6 月) – 关于 Enso 的演变和基于意图的设计的背景
    • DL News(2025 年 5 月) – Enso 的 shortcuts 和共享状态方法的概述
  • 社区和投资者分析

    • Hackernoon (I. Pandey, 2025) – 关于 Enso 社区轮和代币分配策略的见解
    • CryptoTotem / CoinLaunch (2025) – 代币供应细分和路线图时间线
  • Enso 官方网站指标(2025)和新闻稿 – 采用数据和用例示例(Berachain 迁移,Uniswap 合作)。

Aptos vs. Sui:两大基于 Move 的巨头全景分析

· 阅读需 7 分钟
Dora Noda
Software Engineer

概览

Aptos 与 Sui 作为新一代的 Layer-1 区块链,皆源自最初由 Meta 的 Libra/Diem 项目构想的 Move 语言。虽然它们拥有共同的血统,但团队背景、核心目标、生态系统策略以及演进路径已经出现显著分歧。

Aptos 强调多功能性和企业级性能,面向 DeFi 与机构用例。相对地,Sui 则聚焦于优化其独特的对象模型,以驱动面向大众消费者的应用,尤其是游戏、NFT 与社交媒体。哪条链最终脱颖而出,将取决于其能否在所选市场细分中演进技术、提供卓越的用户体验与开发者友好度。


1. 开发历程

Aptos

Aptos 诞生于 Aptos Labs——由前 Meta Libra/Diem 员工组建的团队——在 2021 年底开启闭测,并于 2022 年 10 月 19 日上线主网。早期主网性能因低于 20 TPS 而受到社区质疑(WIRED 报道),但随后在共识层与执行层的迭代不断将吞吐提升至数万 TPS。

截至 2025 年第二季度,Aptos 单周最高交易量达 4470 万笔,周活跃地址突破 400 万。网络累计账户已超过 8300 万,日均 DeFi 交易额稳定在 2 亿美元以上(来源:Aptos Forum)。

Sui

Sui 由 Mysten Labs 发起,其创始人曾是 Meta Novi 钱包团队的核心成员。Sui 于 2022 年 8 月启动激励测试网,并于 2023 年 5 月 3 日正式上线主网。自最早的测试网起,团队即优先打磨“对象模型”,将资产视为具备特定所有权与访问控制的对象,以提升并行交易处理能力(来源:Ledger)。

截至 2025 年 7 月中旬,Sui 生态系统锁定价值(TVL)已达 23.26 亿美元。平台的月交易量与活跃工程师数量快速增长,尤其在游戏与 NFT 领域表现突出(来源:AInvest、Tangem)。


2. 技术架构对比

功能AptosSui
语言继承原始 Move 设计,强调 “资源” 的安全性与严格的访问控制。语言相对精简。(来源:aptos.dev)在标准 Move 基础上扩展 “对象中心” 模型,打造支持水平可扩展并行交易的定制语言。(来源:docs.sui.io)
共识AptosBFT:优化的 BFT 共识机制,承诺亚秒级终结性,重点关注安全性与一致性。(来源:Messari)Narwhal + Tusk:将共识与交易排序解耦,通过优先并行执行效率实现高吞吐与低延迟。
执行模型采用流水线执行模型,交易分阶段处理(数据获取、执行、写回),支持高频转账与复杂逻辑。(来源:chorus.one)基于对象所有权的并行执行。涉及不同对象的交易无需全局状态锁,根本提升吞吐。
可扩展性聚焦单实例优化,同时研究分片技术。社区正积极开发 AptosCore v2.0 分片方案。原生并行引擎设计用于水平扩展,已在测试网实现数万 TPS 的峰值。
开发者工具成熟的工具链,包括官方 SDK、Devnet、Aptos CLI、Explorer 与用于可扩展性的 Hydra 框架。完整套件涵盖 Sui SDK、Sui Studio IDE、Explorer、GraphQL API 与面向对象的查询模型。

3. 链上生态与使用场景

3.1 生态规模与增长

Aptos
2025 年第一季度,Aptos 月活跃用户接近 1500 万,日活跃钱包逼近 100 万。DeFi 交易额同比增长 1000%,平台已成为金融级稳定币与衍生品的聚集地(来源:Coinspeaker)。关键战略包括通过 Upbit 引入 USDT,深化亚洲市场渗透,并吸引众多领先的 DEX、借贷协议与衍生品平台(来源:Aptos Forum)。

Sui
2025 年 6 月,Sui 生态 TVL 达到新高 23.26 亿美元,主要由高交互的社交、游戏与 NFT 项目驱动(来源:AInvest)。生态核心项目包括对象市场、Layer-2 桥接、社交钱包以及游戏引擎 SDK,已吸引大量 Web3 游戏开发者与 IP 持有者。

3.2 主导使用场景

  • DeFi 与企业集成(Aptos):凭借成熟的 BFT 终结性与丰富的金融工具套件,Aptos 更适合稳定币、借贷与衍生品等对一致性与安全性要求极高的场景。
  • 游戏与 NFT(Sui):Sui 的并行执行优势在此尤为明显。低交易延迟与几乎为零的费用非常适合游戏中高并发、低价值的交互,如开箱或转移游戏道具。

4. 演进与策略

Aptos

  • 性能优化:持续推进分片研究,规划多地区跨链流动性,并升级 AptosVM 提升状态访问效率。
  • 生态激励:已设立数亿美元规模的生态基金,支持 DeFi 基础设施、跨链桥接与合规企业应用。
  • 跨链互操作:加强与 Wormhole 等桥接的集成,并构建与 Cosmos(via IBC)及以太坊的连接。

Sui

  • 对象模型迭代:扩展 Move 语法以支持自定义对象类型与复杂权限管理,同时优化并行调度算法。
  • 推动消费级采纳:深度对接 Unreal、Unity 等主流游戏引擎,降低 Web3 游戏开发门槛,并推出社交插件与 SDK。
  • 社区治理:推广 SuiDAO,赋能核心项目社区治理能力,实现功能与费用模型的快速迭代。

5. 核心差异与挑战

  • 安全性 vs. 并行性:Aptos 的严格资源语义与一致性共识提供 DeFi 级安全,但可能限制并行度;Sui 的高度并行交易模型需持续证明其对大规模安全威胁的抵御能力。
  • 生态深度 vs. 广度:Aptos 在金融领域根基深厚,拥有强大的机构联系;Sui 则快速积累了大量面向消费者的项目,但尚未在大规模 DeFi 中实现决定性突破。
  • 理论性能 vs. 实际吞吐:虽然 Sui 的理论 TPS 更高,但实际吞吐仍受生态活跃度限制;Aptos 在高峰期也出现拥堵,表明仍需更有效的分片或 Layer-2 方案。
  • 市场叙事与定位:Aptos 以企业级安全与稳定为卖点,面向传统金融与合规行业;Sui 则以 “类 Web2 体验” 与 “零摩擦上手” 吸引更广泛的消费用户。

6. 大规模采纳之路

归根结底,这不是零和博弈。

中长期,如果消费市场(游戏、社交、NFT)继续保持爆发式增长,Sui 的并行执行与低准入门槛将有望在数千万主流用户中实现快速采纳。

短中期,Aptos 的成熟 BFT 终结性、低费用以及战略合作伙伴关系,使其在机构金融、合规 DeFi 与跨境支付领域具备更具吸引力的方案。

未来更可能是两条链共生共存的局面:Aptos 为金融与企业基础设施提供动力,Sui 主导高频消费交互。最终实现大规模采纳的链,将是那个在其细分领域持续优化性能与用户体验的链。

2025 年的 Rollups 即服务:OP、ZK、Arbitrum Orbit、Polygon CDK 和 zkSync Hyperchains

· 阅读需 80 分钟
Dora Noda
Software Engineer

引言

在 2025 年,Rollups-as-a-Service (RaaS) 和模块化区块链框架已成为扩展以太坊和构建自定义区块链的关键。领先的框架——Optimism 的 OP StackzkSync 的 ZK Stack (Hyperchains)Arbitrum OrbitPolygon 的链开发工具包 (CDK) 及相关解决方案——允许开发者使用不同方法(乐观 vs 零知识)启动自己的 Layer-2 (L2) 或 Layer-3 (L3) 链。这些框架共享一种模块化理念:它们将执行、结算、数据可用性和共识等关注点分离,从而能够对每个组件进行定制。本报告将从数据可用性选项、定序器设计、费用模型、生态系统支持等关键维度比较这些框架,并审视它们在公共和企业环境中的架构、工具、开发者体验和当前采用情况。

比较概览

下表总结了每个框架的几个核心特性:

方面OP Stack (Optimism)ZK Stack (zkSync)Arbitrum OrbitPolygon CDK (AggLayer)
Rollup 类型乐观 Rollup零知识 (有效性)乐观 Rollup零知识 (有效性)
证明系统故障证明 (欺诈证明)ZK-SNARK 有效性证明故障证明 (欺诈证明)ZK-SNARK 有效性证明
EVM 兼容性EVM 等效 (geth)高 – zkEVM (基于 LLVM)EVM 等效 (Arbitrum Nitro) + 通过 Stylus 支持 WASMPolygon zkEVM (EVM 等效)
数据可用性以太坊 L1 (链上);可插拔的 Alt-DA 模块 (Celestia 等)以太坊 L1;也支持链下 Validium 选项 (Celestia, Avail, EigenDA)以太坊 L1 (rollup) 或 AnyTrust 委员会 (链下 DAC);支持 Celestia, Avail以太坊 L1 (rollup) 或链下 (通过 Avail 或 Celestia 实现 validium);可能混合使用
定序器设计单一定序器 (默认);可通过定制实现多定序器。Superchain 的_共享定序器_愿景 (未来)。可配置:可以是中心化的或去中心化的;支持 L1 优先队列。可配置:单一运营商或去中心化验证者。灵活:单一定序器或多个验证者 (例如 PoS 委员会)。
定序器访问权限目前是中心化的 (每个 OP 链的定序器由其运营商运行);尚未无需许可。计划为 OP 链建立一个共享、无需许可的定序器网络。L1 备用队列允许在定序器故障时进行无需信任的交易提交。zkSync Era 使用中心化定序器 (Matter Labs),但 ZK Stack 允许自定义定序器逻辑 (甚至外部共识)。支持 L1 优先排序以保证公平性。去中心化定序器选项正在开发中。Arbitrum One 使用中心化定序器 (Offchain Labs),通过 L1 收件箱实现故障转移。Arbitrum Orbit 链可以运行自己的定序器 (最初是中心化的) 或建立一个验证者集合。BoLD 升级 (2025 年) 实现了无需许可的验证,以去中心化 Orbit 链。Polygon zkEVM 最初使用单一定序器 (Polygon Labs)。CDK 允许启动一个带有需许可验证者集合或其他共识机制的链以实现去中心化。许多 CDK 链为了简单起见从中心化开始,并有路线图计划后续由社区运营定序器。
手续费代币基于 OP 的 L2 默认使用 ETH (以简化用户体验)。技术上支持自定义 gas 代币,但大多数 OP 链选择 ETH 或标准代币以实现互操作性。(OP Stack 最近的指导意见倾向于在 Superchain 中使用通用代币)。支持自定义基础代币 – 开发者可以选择 ETH 或任何 ERC-20 作为原生 gas。(这种灵活性使得基于 zkSync 的链能够建立项目特定的经济模型。)支持自定义 gas 代币 (2023 年末升级)。链可以使用 ETH、Arbitrum 的 ARB 或自己的代币支付费用。示例: Ape Chain 使用 APE 作为 gas。支持自定义原生代币。许多 Polygon CDK 链使用 MATIC 或其他代币作为 gas。Polygon 的生态系统鼓励使用 MATIC 以保持跨链一致性,但并非强制要求。
手续费模型与成本用户支付 L2 gas (由定序器收取) 加上 L1 数据发布成本。定序器必须将交易数据 (calldata 或 blobs) 发布到以太坊,因此一部分费用用于支付 L1 gas。收入分享: Superchain 中的 OP 链承诺将约 2.5% 的收入贡献给 Optimism Collective (用于资助公共产品)。用户支付的费用 (通常是 ETH 或选定的代币) 覆盖了 L1 证明验证和数据成本。协议层面没有对费用征收“税”——每个链的定序器保留收入以激励运营商。ZK 证明者成本是一个因素:运营商可能会收取稍高的费用或使用高效的证明者来管理成本。最终性很快 (无延迟),因此用户不需要第三方快速退出。用户支付 gas (ETH 或链的代币),覆盖 L2 执行 + L1 批处理成本。定序器/验证者保留费用收入;没有强制向 Arbitrum DAO 或 L1 分享收入 (除了 L1 gas 成本)。为避免乐观 Rollup 的 7 天延迟,许多 Orbit 链集成了流动性提供商或官方快速提款桥 (Arbitrum 通过流动性网络支持某些 Orbit 链的 15 分钟快速退出)。用户支付的 gas 费用覆盖了证明和发布成本。定序器或验证者赚取这些费用;Polygon 不对 CDK 链的收入征收任何租金或税。使用链下 DA (validium 模式) 可以将费用降低超过 100 倍 (将数据存储在 Celestia 或 Avail 而非以太坊),但会带来一些信任假设。

表格:OP Stack、zkSync 的 ZK Stack、Arbitrum Orbit 和 Polygon CDK 关键技术特性高层比较。

数据可用性层

数据可用性 (DA) 是 Rollup 存储其交易数据的地方,以便任何人都可以重建链的状态。所有这些框架都支持使用以太坊 L1 作为 DA (在以太坊上发布 calldata 或 blob 数据以获得最高安全性)。然而,为了降低成本,它们也允许替代的 DA 解决方案:

  • OP Stack: 默认情况下,OP 链在以太坊上发布数据 (作为 calldata 或 blobs)。得益于模块化的“Alt-DA”接口,OP Stack 链可以轻松地接入其他 DA 层。例如,一个 OP 链可以使用 Celestia (一个专用的 DA 区块链) 而不是以太坊。2023 年,OP Labs 和 Celestia 发布了一个测试版,其中一个 OP Stack rollup 在以太坊上结算,但将批量数据存储在 Celestia 上。这在继承 Celestia 数据可用性保证的同时降低了费用。总的来说,任何 EVM 或非 EVM 链——甚至是比特币或中心化存储——都可以配置为 OP Stack 中的 DA 层。(当然,使用安全性较低的 DA 是以牺牲部分安全性为代价来换取成本。) 以太坊仍然是生产环境中 OP 链的主要选择,但像 Caldera 的 Taro 测试网这样的项目已经展示了使用 Celestia DA 的 OP Stack。

  • ZK Stack (zkSync Hyperchains): ZK Stack 提供rollupvalidium 两种模式。在 rollup 模式下,所有数据都在链上 (以太坊)。在 validium 模式下,数据保存在链下 (只有有效性证明在链上)。Matter Labs 正在将 Avail、Celestia 和 EigenDA 集成为 ZK Stack 链的一流 DA 选项。这意味着一个 zkSync Hyperchain 可以将交易数据发布到 Celestia 或由 EigenLayer 驱动的网络,而不是 L1,从而大幅提高吞吐量。他们甚至提出了 volition 的概念,即链可以根据每笔交易决定是将其作为 rollup (链上数据) 还是 validium (链下数据) 处理。这种灵活性允许开发者在安全性和成本之间取得平衡。例如,一个游戏 hyperchain 可能会使用 Celestia 廉价地存储数据,同时依赖以太坊进行定期证明。ZK Stack 的设计通过节点软件中的 DA 客户端/调度器组件使 DA 可插拔。总的来说,以太坊仍然是默认选项,但 zkSync 的生态系统强烈强调模块化 DA 以实现“超大规模”吞吐量。

  • Arbitrum Orbit: Orbit 链可以在 Arbitrum 的两种数据模式之间选择:rollup (数据发布在以太坊上) 或 AnyTrust (数据可用性委员会)。在 Rollup 配置中,Orbit L3 会将其 calldata 发布到 L2 (Arbitrum One 或 Nova) 或 L1,以更高的成本继承完全的安全性。在 AnyTrust 模式下,数据由一个委员会保存在链下 (如 Arbitrum Nova 中所用,它使用一个数据可用性委员会)。这大大降低了高交易量应用 (游戏、社交) 的费用,但代价是信任一个委员会 (如果_所有_委员会成员合谋扣留数据,链可能会停止)。除此之外,Arbitrum 也在与新兴的模块化 DA 网络集成。值得注意的是,Celestia 和 Polygon Avail 被支持作为 Orbit 链的替代 DA 层。像 AltLayer 这样的项目也致力于开发使用 EigenDA (EigenLayer 的 DA 服务) 的 Orbit rollup。总而言之,Arbitrum Orbit 提供了灵活的数据可用性:通过以太坊在链上,通过 DAC 或专门的 DA 链在链下,或混合模式。许多 Orbit 的采用者选择 AnyTrust 以节省成本,特别是如果他们有一组已知的验证者或合作伙伴来确保数据可用。

  • Polygon CDK: Polygon 的 CDK 在 DA 方面本质上是模块化的。一个 Polygon CDK 链可以作为 rollup (所有数据在以太坊上) 或 validium (数据在独立的网络上) 运行。Polygon 有自己的 DA 解决方案,名为 Avail (一个用于数据可用性的区块链),CDK 链可以使用 Avail 或任何类似的服务。2024 年末,Polygon 宣布将 Celestia 直接集成到 CDK 中——使 Celestia 成为工具包中一个“易于插拔”的 DA 选项。该集成预计在 2024 年初完成,使 CDK 链能够无缝地将压缩数据存储在 Celestia 上。Polygon 指出,与将所有数据发布到以太坊相比,使用 Celestia 可以将交易费用降低超过 100 倍。因此,CDK 链的创建者可以简单地将 DA 模块切换到 Celestia (或 Avail) 而不是以太坊。一些 Polygon 链 (例如 Polygon zkEVM) 目前将所有数据发布到以太坊 (以获得最大安全性),而其他链 (可能是一些企业链) 则作为带有外部 DA 的 validium 运行。CDK 也支持**“混合”模式**——例如,关键交易可以上以太坊,而其他交易则上 Avail。这种模块化的 DA 方法符合 Polygon 更广泛的 Polygon 2.0 愿景,即多个由 ZK 驱动的链具有统一的流动性但数据后端各不相同。

总而言之,所有框架都在不同程度上支持多个 DA 层。以太坊仍然是 DA 的黄金标准 (特别是在 EIP-4844 带来的 blob 空间使链上数据更便宜之后),但新的专用 DA 网络 (Celestia, Avail) 和方案 (EigenLayer 的 EigenDA, 数据委员会) 正在被全面采纳。这种模块化使得 2025 年的 rollup 创建者可以通过简单地配置不同的 DA 模块,而不是从头构建一个新链,来在成本和安全性之间做出权衡。

定序器设计与去中心化

定序器是为 rollup 排序交易并生成区块的节点 (或节点集)。定序器的设计方式——中心化 vs 去中心化,无需许可 vs 需许可——影响着链的吞吐量和信任假设:

  • OP Stack (Optimism): 目前,大多数 OP Stack 链运行一个由链的核心团队或赞助商运营的单一定序器。例如,Optimism 主网的定序器由 OP Labs 运行,而 Base 的定序器由 Coinbase 运行。这带来了低延迟和简单性,但代价是中心化 (用户必须信任定序器公平地包含他们的交易)。然而,Optimism 内置了信任最小化的机制:有一个 L1 交易队列合约,用户可以在以太坊上提交交易,而定序器_必须_将这些交易包含在 L2 链中。如果定序器宕机或审查交易,用户可以依赖 L1 最终被包含 (尽管会有一些延迟)。这为恶意或失败的定序器提供了一个安全阀。在去中心化方面,OP Stack 是模块化的,理论上允许多个定序器——例如,可以使用 OP Stack 代码实现一个基于轮询或权益证明的区块提议者集合。实际上,这需要定制,并且不是开箱即用的配置。长期的 Superchain 路线图设想为所有 OP 链提供一个共享定序器,这将是一组验证者同时为多个链排序交易。共享定序器可以实现跨链原子性并减少整个 Superchain 的 MEV。截至 2025 年,它仍在开发中,但 OP Stack 的设计并不排除接入这样的共识机制。目前,定序器操作仍然是需许可的 (由白名单实体运行),但 Optimism 治理计划在技术和经济条件成熟时将其去中心化 (可能通过质押或委员会轮换)。简而言之:OP Stack 链从中心化排序开始 (以 L1 作为后备),并规划了一条逐步去中心化的路径 (从“阶段 0”到“阶段 2”的成熟度,无需辅助轮)。

  • ZK Stack (zkSync Hyperchains): zkSync Era (L2) 目前使用由 Matter Labs 运营的中心化定序器。然而,ZK Stack 的构建允许新链采用各种排序模式。选项包括中心化定序器 (易于启动)、去中心化定序器集合 (例如,多个节点就排序达成共识)、来自 L1 的优先交易队列,甚至是外部定序器服务。在 Matter Labs 的弹性链愿景中,链保持独立,但互操作性由 L1 合约和“ZK 路由器/网关”处理——这意味着每个链可以选择自己的定序器模型,只要它满足提交状态根和证明的协议。因为 ZK-rollup 不需要 L2 上的共识来保证安全性 (有效性证明确保正确性),所以去中心化定序器更多地是关于活性和抗审查性。一个 Hyperchain 可以实现一个轮询的区块生产者,甚至可以为其定序器接入一个高性能的 BFT 共识。话虽如此,运行单一定序器要简单得多,并且在初期仍然是常态。ZK Stack 文档提到,一个链可以使用**“外部协议”进行排序——例如,可以想象使用 Tendermint 或 SU 共识作为区块生产者,然后为这些区块生成 zk 证明。此外,像其他框架一样,zkSync 有一个 L1 优先队列机制:用户可以向 zkSync 合约发送带有优先费的交易,以保证 L1->L2 的及时包含 (减轻审查)。总的来说,在 zkSync 链上尚未实现无需许可的参与**排序 (生产环境中没有公开的槽位拍卖或基于质押的定序器选择),但架构为其留下了空间。随着有效性证明的成熟,我们可能会看到由社区运营的定序器节点共同决定排序的 zkSync 链 (一旦性能允许)。

  • Arbitrum Orbit: 在 Arbitrum One (主 L2) 上,定序器是中心化的 (由 Offchain Labs 运行),尽管链的状态进展最终由 Arbitrum 验证者和欺诈证明来管理。Arbitrum 同样为用户提供了一个 L1 队列作为应对定序器问题的后备。在 Orbit (L3 框架) 中,每个 Orbit 链可以有自己的定序器或验证者集合。Arbitrum 的 Nitro 技术包含了运行带有去中心化定序器的 rollup 的选项:本质上,可以有多方运行 Arbitrum 节点软件并使用领导者选举 (可能通过未来的 Arbitrum 无需许可的权益证明链,或自定义机制)。开箱即用的 Orbit 链迄今为止大多是中心化的 (例如,Xai 游戏链由一个基金会与 Offchain Labs 合作运营)——但这只是配置和治理的问题。一个值得注意的进展是在 2025 年初引入的 BoLD (有界流动性延迟),这是一个使 Arbitrum 验证更加无需许可的新协议。BoLD 允许任何人成为链的验证者 (证明者),在固定的时间框架内解决欺诈挑战,无需白名单。这使 Arbitrum 更接近无需信任的操作,尽管定序器角色 (日常排序交易) 可能仍然是指定的或选举的。Offchain Labs 表示在 2024-2025 年将重点推进 Arbitrum 的去中心化。我们也看到多定序器的努力:例如,一个 Orbit 链可以使用一个由已知定序器组成的小委员会来获得一些容错能力 (一个宕机,另一个继续)。另一个角度是为 Orbit 链提供共享定序器的想法,尽管 Arbitrum 没有像 Optimism 那样强调这一点。相反,互操作性是通过 L3 在 Arbitrum L2 上结算并使用标准桥来实现的。总而言之,Arbitrum Orbit 在定序器设计上提供了灵活性 (从一个实体到多个),并且随着技术和社区治理的成熟,趋势是开放验证者/定序器集合。今天,可以说 Orbit 链从中心化开始,但有实现无需许可验证的路线图。

  • Polygon CDK: Polygon CDK 链 (在 2024 年末有时被统称为“AggLayer”) 同样可以选择其定序器/共识设置。Polygon 的 zkEVM 链 (由 Polygon Labs 运营) 最初使用单一定序器和中心化证明者,并计划逐步将两者去中心化。CDK 作为模块化框架,允许链插入一个共识模块——例如,可以启动一个带有权益证明验证者集合的 CDK 链来生产区块,从而从第一天起就实现排序的去中心化。事实上,Polygon 早期的框架 (Polygon Edge) 被用于使用 IBFT 共识的需许可企业链;CDK 链可以采取混合方法 (运行 Polygon 的 zkProver,但由一个节点委员会提议区块)。默认情况下,许多 CDK 链可能会为了简单起见使用单一运营商,然后在扩展时采用共识机制。Polygon 也在通过 AggLayer 中心探索共享定序器或聚合器的概念,该中心旨在连接所有 Polygon 链。虽然 AggLayer 主要处理跨链消息和流动性,但它未来可能会演变成一个共享排序服务 (Polygon 联合创始人曾讨论过将定序器去中心化作为 Polygon 2.0 的一部分)。总的来说,无需许可尚未实现——除非项目允许,否则无法自发成为某个 CDK 链的定序器。但像 dYdX V4 (正在构建一个带有某种形式去中心化共识的独立链) 等项目显示了对基于验证者的 L2 的需求。Polygon CDK 在技术上使得拥有多个区块生产者成为可能,但具体实现留给了链的部署者。预计随着更多企业和社区启动 CDK 链,Polygon 将推出更多关于去中心化定序器的指导或甚至基础设施。

总结定序器比较:所有框架目前在其线上部署中都依赖于相对中心化的定序器模型,以确保效率。然而,每个框架都提供了一条去中心化的路径——无论是通过共享排序网络 (OP Stack)、可插拔共识 (CDK, ZK Stack),还是无需许可的验证者 (Arbitrum 的 BoLD)。下表突出了定序器设计:

定序器设计OP StackZK Stack (zkSync)Arbitrum OrbitPolygon CDK
默认运营商模型单一定序器 (项目运营)单一定序器 (Matter Labs 或项目运营)单一定序器 (项目运营/Offchain Labs)单一定序器 (项目或 Polygon 运营)
去中心化选项是 – 可定制共识,例如多定序器或未来的共享集合是 – 可配置;可集成外部共识或优先队列是 – 可配置;可使用多验证者 (AnyTrust 委员会或自定义)是 – 可集成 PoS 验证者或 IBFT 共识 (项目选择)
无需许可参与计划中:Superchain 共享定序器 (尚未上线)。欺诈证明者在 L1 上是无需许可的 (任何人都可以挑战)。尚未实现 (尚无公开的定序器拍卖)。有效性证明不需要挑战者。社区可以运行只读节点,但除非被选中,否则不能生产区块。新兴:BoLD 使任何人都能验证欺诈证明。定序器仍由链选择 (未来可能通过 DAO)。尚未实现。定序器由链所有者指定,或验证者是需许可/质押的。Polygon 的路线图最终包括社区验证。
抗审查性L1 队列确保用户交易被包含。辅助轮治理可以否决定序器的不当行为。L1 优先队列确保交易被包含。Validium 模式需要信任 DA 委员会的数据可用性。L1 收件箱确保在定序器停滞时交易被包含。DAC 模式需要至少 1 个诚实的委员会成员提供数据。取决于链的共识 – 例如,如果使用验证者集合,需要至少 2/3 诚实。Rollup 模式的后备是 L1 以太坊包含。

如上所示,Optimism 和 Arbitrum 都包含链上后备队列,这是一个强大的抗审查特性。基于 ZK 的链依赖于定序器无法伪造状态 (得益于 ZK 证明),但如果它进行审查,治理可以任命一个新的定序器——这个领域仍在完善中。2025 年的趋势是,我们可能会看到更多去中心化的定序器池和可能的共享定序器网络上线,以补充这些 RaaS 框架。每个项目都在积极研究这一点:例如,Astria 等正在构建通用的共享排序服务,而 OP Labs、Polygon 和 Offchain 都提到了去中心化定序器角色的计划。

费用模型与经济学

费用模型决定了在这些 rollup 框架中谁支付什么,以及运营商和生态系统的经济激励如何协调。关键考虑因素包括:费用以何种代币支付?谁收取费用?必须覆盖哪些成本 (L1 发布、证明)?是否存在收入分享或回扣安排?费用参数的可定制性如何?

  • Gas 代币和费用定制: 所有比较的框架都允许定制原生 gas 代币,这意味着新链可以决定用户以何种货币支付费用。默认情况下,以太坊上的 rollup 通常选择 ETH 作为 gas 代币以方便用户 (用户无需新代币即可使用该链)。例如,Base (OP Stack) 使用 ETH 作为 gas,zkSync Era 和 Polygon zkEVM 也是如此。OP Stack 技术上支持用其他 ERC-20 替换 ETH,但在 OP Superchain 的背景下,有一种推动保持标准化的趋势 (以使互操作性更顺畅)。事实上,一些最初考虑使用自定义代币的 OP Stack 链最终选择了 ETH——例如,Worldcoin 的 OP 链即使项目有自己的代币 WLD,也使用 ETH 支付费用。另一方面,Arbitrum Orbit 最初发布时不支持自定义代币,但由于需求很快就添加了该功能。现在 Orbit 链可以使用 ARB 或任何 ERC-20 作为 gas。Ape Chain L3 选择 APE 币作为其 gas 货币,展示了这种灵活性。Polygon CDK 同样允许你定义代币;许多项目倾向于使用 MATIC 以与 Polygon 的生态系统保持一致 (MATIC 将在 Polygon 2.0 下升级为 POL 代币),但这并非强制。zkSync 的 ZK Stack 也明确支持自定义基础代币 (文档中甚至有“自定义基础代币”教程)。这对于可能希望使用稳定币或自己的代币支付费用的企业链非常有用。对于拥有自己代币经济的应用链来说,这也至关重要——它们可以通过将其作为 gas 代币来驱动对其代币的需求。总而言之,费用代币在所有框架中都是完全可配置的,尽管使用像 ETH 这样广泛持有的代币可以降低用户摩擦。

  • 费用收取与分配: 通常,定序器 (区块生产者) 在 L2/L3 上收取交易费用。这是运行定序器的主要激励。例如,Optimism 的定序器赚取用户在 Optimism 上支付的所有 gas 费,但随后必须支付向以太坊发布批次的费用。通常,定序器会收取用户支付的 L2 费用,减去 L1 成本,并将剩余部分作为利润。在一个运营良好的链上,L1 成本只是 L2 费用的一小部分,留有一定的利润空间。对于 ZK-rollup,还有一个额外的成本:生成 ZK 证明。这可能相当可观 (需要专门的硬件或云计算)。目前,一些 ZK rollup 运营商_补贴_证明成本 (花费风投资金) 以在增长阶段保持低用户费用。随着时间的推移,随着更好的算法和硬件的出现,证明成本预计会下降。从框架角度看:zkSyncPolygon 都允许定序器多收取一点费用以覆盖证明成本——如果一个链使用外部证明者服务,他们可能会与该服务进行收入分成。值得注意的是,除了 OP Superchain,没有哪个框架在协议层面强制执行收入分享。 Optimism Collective 的标准 Rollup 收入方案要求 OP 链将总费用的 2.5% 或净利润的 15% (以较高者为准) 汇入一个集体金库。这是一个在 Superchain 章程下的自愿但期望的协议,而不是智能合约强制执行,但所有主要的 OP Stack 链 (Base, opBNB, Worldcoin 等) 都已同意。这些费用 (迄今已超过 14,000 ETH) 通过 Optimism 的治理资助公共产品。相比之下,Arbitrum 不向 Orbit 链收取任何费用;Orbit 是无需许可使用的。Arbitrum DAO 未来可能会要求一些收入分享 (以资助其自己的生态系统),但截至 2025 年尚不存在。Polygon CDK 同样不征收税费;Polygon 的方法是吸引用户进入其生态系统 (从而提高 MATIC 的价值和使用量),而不是对每个链收费。Polygon 联合创始人 Sandeep Nailwal 明确表示 AggLayer “不向链寻求租金”。zkSync 也没有宣布任何费用分享——Matter Labs 可能专注于增加 zkSync Era 和 hyperchains 的使用量,这间接通过网络效应和未来可能的代币价值使他们受益。

  • L1 结算成本: 费用模型的一个重要部分是谁支付 L1 交易 (发布数据或证明) 的费用。在所有情况下,最终都是_用户_支付,但机制不同。在乐观 rollup 中,定序器定期将交易批次 (带有 calldata) 发布到 L1。这些 L1 交易的 gas 成本由定序器使用 ETH 支付。然而,定序器会将该成本计入 L2 gas 定价中。Optimism 和 Arbitrum 有gas 定价公式,用于估算一笔交易的 calldata 在 L1 上的成本,并将其包含在 L2 gas 费中 (通常称为每笔交易的“摊销 L1 成本”)。例如,一个简单的 Optimism 交易可能会产生 21,000 L2 gas 用于执行,以及额外的几百 gas 用于 L1 数据——用户的费用覆盖了这两部分。如果定价估算不准,定序器可能会在该批次上亏损,或者在使用量高时获利。定序器通常会动态调整费用以匹配 L1 条件 (当 L1 gas 昂贵时提高 L2 费用)。在 Arbitrum 中,机制类似,尽管 Arbitrum 有独立的“L1 定价”和“L2 定价”组件。在 zkSync/Polygon (ZK) 中,定序器必须向 L1 发布一个有效性证明 (验证成本为固定的 gas 量) 加上 calldata (如果是 rollup) 或状态根 (如果是 validium)。证明验证成本通常每个批次是恒定的 (在 zkSync Era 上大约是几十万 gas),所以 zkSync 的费用模型将该成本分摊到所有交易中。他们可能会在每笔交易上收取轻微的证明开销。值得注意的是,zkSync 引入了状态差异和压缩等功能,以最小化发布的 L1 数据。Polygon zkEVM 同样使用递归证明将许多交易打包成一个证明,从而摊销验证成本。如果一个链使用替代 DA (Celestia/Avail),那么他们不是向以太坊支付 calldata 费用,而是向该 DA 提供商支付。例如,Celestia 有自己的 gas 代币 (TIA) 来支付数据 blob。因此,一个链可能需要将部分费用转换为支付给 Celestia 矿工。框架正在越来越多地抽象化这些成本:例如,一个 OP Stack 链可以通过一个适配器向 Celestia DA 节点支付费用,并将该成本包含在用户费用中。

  • 用户成本 (最终性和提款): 对于乐观 rollup (OP Stack, Arbitrum Orbit 的 rollup 模式),用户面临着臭名昭著的提款挑战期——在以太坊 L1 上通常是 7 天。这对可用性是一个打击,但大多数生态系统都有缓解措施。快速桥 (流动性网络) 允许用户以少量费用立即将他们的 L2 代币换成 L1 代币,而套利者则等待 7 天。Arbitrum 对 Orbit 链做得更进一步,与团队合作,通过在协议层面集成的流动性提供商,实现最快 15 分钟的快速提款。这实际上意味着用户_不_用等待一周,除非在最坏的情况下。ZK-rollup 没有这种延迟——一旦有效性证明在 L1 上被接受,状态就是最终的。所以 zkSync 和 Polygon 用户可以获得更快的最终性 (通常是几分钟到一小时),具体取决于证明提交的频率。权衡之处在于,证明可能会在交易在 L2 上被接受和被包含在 L1 证明之间引入一点延迟 (可能是几分钟)。但总的来说,ZK rollup 在 2025 年提供 10-30 分钟的提款,这比 7 天是一个巨大的改进。用户可能会为即时最终性支付稍高的费用 (以覆盖证明者成本),但许多人认为这是值得的。费用定制也值得注意:如果项目需要,框架允许自定义费用表 (如免费交易或 gas 补贴)。例如,一个企业可以通过亏本运行定序器来补贴其链上的所有用户费用 (可能用于游戏或社交应用)。或者他们可以设置不同的 gas 模型 (有些已经尝试过对某些操作不收 gas,或替代的 gas 核算)。由于大多数框架旨在实现以太坊等效性,这种深度的改变很少见,但通过代码修改是可能的。Arbitrum 的 Stylus 可以为 WASM 合约启用不同的费用计量 (例如,不对某些操作收费以鼓励 WASM 的使用)。Polygon CDK 是开源和模块化的,这意味着如果一个项目想要实现一种新颖的费用机制 (如费用销毁或动态定价),他们可以做到。

本质上,所有 rollup 框架都力求协调经济激励:通过费用收入使运营定序器有利可图,通过利用更便宜的 DA 为用户保持合理的费用,并 (可选地) 将一些价值输送到其更广泛的生态系统中。Optimism 的模型在明确分享收入用于公共产品方面是独特的,而其他模型则依赖于增长和代币经济学 (例如,更多的链 -> 更多的 MATIC/ETH 使用,从而增加这些代币的价值)。

架构与模块化

所有这些框架都以其模块化架构为荣,这意味着堆栈的每一层 (执行、结算、共识、DA、证明) 都是可替换或可升级的。让我们简要地看一下每一个:

  • OP Stack: 构建为一系列与以太坊各层相对应的模块——执行引擎 (OP EVM,源自 geth)、共识/rollup 节点 (op-node)、结算智能合约,以及即将推出的欺诈证明者。OP Stack 的设计目标是EVM 等效性 (没有自定义的 gas 表或操作码更改) 和与以太坊工具的易于集成。2023 年的 Bedrock 升级进一步模块化了 Optimism 的堆栈,使其更容易替换组件 (例如,未来实现 ZK 证明,或使用不同的 DA)。事实上,OP Stack 不仅限于乐观欺诈证明——团队表示,当有效性证明成熟时,他们愿意集成它,从而在不改变开发者体验的情况下将 OP Stack 链转变为 ZK rollup。Superchain 概念将架构扩展到多个链:标准化链间通信、桥接,以及可能的共享排序。OP Stack 附带了一套丰富的 L1 智能合约 (用于存款、提款、欺诈证明验证等),链可以开箱即用地继承。它实际上是一个即插即用的 L2 链模板——像 Base 这样的项目通过分叉 OP Stack 仓库并将其配置为指向自己的合约来启动。

  • ZK Stack: ZK Stack 是 zkSync Era 和未来“Hyperchains”的底层框架。在架构上,它包括 zkEVM 执行环境 (一个基于 LLVM 的虚拟机,允许以最小的更改运行 Solidity 代码)、证明者系统 (用于交易的电路和证明生成)、定序器节点和 L1 合约 (验证证明和管理状态根的 zkSync 智能合约)。模块化体现在它如何将 ZK 证明电路与执行分离——理论上可以换入不同的证明方案甚至不同的虚拟机 (尽管并非易事)。ZK Stack 引入了弹性链架构,其组件包括 _ZK 路由器_和 ZK 网关。这些作为连接多个 ZK 链的互操作性层。这有点像一个“ZK rollup 互联网”的概念,其中路由器 (在以太坊上) 持有链的注册表并促进共享桥接/流动性,而网关则在链下处理链间消息。这是模块化的,因为新链只需通过部署标准合约即可接入该架构。ZK Stack 还在协议层面拥抱账户抽象 (合约即账户、原生元交易),这是一个旨在改善用户体验的架构选择。另一个模块化方面:如在 DA 部分讨论的,它可以在 rollup 或 validium 模式下运行——本质上是在配置中切换一个开关。此外,该堆栈具有用于排序的可插拔共识概念 (如前所述)。结算层可以是以太坊或潜在的其他链:zkSync 的路线图甚至提出了在 L2 上结算 hyperchains (例如,一个将证明发布到 zkSync Era L2 而不是 L1 的 L3)——事实上,他们已经推出了一个名为“ZK Portal”的原型用于 L2 上的 L3 结算。这提供了一种分层的模块化 (L3->L2->L1)。总的来说,截至 2025 年,对于非 Matter-Labs 团队来说,ZK Stack 的 turnkey 程度稍低 (因为运行 ZK 链涉及协调证明者等),但在有能力的团队手中,它非常灵活。

  • Arbitrum Orbit: Arbitrum 的架构建立在 Arbitrum Nitro 堆栈之上,其中包括 ArbOS 执行层 (Arbitrum 对 EVM 的解释,有一些细微差别)、定序器/中继器、用于替代 DA 的 AnyTrust 组件,以及欺诈证明机制 (交互式欺诈证明)。Orbit 基本上允许你使用相同的堆栈,但可以配置某些参数 (如链 ID、L2 创世状态、选择 rollup vs AnyTrust)。模块化: Arbitrum 引入了 Stylus,这是一个与 WASM 兼容的新智能合约引擎,与 EVM 并行运行。Stylus 允许用 Rust、C、C++ 编写合约,这些合约编译成 WASM 并在 Arbitrum 链上以接近原生的速度运行。这是一个可选模块——Orbit 链可以启用或不启用 Stylus。这是 Arbitrum 堆栈的一个差异化因素,使其对高性能 dApp 具有吸引力 (例如,游戏或交易应用可能会用 Rust 编写一些逻辑以提高速度)。数据可用性模块也是可插拔的,如前所述 (Arbitrum 链可以选择链上或 DAC)。另一个模块是 L1 结算:Orbit 链可以将其证明发布到以太坊 (L1) 或 Arbitrum One (L2)。如果是后者,它们实际上是锚定在 Arbitrum One 安全性中的 L3 (具有略微不同的信任假设)。许多 Orbit 链作为 L3 启动 (以继承 Arbitrum One 的较低费用并最终仍然获得以太坊的安全性)。Arbitrum 的代码库现在是完全开源的,像 Caldera、Conduit 这样的项目在其基础上构建以提供用户友好的部署——他们可能会添加自己的模块 (如监控、链管理 API)。值得注意的是,Arbitrum 的欺诈证明历史上不是无需许可的 (只有白名单验证者可以挑战),但随着 BoLD 的出现,架构的这一部分正在改变,允许任何人介入。因此,欺诈证明组件正变得更加去中心化 (这在某种意义上是一种模块化升级)。可以说 Arbitrum 不像 OP Stack 或 Polygon CDK 那样是一个“乐高套件”,因为 Offchain Labs 没有发布一键式链启动器 (尽管他们确实在 GitHub 上发布了一个 Orbit 部署 GUI)。但在功能上,它的模块化程度足以让第三方为其自动化部署。

  • Polygon CDK (AggLayer): Polygon CDK 被明确描述为一个用于 ZK 驱动链的**“模块化框架”。它利用了 Polygon 的 ZK 证明技术 (来自 Polygon zkEVM,基于 Plonky2 和递归 SNARKs)。该架构将执行层** (这是一个 EVM——具体是为 zkEVM 调整过的 Geth 分叉) 与证明者层桥接/结算合约分离开来。因为它是模块化的,开发者可以为每个部分选择不同的选项:例如,执行——目前大概总是 EVM (以使用现有工具),DA——如前所述 (以太坊或其他),定序器共识——单一 vs 多节点,证明者——可以运行 Type1 证明者 (有效性证明发布到以太坊) 或 Type2 (validium 证明) 等,以及 AggLayer 集成——是或否 (AggLayer 用于互操作性)。Polygon 甚至提供了一个漂亮的界面 (如下所示) 来可视化这些选择:

Polygon CDK 的配置界面,展示了模块化选择——例如,Rollups vs Validium (扩展解决方案)、去中心化 vs 中心化定序器、本地/以太坊/第三方 DA、不同的证明者类型,以及是否启用 AggLayer 互操作性。

在底层,Polygon CDK 使用带有递归的 zk-Proofs 来实现高吞吐量和动态验证者集合。AggLayer 是架构中一个新兴的部分,它将连接链以实现无需信任的消息传递和共享流动性。CDK 的构建方式使得 Polygon ZK 技术的未来改进 (如更快的证明,或新的 VM 功能) 可以通过升级被所有 CDK 链采用。Polygon 有一个 “Type 1 vs Type 2” zkEVM 的概念——Type 1 是完全以太坊等效的,Type 2 是几乎等效的,只有一些为了效率的微小改动。一个 CDK 链可以选择一个稍微修改过的 EVM 以获得更快的速度 (牺牲一些等效性)——这是项目拥有的一个架构选项。总的来说,CDK 非常像乐高:可以根据用例选择组件来组装一个链 (例如,一个企业可能会选择 validium + 需许可定序器 + 私有交易可见性;一个公共 DeFi 链可能会选择 rollup + 去中心化定序器 + 启用 AggLayer 以获得流动性)。这种多功能性吸引了许多项目考虑使用 CDK 来启动自己的网络。

  • 图片和图表: 这些框架通常提供其模块化架构的可视化图表。例如,zkSync 的 UI 显示了 Rollup/Validium、L2/L3、中心化/去中心化等的切换开关,突出了 ZK Stack 的灵活性

一个 zkSync “Hyperchain” 的示例配置。ZK Stack 界面允许选择链模式 (Rollup vs Validium vs Volition)、层级 (L2 或 L3)、交易排序 (去中心化、中心化或共享)、数据可用性来源 (以太坊、第三方网络或自定义)、数据可见性 (公共或私有链) 和 gas 代币 (ETH、自定义或无 gas)。这种模块化方法旨在支持从公共 DeFi 链到私有企业链的各种用例。

总而言之,所有这些堆栈都是高度模块化和可升级的,这在区块链创新步伐如此之快的今天至关重要。它们在某种意义上正在趋同:OP Stack 添加有效性证明,Polygon 添加共享排序 (OP Stack 的想法),Arbitrum 添加可互操作的 L3 (像其他框架一样),zkSync 追求 L3 (像 Orbit 和 OPStack 一样)。这种交叉授粉意味着 2025 年的模块化框架在理念上比以往更加相似——每个都想成为启动可扩展链的_一站式工具包_,而无需重新发明轮子。

开发者体验与工具

采用的一个关键因素是这些框架对开发者有多友好和易于使用。这包括文档、SDK/API、用于部署的 CLI、监控工具以及开发者的学习曲线:

  • OP Stack – 开发者体验: Optimism 的 OP Stack 受益于其EVM 等效性,因此以太坊开发者可以使用熟悉的工具 (Remix, Hardhat, Truffle, Solidity, Vyper) 而无需修改。部署到 OP 链上的智能合约的行为与在 L1 上完全相同。这大大降低了学习曲线。Optimism 提供了详尽的文档:官方 Optimism 文档有关于 OP Stack、运行 L2 节点,甚至一个**“从零开始构建 OP Stack”的教程**。还有社区编写的指南 (例如,QuickNode 关于部署 Optimism L2 rollup 的分步指南)。在工具方面,OP Labs 发布了 op-node 客户端 (用于 rollup 节点) 和 op-geth (执行引擎)。要启动一个链,开发者通常需要配置这些并部署 L1 合约 (Standard Bridge 等)。这在过去并非易事,但随着提供商服务的出现变得越来越简单。部署即服务:像 Caldera、Conduit 和 Infura/Alchemy 这样的公司提供托管的 OP Stack rollup 部署,这抽象了大部分的 DevOps 工作。对于监控,因为 OP Stack 链本质上是一个 geth 链加上一个 rollup 协调器,所以可以使用标准的以太坊监控工具 (ETH 指标仪表板、像 Etherscan/Blockscout 这样的区块浏览器)。事实上,Etherscan 支持像 Optimism 和 Base 这样的 OP Stack 链,提供了熟悉的区块浏览器界面。专门为 OP 链开发的工具包括用于桥接的 Optimism SDK (方便应用中的存款/提款) 和 Bedrock 与以太坊 JSON-RPC 的集成 (因此像 MetaMask 这样的工具只需切换网络即可工作)。OP Stack 代码采用 MIT 许可,鼓励开发者分叉和实验。许多人确实这样做了——例如,BNB Chain 的团队使用 OP Stack 构建了 opBNB,并对共识和 gas 代币进行了自己的修改 (他们在 opBNB 上使用 BNB gas)。OP Stack 对以太坊标准的坚持使得其开发者体验可以说是这些框架中最流畅的:从合约开发者的角度来看,基本上是**“更便宜的以太坊”**。需要的主要新技能是围绕运行基础设施 (对于那些启动链的人) 和理解跨链桥接的细微差别。Optimism 的社区和支持 (Discord、论坛) 非常活跃,可以帮助新的链团队。此外,Optimism 还资助了像 Magi (一个替代的 Rust rollup 客户端) 这样的生态系统工具,以使堆栈多样化并对开发者更具鲁棒性。

  • zkSync ZK Stack – 开发者体验: 在合约开发方面,zkSync 的 ZK Stack 提供了一个旨在实现高兼容性但目前尚未 100% 字节码等效的 zkEVM。它支持 Solidity 和 Vyper 合约,但存在一些细微差别 (例如,某些预编译或 gas 成本)。话虽如此,Matter Labs 构建了一个 LLVM 编译器,可以将 Solidity 编译成 zkEVM 字节码,因此大多数 Solidity 代码只需很少或无需更改即可工作。他们还原生支持账户抽象,开发者可以利用它来创建无 gas 交易、多签钱包等,比在以太坊上更容易 (无需 ERC-4337)。zkSync 的开发者文档非常全面 (docs.zksync.io),涵盖了如何部署合约、使用 Hyperchain CLI (如果有的话) 以及配置链。然而,运行一个 ZK rollup 本质上比乐观 rollup 更复杂——你需要一个证明设置。ZK Stack 提供了证明者软件 (例如,用于 zkSync 电路的 GPU 证明者),但链运营商必须拥有强大的硬件或云服务才能持续生成证明。这是一个新的 DevOps 挑战;为了缓解这个问题,一些提供证明者服务甚至证明即服务的公司正在兴起。如果开发者不想运行自己的证明者,他们可能会外包出去 (带有信任或加密经济保证)。工具方面: zkSync 默认提供一个桥接和钱包门户 (zkSync Portal),可以为新链进行分叉,为用户提供移动资产和查看账户的 UI。对于区块探索,Blockscout 已被适配到 zkSync,Matter Labs 也为 zkSync Era 构建了自己的区块浏览器,很可能可以用于新链。ZK 网关和路由器的存在意味着,如果开发者接入它,他们可以获得一些开箱即用的与其他链的互操作性——但他们需要遵循 Matter Labs 的标准。总的来说,对于智能合约开发者来说,在 zkSync 上构建并不太难 (只是 Solidity,可能有一些微小的差异,比如 gasleft() 的行为可能略有不同,因为它没有实际的以太坊 gas 成本)。但对于链运营商来说,ZK Stack 的学习曲线比 OP Stack 或 Orbit 更陡峭。在 2025 年,Matter Labs 正专注于改进这一点——例如,简化启动 Hyperchain 的过程,可能提供脚本或云镜像来启动整个堆栈。还有一个围绕 ZK Stack 的新兴开发者社区;例如,ZKSync 社区版是一个社区成员运行测试 L3 链并分享技巧的倡议。我们应该注意到,zkSync 生态系统的语言支持可能会扩展——他们已经讨论过通过 LLVM 管道允许其他语言 (例如,未来可能会有 Rust-to-zkEVM 编译器),但 Solidity 现在是主要的语言。总而言之,zkSync 的开发者体验:对于 DApp 开发者来说很棒 (几乎与以太坊类似),对于链启动者来说中等 (需要处理证明者和像 validium 这样的新概念)。

  • Arbitrum Orbit – 开发者体验: 对于 Solidity 开发者来说,Arbitrum Orbit (和 Arbitrum One) 在字节码层面是_完全 EVM 兼容的_ (Arbitrum Nitro 使用源自 geth 的执行)。因此,在 Arbitrum 链上部署和交互合约就像在以太坊上一样 (只有一些微小的差异,比如 L1 区块号访问、chainID 等略有不同,但没有大的问题)。Arbitrum 的突出之处在于 Stylus——开发者可以用像 Rust、C、C++ 这样的语言编写智能合约 (编译成 WebAssembly) 并将它们与 EVM 合约一起部署。这为更广泛的程序员群体打开了区块链开发的大门,并支持高性能用例。例如,一个算法密集的逻辑可以用 C 语言编写以提高速度。Stylus 在 Arbitrum 主网上仍处于测试阶段,但 Orbit 链可以进行实验。这对开发者体验来说是一个独特的福音,尽管使用 Stylus 的人需要学习新的工具 (例如,Rust 工具链,以及 Arbitrum 用于 WASM 与链交互的库)。Arbitrum 文档提供了使用 Stylus 甚至编写 Rust 智能合约的指导。对于启动 Orbit 链,Offchain Labs 提供了开发网络脚本和一个 Orbit 部署 UI。这个过程有些技术性:必须设置一个带有 --l3 标志的 Arbitrum 节点 (如果启动 L3) 并配置创世状态、链参数等。QuickNode 和其他公司已经发布了指南 (“如何部署你自己的 Arbitrum Orbit 链”)。此外,Orbit 与 Caldera、AltLayer 和 Conduit 的合作意味着这些第三方处理了大量的繁重工作。开发者基本上可以通过这些服务填写一个表格或运行一个向导来获得一个定制的 Arbitrum 链,而不是手动修改 Nitro 代码。在调试和监控方面,Arbitrum 链可以使用 Arbiscan (对于那些有的链) 或社区浏览器。还有用于节点指标的 Grafana/Prometheus 集成。一个复杂之处是欺诈证明系统——启动 Orbit 链的开发者应确保有验证者 (可能是他们自己或受信任的其他人) 运行链下验证者软件来监视欺诈。Offchain Labs 可能会提供运行此类验证者的默认脚本。但由于欺诈证明很少触发,更多的是要有一个安全流程。Arbitrum 的庞大开发者社区 (在 Arbitrum One 上构建的项目) 是一个资产——像教程、stackexchange 答案等资源通常也适用于 Orbit。此外,Arbitrum 以其强大的开发者教育工作而闻名 (研讨会、黑客松),这大概也延伸到了对 Orbit 感兴趣的人。

  • Polygon CDK – 开发者体验: Polygon CDK 较新 (2023 年中/末宣布),但它建立在熟悉的组件之上。对于编写合约的开发者来说,Polygon CDK 链使用一个旨在与以太坊 EVM 等效的 zkEVM (Polygon 的 Type 2 zkEVM 几乎相同,只有少数边缘情况)。因此,Solidity 和 Vyper 是首选语言,并完全支持标准的以太坊开发工具。如果你在 Polygon zkEVM 或以太坊上部署过,你也可以类似地在 CDK 链上部署。挑战更多地在于链运营方面。Polygon 的 CDK 在 GitHub 上是开源的,并附有关于如何配置链的文档。它很可能提供一个命令行工具来搭建一个新链的脚手架 (类似于使用 Cosmos SDK 的 starport 或 Substrate 的节点模板)。Polygon Labs 致力于使设置尽可能简单——引用一句话:“像部署智能合约一样轻松地启动一个高吞吐量的 ZK 驱动的以太坊 L2”。虽然这可能有些乐观,但这表明存在简化部署的工具或脚本。事实上,已经有早期的采用者,如 Immutable (用于游戏)OKX (交易所链),他们与 Polygon 合作启动了 CDK 链,这表明在 Polygon 团队的支持下,过程相当顺利。CDK 包括用于与桥接交互 (用于存款/提款) 和启用 AggLayer (如果需要) 的 SDK 和库。监控 CDK 链可以利用 Polygon 的区块浏览器 (Polygonscan) (如果他们集成的话),或者 Blockscout。Polygon 也以其强大的游戏和移动 SDK (例如,Unity SDK) 而闻名——这些可以在任何基于 Polygon 的链上使用。开发者支持是一个重要焦点:Polygon 定期举办学院、资助、黑客松,他们的开发者关系团队一对一地帮助项目。一个企业开发者体验的例子:Libre,一个用 CDK 启动的机构链,大概有自定义需求——Polygon 能够在该链上容纳像身份模块或合规性功能这样的东西。这表明 CDK 可以在框架的帮助下由开发者扩展以适应特定用例。至于学习材料,Polygon 的文档网站和博客有关于 CDK 使用的指南,并且因为 CDK 本质上是他们 zkEVM 的演变,所以熟悉 Polygon zkEVM 设计的人可以很快上手。还有一个工具方面:跨链工具——由于许多 Polygon CDK 链将共存,Polygon 提供了 AggLayer 用于消息传递,但也鼓励使用标准的跨链消息传递,如 LayerZero (事实上,Rarible 的 Orbit 链集成了 LayerZero 用于 NFT 转移,Polygon 链也可以)。因此,开发者有多种选择来轻松集成互操作性插件。总而言之,CDK 的开发者体验旨在为启动具有 ZK 安全性的以太坊级别链提供交钥匙方案,并受益于 Polygon 多年的 L2 经验。

总而言之,启动自定义链的开发者体验已得到显著改善:曾经需要一整个协议工程师团队才能完成的工作,现在可以通过引导式框架和支持来完成。Optimism 和 Arbitrum 的产品利用了熟悉性 (EVM 等效性),zkSync 和 Polygon 提供了易用性不断提高的尖端技术,并且所有这些都有不断增长的第三方工具生态系统来简化开发 (从区块浏览器到监控仪表板和 devops 脚本)。文档质量普遍很高——官方文档加上社区指南 (Medium 文章、QuickNode/Alchemy 指南) 涵盖了很多内容。从智能合约开发者到“rollup 运营商”仍然存在一个不小的学习曲线,但随着最佳实践的出现和 rollup 构建者社区的扩大,这正变得越来越容易。

生态系统支持与市场推广策略

构建技术是一回事;构建生态系统是另一回事。这些框架中的每一个都由一个组织或社区支持,通过资助、资金、营销和合作伙伴支持来投资增长。在这里,我们比较它们的生态系统支持策略——它们如何吸引开发者和项目,以及如何帮助这些项目成功:

  • OP Stack (Optimism) 生态系统: Optimism 有一个强大的生态系统策略,以其Optimism Collective和公共产品资助的精神为中心。他们开创了追溯性公共产品募资 (RPGF)——使用 OP 代币金库来奖励那些对生态系统有益的开发者和项目。通过多轮 RPGF,Optimism 已向基础设施项目、开发工具和 Optimism 上的应用分发了数百万美元的资金。任何使用 OP Stack 构建的项目 (特别是如果与 Superchain 愿景一致) 都有资格向 Collective 申请资助。此外,Optimism 的治理可以授权激励计划 (在 2022 年早些时候,他们有一个空投和治理基金,项目可以利用它向用户分发 OP 奖励)。2024 年,Optimism 建立了Superchain 收入分享模型,每个 OP 链将一小部分费用贡献给一个共享金库。这创造了一个飞轮效应:随着更多的链 (如 Base, opBNB, Worldcoin 的链等) 产生使用量,它们共同资助了更多改善 OP Stack 的公共产品,这反过来又吸引了更多的链。这是 Optimism 独有的正和方法。在市场推广方面,Optimism 积极与主要实体合作:让 Coinbase 构建 Base 是对 OP Stack 的巨大验证,Optimism Labs 在此过程中为 Coinbase 提供了技术帮助和支持。同样,他们与 Worldcoin 的团队合作,Celo 迁移到 OP Stack L2 也是在 OP Labs 的咨询下完成的。Optimism 做了大量的开发者外展工作——从举办黑客松 (通常与 ETHGlobal 活动结合) 到维护一个带有教程的开发者中心。他们还投资于工具:例如,资助团队构建替代客户端、监控工具,并为新链提供官方水龙头和区块浏览器集成。在营销方面,Optimism 创造了**“Superchain”一词,并积极推广多个链在一个可互操作的保护伞下联合的愿景,这吸引了那些希望成为更广泛叙事的一部分而不是孤立应用链的项目。还有共享流动性的吸引力:随着即将到来的 OPCraft (Superchain 互操作性),一个 OP 链上的应用可以轻松地与另一个链交互,这使得启动一个不孤立的链变得很有吸引力。本质上,OP Stack 的生态系统策略是关于社区和协作**——加入 Superchain,获得用户池 (通过简单的桥接)、资金和集体品牌。他们甚至创建了一个**“Rollup Passport”**概念,用户可以在所有 OP 链上拥有统一的身份。所有这些努力都降低了新链寻找用户和开发者的门槛。最后,Optimism 自身的用户基础和声誉 (作为顶级 L2 之一) 意味着任何 OP Stack 链都可以在某种程度上借力 (例如,Base 通过宣传自己是 Optimism 生态系统的一部分来做到这一点)。

  • zkSync (ZK Stack/Hyperchains) 生态系统: Matter Labs (zkSync 背后的团队) 获得了大额融资 (超过 2 亿美元) 来推动其生态系统。他们设立了像 zkSync 生态系统基金这样的基金,通常与风险投资公司合作,投资于在 zkSync Era 上构建的项目。对于 ZK Stack,他们特别开始向需要自己链的社区推广 Hyperchains 的概念。一种策略是针对特定垂直领域:例如,游戏。zkSync 强调了游戏工作室如何可以启动自己的 Hyperchain 以获得可定制性并仍然连接到以太坊。他们很可能为初始合作伙伴提供密切支持 (就像 Polygon 对一些企业所做的那样)。Zeeve 文章中提到一个_“瑞士银行;世界上最大的银行”对 ZK Stack 感兴趣,这表明 Matter Labs 正在争取需要隐私的企业用例 (ZK 证明可以在保持某些数据私密的同时确保正确性,这对机构来说很重要)。如果 zkSync 能够落地一个主要的企业链,那将提升他们的信誉。zkSync 的开发者支持非常强大:他们举办加速器 (例如,宣布了与 Blockchain Founders Fund 的一个项目)、黑客松 (通常是 zk 主题的),并在他们的 Discord 上有一个活跃的社区提供技术帮助。虽然 zkSync (截至 2025 年) 还没有一个用于治理或激励的上线代币,但人们猜测会有一个,项目可能会期待未来的激励计划。Matter Labs 也一直致力于桥接支持:他们与像 Across、LayerZero、Wormhole 这样的主要桥接合作,以确保资产和消息可以轻松地进出 zkSync 和任何 hyperchains。事实上,Across Protocol 集成了 zkSync 的 ZK Stack,声称支持“所有主要的 L2 框架”。这种互操作性重点意味着启动一个 hyperchain 的项目可以随时连接到以太坊主网和其他 L2,这对于吸引用户至关重要 (没有人希望被孤立)。在营销方面,zkSync 推出了**“Web3 无需妥协”的口号,并强调自己是第一个上线 ZK 主网的。他们发布路线图 (他们的 2025 年路线图博客) 以保持高涨的热情。如果我们考虑生态系统基金:除了直接的 Matter Labs 资助外,还有以太坊基金会和其他专注于 ZK 的基金**,由于 ZK 技术的普遍重要性,它们倾向于支持 zkSync 的发展。另一个策略:zkSync 是开源和中立的 (没有许可费),这对那些可能对与更中心化的生态系统结盟持谨慎态度的项目具有吸引力。ZK Stack 试图将自己定位为_去中心化者的选择——例如,强调完全去中心化和没有辅助轮,而 OP Stack 和其他框架在实践中仍然存在一些中心化。时间会证明这是否能引起共鸣,但在以太坊社区内,zkSync 肯定有支持者希望有一个完全无需信任的堆栈。最后,Matter Labs 和 BitDAO 的 Windranger 有一个名为**“ZK DAO”的联合倡议,可能会为 ZK Stack 的采用部署资本或激励。总的来说,zkSync 的生态系统努力是技术优势信息传递 (ZK 是未来)**和为项目搭建实用桥梁 (无论是比喻上的还是字面上的) 的结合。

  • Arbitrum Orbit 生态系统: Arbitrum 在其 L2 (Arbitrum One) 上拥有一个庞大的现有生态系统,在 2024 年是 L2 中 DeFi TVL 最高的。Offchain Labs 利用这一点,鼓励成功的 Arbitrum dApp 考虑使用 Orbit 链进行子应用或 L3 扩展。他们宣布到 2023 年末有超过 50 个 Orbit 链正在开发中,预计到 2024 年末可能超过 100 个——这表明了巨大的兴趣。为了培育这一点,Offchain Labs 采取了几种策略。首先,与 RaaS 提供商合作:他们意识到不是每个团队都能处理 rollup 基础设施,所以他们招募了 Caldera、Conduit 和 AltLayer 来简化它。这些合作伙伴通常有自己的资助或激励计划 (有时由 Arbitrum 共同赞助) 来吸引项目。例如,可能会有一个Arbitrum x AltLayer 的游戏链资助。其次,Offchain Labs 为关键项目提供直接的技术支持和共同开发Xai Chain 的案例很有说明性:这是一个游戏 L3,Offchain Labs 共同开发了该链,并提供持续的技术甚至营销支持。他们基本上帮助孵化了 Xai,以展示 Orbit 在游戏领域的潜力。同样,Rarible 的 RARI NFT 链与许多合作伙伴集成 (Gelato 用于无 gas,LayerZero 用于跨链 NFT 等),这大概是在 Arbitrum 的指导下完成的。Offchain Labs 有时也使用其战争基金 (Arbitrum DAO 拥有一个巨大的 ARB 代币金库) 来资助倡议。虽然 Arbitrum DAO 是独立的,但 Offchain Labs 可以在生态系统事务上与其协调。例如,如果一个 Orbit 链大量使用 ARB 代币或对 Arbitrum 有利,DAO 可以投票给予资助。然而,一个更直接的方法是:Offchain Labs 推出了Arbitrum Orbit Challenge 黑客松和奖品,以鼓励开发者尝试制作 L3。在营销方面:Arbitrum 的品牌以开发者为中心,他们推广 Orbit 的优势,如 Stylus (快速、多语言合约) 和无 7 天提款期 (通过快速桥接)。他们还强调成功的例子:例如,Treasure DAO 的 Bridgeworld 宣布了一个 Orbit 链等。另一个支持角度:流动性和 DeFi 集成。Arbitrum 正在与协议合作,以便如果你启动一个 Orbit 链,你可以轻松地从 Arbitrum One 获取流动性 (通过原生桥接或 LayerZero)。将资产和用户转移到你的新链越容易,你成功的可能性就越大。Arbitrum 有一个非常庞大、活跃的社区 (在 Reddit、Discord 等),通过将其扩展到 Orbit,新链可以向现有的 Arbitrum 用户进行营销 (例如,一个 Arbitrum 用户可能会在一个新的 Orbit 链上获得空投以尝试它)。总而言之,Arbitrum 对 Orbit 的生态系统策略是关于利用其 L2 的主导地位——如果你构建一个 L3,你实际上是最大 L2 的延伸,所以你可以分享这种网络效应。Offchain Labs 正在积极消除障碍 (技术和流动性障碍),甚至直接帮助构建一些早期的 L3,为其他人树立先例。

  • Polygon CDK (AggLayer) 生态系统: Polygon 在生态系统和业务发展方面一直是最积极的之一。他们采取了多管齐下的方法:

    • 资助和基金: Polygon 不久前设立了一个 1 亿美元的生态系统基金,并投资了数百个项目。他们还有特定的垂直基金 (例如,Polygon 游戏基金,Polygon DeFi 基金)。对于 CDK 链,Polygon 宣布了激励措施,例如覆盖部分运行链的成本或提供流动性支持。CoinLaw 的统计数据提到_“超过 190 个 dApp 正在利用 Polygon CDK 构建自己的链”_——这意味着 Polygon 已经获得了大量的项目管道 (可能许多仍在开发中)。他们很可能向这些团队提供了资助或资源共享。
    • 企业和机构入驻: Polygon 的业务发展团队已经引入了主要公司 (星巴克、Reddit、耐克、迪士尼在 Polygon POS 上发行 NFT)。现在有了 CDK,他们向企业推销启动专用链。例如,Immutable (游戏平台) 合作使用 CDK 让游戏工作室启动自己的 zk-rollup,连接到 Immutable 和 Polygon 的流动性;富兰克林邓普顿在 Polygon 上推出基金;以及沃尔玛在私有 Polygon 链上试用供应链。Polygon 为这些合作伙伴提供白手套支持:技术咨询、自定义功能开发 (隐私、合规) 和联合营销。Libre (由摩根大通/西门子推出) 的引入,它建立在 Polygon CDK 上,展示了他们如何满足金融机构的专业需求。
    • 市场推广和互操作性: Polygon 正在创建 AggLayer 作为一个连接所有 Polygon 链的互操作性和流动性中心。这意味着如果你启动一个 CDK 链,你不是孤立的——你成为“Polygon 2.0”的一部分,一个拥有统一流动性的链星座。他们承诺像一键式代币在 CDK 链和以太坊之间转移 (通过 AggLayer)。他们也不收取任何协议费用 (无租金),他们吹捧这是相对于 Optimism 的费用分享的竞争优势。Polygon 的营销强调,启动一个 CDK 链可以让你**“两全其美”**:自定义主权和性能,加上访问 Polygon/以太坊庞大的用户基础和开发者基础。他们经常引用 Polygon (POS+zkEVM) 合计处理了所有 L2 交易的 30% 以上,以向潜在的链构建者保证 Polygon 上的用户流量是巨大的。
    • 开发者支持: Polygon 可能是区块链领域举办黑客松和开发者关系活动最多的。他们有一个专门的 Polygon 大学、在线课程,并经常赞助 ETHGlobal 和其他黑客松,围绕使用 CDK、zkEVM 等设置挑战。因此,开发者可以通过构建 CDK 链或跨链 dApp 的原型来赢得奖品。他们还在开发者社区中保持强大的存在感,并提供快速支持 (Polygon Discord 有技术问题频道,核心开发者会回答)。
    • 社区和治理: Polygon 正在向 Polygon 2.0 过渡,采用新的 POL 代币和跨所有链的社区治理。这可能意味着适用于 CDK 链的社区金库或激励计划。例如,可能会有一个Polygon 生态系统挖矿计划,向部署在新 CDK 链上的项目提供流动性挖矿奖励,以引导使用。其想法是确保新链不是鬼城。
    • 成功案例: 已经有几个 CDK 链上线或宣布:OKX 的 OKB 链 (X Layer)Gnosis Pay 的链Astar 的 zkEVMPalm Network 迁移GameSwift (游戏链) 等。Polygon 积极宣传这些,并与他人分享从中获得的知识。

总的来说,Polygon 的策略是**“如果你在我们的堆栈上构建,我们将尽一切努力帮助你成功。”** 这包括财务激励、技术人力、营销曝光 (在会议上的演讲机会、像我们在 CoinTelegraph 上看到的媒体稿) 以及融入一个更大的生态系统。这在很大程度上是一种业务发展驱动的方法,除了草根开发者社区,反映了 Polygon 相对于其他公司更具企业风格。

总结生态系统支持:所有这些框架都明白,吸引开发者和项目需要的不仅仅是技术——它需要资金、手把手的指导,以及融入一个更大的叙事。Optimism 推出了一个以公共产品为中心的协作叙事,并有公平的收入分享。zkSync 推出了尖端技术的角度,并可能会宣布与未来代币相关的激励措施。Arbitrum 利用其现有的主导地位,并提供合作伙伴网络使启动变得容易,加上可能最深厚的 DeFi 流动性可供利用。Polygon 可以说在为加密原生和企业参与者铺平道路方面做得最远,有效地补贴和联合营销链。

一个说明性的比较快照:

框架值得注意的生态系统计划开发者/合作伙伴支持生态系统规模 (2025)
OP Stack (Optimism)RetroPGF 资助 (OP 代币);Superchain 费用分享用于公共产品;多轮工具和 dApp 资助。OP Labs 为新链提供直接技术支持 (例如 Base);强大的开发者社区;Superchain 品牌和互操作性以吸引用户。定期举办黑客松 (通常是 Optimism 赞助的赛道)。Optimism 主网约 160+ dApp,Base 势头强劲,5+ OP 链上线 (Base, opBNB, Worldcoin, Zora 等) 还有更多宣布 (Celo)。向 Collective 分享了 1.4 万+ ETH 的收入。通过 Optimism 和 Coinbase 用户拥有庞大的社区。
zkSync ZK StackzkSync 生态系统基金 (为开发者融资筹集了超过 2 亿美元);未来可能的空投;针对性垂直计划 (例如游戏、Hyperchains 上的 AI 代理)。Matter Labs 为早期的 Hyperchain 试点提供技术入驻;详细的文档和开源代码。与桥接协议合作以实现连接性。开发者激励主要通过黑客松和风险投资 (尚无代币激励)。zkSync Era L2 有 160+ 协议,约 1 亿美元 TVL。早期的 hyperchains 正在测试中 (尚无主要的上线 L3)。企业兴趣预示着未来的增长 (例如与一家大银行的试点)。强大的 ZK 开发者社区和日益增长的认可度。
Arbitrum OrbitArbitrum DAO 的 ARB 金库 (30 亿+美元) 用于潜在资助;Offchain Labs 与 RaaS (Caldera, AltLayer) 合作补贴链启动;Orbit 加速器计划。Offchain Labs 共同开发了旗舰 Orbit 链 (Xai 等);协助营销 (Xai 代币的 Binance Launchpad)。通过 Arbitrum 详尽的文档和直接的工程帮助进行集成 (Stylus, 自定义 gas) 提供开发者支持。快速桥接支持以改善用户体验。Arbitrum One:最大的 L2 TVL (约 50 亿美元);截至 2023 年末约 50 个 Orbit 链在开发中,到 2025 年初约 16 个已启动。值得注意的上线链:Xai, Rari Chain, Frame 等。L2 上繁重的 DeFi 生态系统可以向 L3 扩展流动性。庞大、忠诚的社区 (Arbitrum 空投有超过 25 万参与者)。
Polygon CDK (AggLayer)Polygon 生态系统基金和许多垂直基金 (NFT、游戏、企业);Polygon 2.0 金库用于激励;为新链提供覆盖某些基础设施成本的服务。预计会有 AggLayer 流动性/奖励计划。Polygon Labs 团队与合作伙伴 (例如 Immutable、企业) 密切合作以满足自定义需求;广泛的开发者关系 (Polygon 大学、黑客松、教程)。将 CDK 链与 Polygon 的 zkEVM 和 PoS 基础设施集成 (共享钱包、桥接)。通过与大品牌的合作进行营销 (耐克、Reddit 在 Polygon 上的公开案例研究) 以增加可信度。Polygon PoS:巨大的采用率 (40 亿+ 交易);Polygon zkEVM 正在增长 (100+ dApp)。CDK:到 2024 年末有 20+ 链上线 (OKX, Gnosis Pay 等) 或在管道中。约 190 个项目正在探索 CDK。企业采用显著 (金融机构、零售巨头)。由于 Polygon PoS 的历史,拥有最大的开发者生态系统之一,现在被引导到 CDK。

正如表格所示,每个生态系统都有其优势——Optimism 拥有协作精神和 Coinbase 的支持,zkSync 拥有 ZK 领导地位和创新焦点,Arbitrum 拥有经过验证的采用率和技术实力 (Stylus),Polygon 拥有企业联系和全面的支持。所有这些都在投入大量资源来发展他们的社区,因为最终一个 rollup 框架的成功是由在其上构建的链上的应用和用户来衡量的。

2025 年的部署与采用

最后,让我们看看截至 2025 年,这些框架在现实世界采用方面的地位——无论是在加密原生环境 (公共网络、DeFi/NFT/游戏项目) 还是企业或机构用途:

  • OP Stack 采用情况: OP Stack 已经为 Optimism 主网提供动力,该主网本身是顶级的以太坊 L2 之一,拥有繁荣的 DeFi 生态系统 (Uniswap, Aave 等) 和数万名日活用户。在 2023-2024 年,OP Stack 被 Coinbase 选为其 Base 网络——Base 于 2023 年 8 月推出,并迅速引入了热门应用 (Coinbase 自己的钱包集成、friend.tech 社交应用) 并达到了高活跃度 (有时甚至在交易量上超过了 Optimism)。Base 的成功为许多人验证了 OP Stack;Base 在 2024 年有 8 亿笔交易,使其成为当年交易量第二高的链。另一个主要的 OP Stack 部署是 opBNB——币安的 BNB Chain 团队使用 OP Stack 创建了一个 L2 (但结算到 BNB Chain 而不是以太坊)。opBNB 于 2023 年上线,表明 OP Stack 在使用非以太坊结算方面的灵活性。Worldcoin 的 World ID 链于 2023 年在 OP Stack 上线 (结算到以太坊),以处理其独特的生物识别身份交易。Zora Network,一个由 Zora 推出的以 NFT 为中心的链,也在 OP Stack 上启动,专为创作者经济用例量身定制。也许最雄心勃勃的是 Celo 的迁移:Celo 投票决定从一个独立的 L1 过渡到建立在 OP Stack 上的以太坊 L2——截至 2025 年,这次迁移正在进行中,有效地将一个完整的现有生态系统 (Celo 的 DeFi 和以手机为中心的应用) 带入 OP Stack 的怀抱。我们还有一些较小的项目,如 Mode (Bybit 的侧链)Mantle (BitDAO 的链)——实际上 Mantle 也选择了修改版的 OP Stack。还有更多传闻或正在开发中的项目,鉴于 Optimism 的开源方法 (任何人都可以未经许可地分叉和启动)。在企业方面,我们没有看到太多_明确的_ OP Stack 企业链 (企业似乎更倾向于 Polygon 或自定义方案)。然而,Base 是一个企业 (Coinbase) 的支持,这意义重大。Superchain 的愿景意味着即使是企业链也可能作为 OP 链加入,以从共享治理中受益——例如,如果某个金融科技公司想启动一个合规链,使用 OP Stack 并接入 Superchain 可以为其提供现成的连接性。截至 2025 年,OP Stack 链 (Optimism, Base 等) 合计处理了 L2 活动的很大一部分,Superchain 的聚合吞吐量被作为一个指标呈现 (Optimism 经常发布合并统计数据)。随着 Bedrock 升级和进一步的改进,OP Stack 链正在证明其高可靠性 (Optimism 的停机时间可以忽略不计)。采用的关键衡量标准:OP Stack 可以说是迄今为止被分叉最多的 rollup 框架,鉴于 Base、BNB、Celo 等都是备受瞩目的项目。总共有约 5-10 个 OP Stack 链是上线的主网,还有更多的测试网。如果包括开发网和即将推出的项目,这个数字还会增加。

  • zkSync Hyperchains 采用情况: zkSync Era 主网 (L2) 本身于 2023 年 3 月推出,到 2025 年,它已成为顶级的 ZK rollup 之一,拥有约 1 亿美元的 TVL 和数十个项目。像 Curve、Uniswap、Chainlink 这样的知名应用已经部署或宣布在 zkSync 上部署。现在,关于 Hyperchains (L3 或主权链),这是非常前沿的。2024 年末,Matter Labs 推出了一个计划,让团队在 zkSync 之上实验 L3。一个例子是:Rollup-as-a-Service 提供商 Decentriq 据报道正在测试一个用于数据共享的私有 Hyperchain。此外,Blockchain Capital (VC) 暗示正在实验一个 L3。有提到一个由 18+ 协议组成的生态系统正在利用 ZK Stack 进行 AI 代理和专业用例等——可能是在测试网上。截至 2025 年中,还没有主要的 Hyperchain 公开为用户服务。然而,在特定领域的兴趣很高:游戏项目对 ZK hyperchains 的快速最终性和可定制性表现出兴趣,注重隐私的链 (一个 Hyperchain 可以包含加密并使用 zkProofs 隐藏数据——这是乐观 rollup 不容易提供的)。关于“瑞士银行”的评论表明,也许瑞银或某个财团正在使用 ZK Stack 测试一个私有链,很可能是被吞吐量 (约 1 万 TPS) 和隐私所吸引。如果这进入生产,将是一个旗舰企业案例。总而言之,zkSync 的 Hyperchain 在 2025 年的采用处于早期试点阶段:开发者基础设施已经准备就绪 (文档和一些测试部署证明了这一点),但我们正在等待第一批先行者上线。这与 Optimism 在 2021 年初的情况相当——技术已经验证,但采用刚刚开始。到 2025 年底,我们可以期待几个 Hyperchains 上线,可能一个是社区驱动的 (也许是一个从流行的 zkSync 游戏中分拆出来的游戏 Hyperchain),另一个是企业驱动的。另一个因素:也有关于在 zkSync Era 上构建 Layer3 的讨论——本质上是无需许可的 L3,任何人可以在 zkSync 的 L2 之上部署一个应用链。Matter Labs 已经构建了允许这样做的合约,所以我们可能会看到用户驱动的 L3 (比如有人为他们的特定应用启动一个迷你 rollup),这也算是对 ZK Stack 的采用。

  • Arbitrum Orbit 采用情况: Arbitrum Orbit 在 2023 年中正式推出后引起了激增的兴趣。到 2023 年末,大约有 18 个 Orbit 链被公开披露,Offchain Labs 表示有超过 50 个正在进行中。截至 2025 年,一些著名的项目包括:

    • Xai Chain: 一个以游戏为中心的 L3,现已上线 (主网于 2023 年末推出)。它被游戏开发者 (如 Ex Populus 工作室) 使用,并通过 Binance Launchpad 进行了代币发行。这表明了不错的采用率 (Binance Launchpad 的参与表明了大量的用户兴趣)。Xai 使用 AnyTrust 模式 (以实现高 TPS)。
    • Rari Chain: 一个由 Rarible 推出的以 NFT 为中心的 L3。于 2024 年 1 月推出主网。它专注于 NFT 市场,具有信用卡支付 gas (通过 Stripe) 和无 gas 上架等功能。这个链很好地展示了用户体验的定制 (如前所述,Gelato 在 Rari Chain 上提供无 gas 交易等)。
    • Frame: 一个以创作者为中心的 L2 (虽然称为 L2,但很可能是一个在以太坊或 Arbitrum 上结算的 Orbit 链)。它在融资后于 2024 年初推出。
    • EduChain (由 Camelot/GMX 社区推出): Zeeve 的文章提到一个拥有大量项目的 EDU 链——可能是一个用于链上教育和 AI 的生态系统,建立在 Orbit 之上。
    • Ape Chain: 上文没有明确提到,但 Zeeve 的上下文表明存在一个“Ape 链” (可能是 Yuga Labs 或 ApeCoin DAO 链),拥有 986 万美元的 TVL 并使用 APE 作为 gas。这可能是 ApeCoin 生态系统中的一个 Orbit 链 (考虑到 Yuga 在 NFT 领域的影响力,这将意义重大)。
    • 其他游戏链: 例如,Cometh 的“Muster” L3 已宣布 (一个与 AltLayer 合作的游戏平台)。Syndr Chain,一个期权交易协议,正在作为 Orbit L3 进行测试。Meliora (DeFi 信用协议) 正在构建一个 Orbit L3。
    • 许多这些项目都处于早期阶段 (测试网或最近推出的主网),但它们共同表明 Orbit 正在被那些超出共享 L2 环境或希望拥有自己治理的专业 dApp 所采用。
    • 在企业方面:这里没有太多动静。Arbitrum 更以 DeFi/游戏采用而闻名。然而,如果企业想要一个具有灵活信任 (通过 AnyTrust) 的以太坊安全链,这项技术可能会吸引他们。可能有一些企业悄悄地使用 Arbitrum 技术构建了私有链,但没有公开。
    • 从数字上看,Arbitrum Orbit 目前最大的用户可能是 Ape Chain (如果确认),拥有约 1000 万美元的 TVL 和 17 个协议 (根据 Zeeve)。另一个是 EDU 链,拥有 135 万美元的 TVL 和 30 多个项目。
    • Arbitrum One 和 Nova 本身也是这个叙事的一部分——Orbit 链可以在 Nova (超低成本的社交/游戏链) 或 One 上结算,这意味着 Orbit 的采用也推动了这些网络的活动。Nova 已经看到了在 Reddit 积分等方面的使用。如果 Orbit 链接入 Nova 的 AnyTrust 委员会,Nova 的作用就会增长。
    • 总之,Arbitrum Orbit 已经超越了理论:数十个真实项目正在其上构建,专注于游戏、社交和自定义 DeFi。Arbitrum 展示真实用例 (如 Xai, Rari) 的方法已经奏效,我们可以期待到 2025 年底可能会有超过 50 个 Orbit 链上线,其中一些拥有重要的用户基础 (特别是如果其中一个游戏链发布了一款热门游戏)。
  • Polygon CDK 采用情况: Polygon 仅在 2023 年下半年宣布了 CDK,但它借力于 Polygon 现有网络的成功。Polygon zkEVM (主网测试版) 本身实际上就是一个由 Polygon Labs 运营的 CDK 链。它已经获得了不错的采用 (超过 5000 万美元的 TVL,主要协议已部署)。但除此之外,许多独立的链正在行动中:

    • Immutable X (一个大型 Web3 游戏平台) 宣布支持 Polygon CDK,让游戏工作室可以启动自己的 zk-rollup,连接到 Immutable 和 Polygon 的流动性。这个联盟意味着到 2025 年可能会有数十个游戏通过 Immutable 使用 CDK。
    • OKX (交易所) 在 2024 年末使用 Polygon CDK 推出了 OKB 链 (又名 X 链)。一个交易所链可以驱动大量的交易 (cex-to-dex 流量等)。OKX 选择 Polygon 大概是因为其可扩展性以及许多用户已经在使用 Polygon。
    • Canto (DeFi 链)Astar (Polkadot 侧链) 被提及正在迁移到或与 Polygon CDK 集成。Canto 从 Cosmos 迁移到 Polygon 层表明了通过 Polygon 的 ZK 与以太坊共享安全性的吸引力。
    • Gnosis Pay: 用 CDK 推出了 Gnosis Card 链——这是一个允许与 Visa 卡连接的快速稳定币支付的链。这已经上线,是一个创新的金融科技应用。
    • Palm Network: 一个最初在以太坊上的 NFT 专业链正在迁移到 Polygon CDK (Palm 由 ConsenSys 共同创立,用于与 DC Comics 等合作的 NFT)。
    • dYdX: 这很有趣——dYdX 正在构建自己的 Cosmos 链,但 Zeeve 的信息将 dYdX 列在 AggLayer CDK 链下。如果 dYdX 考虑 Polygon,那将是巨大的 (尽管根据已知信息,dYdX V4 是基于 Cosmos 的;也许他们计划跨链或未来转型)。
    • Nubank: 巴西最大的数字银行之一,出现在 Zeeve 的列表中。Nubank 早些时候在 Polygon 上推出过一个代币;一个用于其奖励或类似 CBDC 计划的 CDK 链可能正在测试中。
    • Wirex, IDEX, GameSwift, Aavegotchi, Powerloom, Manta……这些在 Zeeve 列表中的名字显示了 CDK 的跨生态系统影响力:例如,Manta (一个 Polkadot 隐私项目) 可能会使用 CDK 来实现面向以太坊的 ZK 解决方案;Aavegotchi (一个最初在 Polygon POS 上的 NFT 游戏) 可能会为游戏逻辑获得自己的链。
    • 与 Celestia 的集成 在 2024 年初可能会吸引那些想要 Polygon 技术但使用 Celestia DA 的项目——可能一些 Cosmos 项目 (因为 Celestia 是基于 Cosmos 的) 会选择 Polygon CDK 进行执行,Celestia 进行 DA。
    • 企业:Polygon 有一个专门的企业团队。除了提到的那些 (Stripe 的稳定币、富兰克林邓普顿在 Polygon 上的基金、国家政府发行邮票等),有了 CDK,他们可以向企业承诺拥有自定义规则的_自己的_链。我们可能会看到像**“Polygon 西门子链”**或政府链这样的试点项目出现,尽管这些通常从私有开始。
    • Polygon 的链无关方法 (根据 Zeeve,他们现在甚至在 CDK 中支持“OP Stack 模式”!) 并且不收取租金,意味着快速的入驻——他们声称到 2025 年第一季度有超过 190 个项目正在使用或考虑 CDK。如果其中四分之一上线,Polygon 将拥有一个庞大的链网络。他们将自己设想为不仅仅是一条链,而是一个由许多链组成的生态系统 (Polygon 2.0),如果成功,可能会是最大的此类网络。
    • 从数字上看:根据 AggLayer 网站,截至 2025 年初,有 21+ 个链正在使用 CDK 的主网或测试网。这在 2025 年应该会加速,因为更多的项目迁移或启动。
    • 我们可以期待一些备受瞩目的发布,例如一个 Reddit 链 (Reddit 在 Polygon POS 上的头像非常成功;一个专用于 Reddit 的 Polygon L2 可能会出现)。此外,如果任何中央银行数字货币 (CBDC) 或政府项目选择一个扩展解决方案,Polygon 经常出现在这些讨论中——一个 CDK 链可能是他们选择的带有 zk 证明的需许可 L2。

总而言之,2025 年的采用状况:OP Stack 和 Arbitrum Orbit 有多个拥有真实用户和 TVL 的上线链,zkSync 的 hyperchains 凭借强大的测试试点正处于风口浪尖,而 Polygon CDK 则有许多项目排队等待,并在加密和企业领域取得了一些成功的案例。这个领域发展迅速,项目在选择之前通常会交叉考虑这些框架。这也不是零和游戏——例如,一个应用可能会为不同地区或目的使用一个 OP Stack 链和一个 Polygon CDK 链。模块化区块链的未来可能涉及所有这些框架之间的互操作性。值得注意的是,像 LayerZero 和桥接聚合器这样的努力现在确保了资产可以在 Optimism、Arbitrum、Polygon、zkSync 等之间相对自由地流动,因此用户甚至可能没有意识到一个链的底层是哪个堆栈构建的。

结论

2025 年的 Rollups-as-a-Service 提供了丰富的选择。OP Stack 提供了一个经过实战检验的乐观 rollup 框架,与以太坊保持一致,并得到协作的 Superchain 社区的支持。ZK Stack (Hyperchains) 提供了尖端的零知识技术,具有模块化的有效性和数据选择,旨在实现大规模可扩展性和新的用例,如私有或 Layer-3 链。Arbitrum Orbit 将一个高度优化的乐观 rollup 架构扩展给开发者,具有数据可用性的灵活性和令人兴奋的 Stylus 新增功能,支持多语言智能合约。Polygon CDK 使项目能够启动 zkEVM 链,具有开箱即用的互操作性 (AggLayer) 和 Polygon 生态系统及企业关系的全力支持。zkSync Hyperchains (通过 ZK Stack) 承诺大规模解锁 Web3——多个 hyperchains 都由以太坊保护,每个都为其领域 (无论是游戏、DeFi 还是社交) 进行了优化,并通过 zkSync 的弹性框架实现无缝连接。

在比较数据可用性时,我们看到所有框架都拥抱模块化 DA——以太坊用于安全性,以及像 Celestia、EigenDA 或委员会这样的新解决方案用于吞吐量。定序器设计最初是中心化的,但正朝着去中心化方向发展:Optimism 和 Arbitrum 提供了 L1 后备队列,并正在启用多定序器或无需许可的验证者模型,而 Polygon 和 zkSync 允许需要它的链部署自定义共识。费用模型主要在生态系统哲学上有所不同——Optimism 的收入分享 vs 其他的自给自足经济——但都允许自定义代币,并旨在通过利用更便宜的 DA 和快速最终性 (特别是 ZK 链) 来最小化用户成本。

在生态系统支持方面,Optimism 培养了一个集体,每个链都为共同目标 (资助公共产品) 做出贡献,并从共享升级中受益。Arbitrum 利用其繁荣的社区和流动性,积极帮助项目启动 Orbit 链,并将其与 DeFi 中心集成。Polygon 全力投入资源,吸引加密项目和企业,提供可能是最亲力亲为的支持,并拥有广泛的合作伙伴关系和基金网络。Matter Labs (zkSync) 推动创新,吸引那些想要最新 ZK 技术的人,虽然其激励计划的公开结构较少 (等待代币),但它有大量资金可供部署,并对有 ZK 思维的构建者有很强的吸引力。

从开发者的角度来看,在 2025 年启动一个 rollup 比以往任何时候都更容易。无论一个人的优先事项是 EVM 等效性和易用性 (OP Stack, Arbitrum) 还是最大性能和面向未来的技术 (ZK Stack, Polygon CDK),工具和文档都已到位。甚至监控和开发工具也已发展到支持这些自定义链——例如,Alchemy 和 QuickNode 的 RaaS 平台开箱即用地支持 Optimism、Arbitrum 和 zkSync 堆栈。这意味着团队可以专注于他们的应用,并将大部分繁重的工作留给这些框架。

从公共和企业采用来看,很明显模块化 rollup 正在从实验性走向主流。我们有像 Coinbase、币安和 OKX 这样的全球品牌运行自己的链,像 Uniswap 这样的主要 DeFi 协议扩展到多个 L2,甚至可能拥有自己的 rollup,甚至政府和银行也在探索这些技术。OP Stack、ZK Stack、Orbit、CDK 等之间的竞争 (和协作) 正在推动快速创新——最终通过量身定制的 rollup 将以太坊扩展到数百万新用户,从而使以太坊受益。

每个框架都有其独特的价值主张

  • OP Stack: 轻松进入 L2,共享 Superchain 网络效应,以及通过公共产品实现“影响力 = 利润”的哲学。
  • ZK Stack: 具有 ZK 完整性的终极可扩展性,设计灵活性 (L2 或 L3,rollup 或 validium),以及通过弹性链模型防止流动性碎片化。
  • Arbitrum Orbit: 经过验证的技术 (Arbitrum One 从未发生过重大故障),高性能 (Nitro + Stylus),以及为不同需求定制信任假设的能力 (完全 rollup 安全性或更快的 AnyTrust)。
  • Polygon CDK: 由最大的生态系统之一支持的交钥匙 zk-rollup,可立即连接到 Polygon/以太坊资产,并承诺未来通过 AggLayer 实现“统一流动性”——实际上不仅是启动一个链,而是在该链上启动一个完整的经济体。
  • zkSync Hyperchains: 一个 Layer-3 可扩展性的愿景,即使是小型应用也可以拥有自己由以太坊保护的链,开销最小,在 Web3 环境中实现 Web2 级别的性能。

截至 2025 年中,我们正在看到多链模块化生态系统的实现:数十个特定应用或特定行业的链共存,许多都是用这些堆栈构建的。L2Beat 和类似网站现在不仅跟踪 L2,还跟踪 L3 和自定义链,其中许多使用 OP Stack、Orbit、CDK 或 ZK Stack。正在开发互操作性标准,以便无论一个链使用 Optimism 还是 Polygon 技术,它们都可以相互通信 (像 Hyperlane、LayerZero 这样的项目,甚至 OP 和 Polygon 在共享排序上的合作)。

总之,2025 年的 Rollups-as-a-Service 已经成熟为一个竞争激烈的领域,OP Stack、ZK Stack、Arbitrum Orbit、Polygon CDK 和 zkSync Hyperchains 各自提供了强大、模块化的区块链框架。它们在技术方法上有所不同 (乐观 vs ZK),但都旨在使开发者能够启动根据其需求量身定制的可扩展、安全的链。堆栈的选择可能取决于项目的具体优先事项——EVM 兼容性、最终性速度、可定制性、社区一致性等——如上所述。好消息是,不乏选择或支持。以太坊以 rollup 为中心的路线图正在通过这些框架实现,预示着一个新时代的到来,在这个时代,启动一个新链不再是一项艰巨的任务,而是一个类似于在 Web2 中选择云提供商或技术堆栈的战略决策。这些框架将继续发展 (例如,我们预计会有更多的融合,比如 OP Stack 拥抱 ZK 证明,Polygon 的 AggLayer 连接到非 Polygon 链等),但即使是现在,它们也共同确保了以太坊的可扩展性和生态系统增长只受想象力的限制,而不是基础设施。

资料来源:

  • Optimism OP Stack – 文档和 Mirror 文章
  • zkSync ZK Stack – zkSync 文档和 Matter Labs 文章
  • Arbitrum Orbit – Arbitrum 文档, Offchain Labs 公告
  • Polygon CDK – Polygon 技术文档, CoinTelegraph 报告
  • 综合比较 – QuickNode 指南 (2025 年 3 月), Zeeve 及其他来源的生态系统统计数据,以及上文引用的各种项目博客。

Web3 生态系统中的可信执行环境 (TEE):深度解析

· 阅读需 76 分钟

1. TEE 技术概述

定义与架构: 可信执行环境 (Trusted Execution Environment, TEE) 是处理器中的一个安全区域,用于保护加载到其中的代码和数据的机密性与完整性。实际上,TEE 就像 CPU 内部一个隔离的“飞地” (enclave)——一种黑盒,敏感计算可以在其中运行,免受系统其余部分的干扰。在 TEE 飞地内运行的代码受到保护,即使是受损的操作系统或虚拟机监控程序 (hypervisor) 也无法读取或篡改飞地的数据或代码。TEE 提供的关键安全属性包括:

  • 隔离性: 飞地的内存与其他进程甚至操作系统内核隔离。即使攻击者获得了机器的完全管理员权限,他们也无法直接检查或修改飞地内存。
  • 完整性: 硬件确保在 TEE 中执行的代码不会被外部攻击篡改。任何对飞地代码或运行时状态的篡改都将被检测到,从而防止产生被篡改的结果。
  • 机密性: 飞地内部的数据在内存中保持加密状态,仅在 CPU 内部使用时才解密,因此秘密数据不会以明文形式暴露给外部世界。
  • 远程证明: TEE 可以生成加密证明 (attestations),向远程方证明其是真实的,并且特定的可信代码正在其中运行。这意味着用户可以在向飞地提供秘密数据之前,验证其处于可信状态 (例如,在真实硬件上运行预期的代码)。

可信执行环境作为智能合约执行的安全飞地“黑盒”的概念图。加密的输入 (数据和合约代码) 在安全飞地内解密和处理,只有加密的结果才会离开飞地。这确保了敏感的合约数据对 TEE 之外的任何人都是保密的。

在底层,TEE 是通过 CPU 中基于硬件的内存加密和访问控制来实现的。例如,当创建一个 TEE 飞地时,CPU 会为其分配一个受保护的内存区域,并使用专用密钥 (烧录在硬件中或由安全协处理器管理) 来即时加密/解密数据。外部软件任何读取飞地内存的尝试都只会得到加密字节。这种独特的 CPU 级保护允许即使用户级代码也能定义私有内存区域 (飞地),即使是特权恶意软件或恶意的系统管理员也无法窥探或修改。本质上,TEE 为应用程序提供了比正常操作环境更高级别的安全性,同时比专用的安全元件或硬件安全模块更具灵活性。

关键硬件实现: 目前存在多种硬件 TEE 技术,每种技术架构不同,但目标相似,都是在系统内创建一个安全飞地:

  • 英特尔 SGX (Software Guard Extensions): 英特尔 SGX 是应用最广泛的 TEE 实现之一。它允许应用程序在进程级别创建飞地,内存加密和访问控制由 CPU 强制执行。开发者必须将其代码划分为“可信”代码 (在飞地内) 和“不可信”代码 (普通世界),并使用特殊指令 (ECALL/OCALL) 在飞地内外传输数据。SGX 为飞地提供了强大的隔离性,并通过英特尔的证明服务 (IAS) 支持远程证明。许多区块链项目——特别是 Secret Network 和 Oasis Network——都基于 SGX 飞地构建了隐私保护的智能合约功能。然而,SGX 在复杂 x86 架构上的设计导致了一些漏洞 (见 §4),并且英特尔的证明机制引入了中心化的信任依赖。

  • ARM TrustZone: TrustZone 采用了一种不同的方法,将处理器的整个执行环境分为两个世界:安全世界普通世界。敏感代码在安全世界中运行,该世界可以访问某些受保护的内存和外围设备,而普通世界则运行常规的操作系统和应用程序。世界之间的切换由 CPU 控制。TrustZone 通常用于移动和物联网设备,用于安全 UI、支付处理或数字版权管理等。在区块链背景下,TrustZone 可以通过允许私钥或敏感逻辑在手机的安全飞地中运行,从而实现移动优先的 Web3 应用。然而,TrustZone 飞地的粒度通常较大 (在操作系统或虚拟机级别),并且在当前的 Web3 项目中不像 SGX 那样被广泛采用。

  • AMD SEV (Secure Encrypted Virtualization): AMD 的 SEV 技术针对虚拟化环境。SEV 不是要求应用级别的飞地,而是可以加密整个虚拟机的内存。它使用一个嵌入式安全处理器来管理加密密钥并执行内存加密,从而使虚拟机的内存即使对宿主机 hypervisor 也是保密的。这使得 SEV 非常适合云或服务器用例:例如,一个区块链节点或链下工作者可以在一个完全加密的虚拟机内运行,保护其数据免受恶意云提供商的侵害。SEV 的设计意味着开发者划分代码的工作量更少 (你可以在一个受保护的虚拟机中运行现有应用程序甚至整个操作系统)。更新的迭代版本如 SEV-SNP 增加了篡改检测等功能,并允许虚拟机所有者在不依赖中心化服务的情况下证明其虚拟机。SEV 与在基于云的区块链基础设施中使用 TEE 高度相关。

其他新兴或小众的 TEE 实现包括英特尔 TDX (Trust Domain Extensions,用于在较新的英特尔芯片上为虚拟机提供类似飞地的保护)、开源 TEE 如 Keystone (RISC-V),以及移动设备中的安全飞地芯片 (如苹果的安全飞地,尽管通常不开放给任意代码运行)。每种 TEE 都有其自己的开发模型和信任假设,但都共享硬件隔离的安全执行这一核心理念。

2. TEE 在 Web3 中的应用

可信执行环境已成为解决 Web3 一些最棘手挑战的强大工具。通过提供一个安全、私密的计算层,TEE 为区块链应用在隐私、可扩展性、预言机安全和完整性等领域开辟了新的可能性。下面我们探讨主要的应​​用领域:

隐私保护智能合约

TEE 在 Web3 中最突出的用途之一是实现机密智能合约——这些程序在区块链上运行,但可以安全地处理私有数据。像以太坊这样的区块链默认是透明的:所有交易数据和合约状态都是公开的。这种透明度对于需要保密性的用例 (例如,私人金融交易、秘密投票、个人数据处理) 来说是个问题。TEE 通过充当连接到区块链的隐私保护计算飞地,提供了一个解决方案。

在一个由 TEE 驱动的智能合约系统中,交易输入可以被发送到验证者或工作节点上的安全飞地,在飞地内部进行处理,期间对外界保持加密,然后飞地可以将加密或哈希后的结果输出回链上。只有拥有解密密钥的授权方 (或合约逻辑本身) 才能访问明文结果。例如,Secret Network 在其共识节点中使用英特尔 SGX 来执行基于加密输入的 CosmWasm 智能合约,因此像账户余额、交易金额或合约状态等信息可以对公众隐藏,同时仍可在计算中使用。这催生了_秘密 DeFi_ 应用——例如,金额保密的私密代币交换,或出价被加密且仅在拍卖结束后才揭示的秘密拍卖。另一个例子是 Oasis Network 的 Parcel 和机密 ParaTime,它们允许数据被代币化并在保密约束下用于智能合约,从而实现了像信用评分或符合隐私法规的链上医疗数据等用例。

通过 TEE 实现的隐私保护智能合约对企业和机构采用区块链具有吸引力。组织可以利用智能合约,同时保持敏感的业务逻辑和数据机密。例如,银行可以使用支持 TEE 的合约来处理贷款申请或交易结算,而无需在链上暴露客户数据,同时仍能受益于区块链验证的透明度和完整性。这一能力直接解决了监管隐私要求 (如 GDPR 或 HIPAA),允许在医疗、金融和其他敏感行业合规地使用区块链。实际上,TEE 通过确保个人数据可以在飞地内处理,只有加密输出离开,从而促进了数据保护法的合规性,满足了监管机构对数据得到保障的要求。

除了机密性,TEE 还有助于在智能合约中强制执行_公平性_。例如,去中心化交易所可以在 TEE 内运行其撮合引擎,以防止矿工或验证者看到待处理订单并进行不公平的抢先交易 (front-running)。总而言之,TEE 为 Web3 带来了一个急需的隐私层,解锁了如机密 DeFi、私密投票/治理以及企业合约等在公共账本上以前不可行的应用。

可扩展性与链下计算

TEE 的另一个关键作用是通过将繁重的计算任务安全地卸载到链下环境,从而提高区块链的可扩展性。由于性能限制和链上执行的成本,区块链难以处理复杂或计算密集型的任务。支持 TEE 的链下计算允许这些任务在主链之外完成 (因此不消耗区块 gas 或减慢链上吞吐量),同时仍然保留对结果正确性的信任保证。实际上,TEE 可以作为 Web3 的一个_可验证的链下计算加速器_。

例如,iExec 平台使用 TEE 创建了一个去中心化的云计算市场,开发者可以在链下运行计算并获得受区块链信任的结果。dApp 可以请求一个计算任务 (比如一个复杂的人工智能模型推理或大数据分析) 由 iExec 的工作节点完成。这些工作节点在 SGX 飞地内执行任务,生成结果以及一份证明,证明正确的代码在真实的飞地中运行。然后结果返回到链上,智能合约可以在接受输出之前验证飞地的证明。这种架构允许在不牺牲信任的情况下处理繁重的工作负载,从而有效提升吞t量。iExec Orchestrator 与 Chainlink 的集成展示了这一点:Chainlink 预言机获取外部数据,然后将复杂的计算任务交给 iExec 的 TEE 工作者 (例如,聚合或评分数据),最后将安全的结果传递到链上。用例包括去中心化保险计算 (正如 iExec 所演示的),其中大量数据处理可以在链下廉价地完成,只有最终结果上链。

基于 TEE 的链下计算也支撑了一些 Layer-2 扩展解决方案。Oasis Labs 的早期原型 Ekiden (Oasis Network 的前身) 使用 SGX 飞地在链下并行执行交易,然后只将状态根提交到主链,这实际上类似于 rollup 的思想,但使用的是硬件信任。通过在 TEE 中执行合约,他们实现了高吞吐量,同时依靠飞地来维护安全性。另一个例子是 Sanders Network 即将推出的 Op-Succinct L2,它结合了 TEE 和 zkSNARKs:TEE 私密且快速地执行交易,然后生成 zk 证明来向以太坊证明这些执行的正确性。这种混合方法利用了 TEE 的速度和 ZK 的可验证性,提供了一个可扩展、私密的 L2 解决方案。

总的来说,TEE 可以运行接近原生性能的计算 (因为它们使用实际的 CPU 指令,只是增加了隔离),因此它们比纯粹的加密替代方案 (如同态加密或零知识证明) 在处理复杂逻辑时快几个数量级。通过将工作卸载到飞地,区块链可以处理更复杂的应用 (如机器学习、图像/音频处理、大规模分析),这些在链上是不切实际的。结果会附带一份证明返回,链上合约或用户可以验证其源自一个可信的飞地,从而保留数据完整性和正确性。这种模型通常被称为**“可验证的链下计算”**,TEE 是许多此类设计的基石 (例如,由英特尔、iExec 等开发的 Hyperledger Avalon 的可信计算框架,使用 TEE 在链下执行 EVM 字节码,并将正确性证明发布到链上)。

安全预言机与数据完整性

预言机将区块链与现实世界的数据连接起来,但它们引入了信任挑战:智能合约如何相信链下数据源是正确且未被篡改的?TEE 通过充当预言机节点的安全沙箱提供了一个解决方案。一个基于 TEE 的预言机节点可以从外部来源 (API、Web 服务) 获取数据,并在一个飞地内处理它,该飞地保证数据未被节点运营商或节点上的恶意软件操纵。然后,飞地可以对其提供的数据的真实性进行签名或证明。这显著提高了预言机的数据完整性和可信度。即使预言机运营商是恶意的,他们也无法在不破坏飞地证明 (区块链会检测到) 的情况下更改数据。

一个著名的例子是康奈尔大学开发的预言机系统 Town Crier,它是最早使用英特尔 SGX 飞地向以太坊合约提供经认证数据的系统之一。Town Crier 会在 SGX 飞地内检索数据 (例如,来自 HTTPS 网站),并将其连同证据 (飞地签名) 一起交付给合约,证明数据直接来自源头且未被伪造。Chainlink 认识到其价值,并于 2018 年收购了 Town Crier,将基于 TEE 的预言机集成到其去中心化网络中。如今,Chainlink 和其他预言机提供商都有 TEE 计划:例如,Chainlink 的 DECO公平排序服务 都涉及 TEE,以确保数据机密性和公平排序。正如一篇分析所指出的,“TEE 通过为数据处理提供防篡改环境,彻底改变了预言机的安全性……即使是节点运营商自己也无法在数据处理过程中操纵数据”。这对于高价值的金融数据源 (如 DeFi 的价格预言机) 尤其关键:TEE 可以防止即使是微小的篡改,这种篡改可能导致巨大的漏洞利用。

TEE 还使预言机能够处理敏感或专有数据,这些数据无法以明文形式发布在区块链上。例如,一个预言机网络可以使用飞地来聚合_私有_数据 (如机密的股票订单簿或个人健康数据),并仅将派生结果或验证过的证明提供给区块链,而不暴露原始的敏感输入。通过这种方式,TEE 拓宽了可以安全集成到智能合约中的数据范围,这对于_现实世界资产 (RWA) 代币化、信用评分、保险以及其他数据密集型链上服务_至关重要。

跨链桥方面,TEE 同样提高了完整性。跨链桥通常依赖一组验证者或多重签名来托管资产和验证链间转移,这使它们成为攻击的主要目标。通过在 TEE 内部运行跨链桥验证者逻辑,可以保护桥的私钥和验证过程免受篡改。即使验证者的操作系统被攻破,攻击者也应该无法从飞地内部提取私钥或伪造消息。TEE 可以强制桥交易完全按照协议规则处理,降低了人为操作员或恶意软件注入欺诈性转移的风险。此外,TEE 可以使原子交换和跨链交易在一个安全飞地中处理,该飞地要么完成双方操作,要么干净地中止,防止因干扰导致资金被卡住的情况。一些跨链桥项目和联盟已经探索了基于 TEE 的安全性,以减轻近年来频发的跨链桥黑客攻击。

链下数据的完整性与可验证性

在上述所有场景中,一个反复出现的主题是 TEE 有助于即使在区块链之外也能维护_数据完整性_。因为 TEE 可以证明它正在运行什么代码 (通过证明),并能确保代码在没有干扰的情况下运行,所以它提供了一种可验证计算的形式。用户和智能合约可以信任来自 TEE 的结果,就好像它们是在链上计算的一样,前提是证明检查通过。这种完整性保证是 TEE 有时被称为给链下数据和计算带来“信任锚”的原因。

然而,值得注意的是,这种信任模型将一些假设转移到了硬件上 (见 §4)。数据完整性的强度取决于 TEE 的安全性。如果飞地被攻破或证明被伪造,完整性可能会失效。尽管如此,在实践中,TEE (当保持最新时) 使某些攻击变得更加困难。例如,一个 DeFi 借贷平台可以使用 TEE 在链下根据用户的私有数据计算信用评分,智能合约只有在附有有效的飞地证明时才会接受该评分。这样,合约就知道评分是由批准的算法基于真实数据计算出来的,而不是盲目地相信用户或预言机。

TEE 还在新兴的去中心化身份 (DID) 和认证系统中发挥作用。它们可以安全地管理私钥、个人数据和认证过程,使用户的敏感信息永远不会暴露给区块链或 dApp 提供商。例如,移动设备上的 TEE 可以处理生物识别认证,并在生物识别检查通过时签署区块链交易,所有这些都无需泄露用户的生物特征。这在身份管理中同时提供了安全性和隐私性——如果 Web3 要以用户主权的方式处理护照、证书或 KYC 数据,这是一个必不可少的组成部分。

总而言之,TEE 在 Web3 中充当了一个多功能工具:它们为链上逻辑实现了机密性,通过链下安全计算实现了扩展,保护了预言机和跨链桥的完整性,并开辟了新的用途 (从私密身份到合规数据共享)。接下来,我们将看看利用这些能力的具体项目。

3. 利用 TEE 的知名 Web3 项目

一些领先的区块链项目已经围绕可信执行环境构建了其核心产品。下面我们深入探讨几个著名的例子,研究它们各自如何使用 TEE 技术以及带来了什么独特的价值:

Secret Network

Secret Network 是一个 Layer-1 区块链 (基于 Cosmos SDK 构建),它开创了使用 TEE 实现隐私保护智能合约的先河。Secret Network 中的所有验证节点都运行英特尔 SGX 飞地,这些飞地执行智能合约代码,使得合约状态和输入/输出即使对节点运营商也是加密的。这使得 Secret 成为首批隐私优先的智能合约平台之一——隐私不是一个可选的附加功能,而是网络在协议层面的默认特性。

在 Secret Network 的模型中,用户提交加密的交易,验证者将其加载到他们的 SGX 飞地中执行。飞地解密输入,运行合约 (用修改过的 CosmWasm 运行时编写),并产生加密的输出,这些输出被写入区块链。只有拥有正确查看密钥的用户 (或合约本身及其内部密钥) 才能解密和查看实际数据。这使得应用程序可以在链上使用私有数据而无需公开披露。

该网络已经展示了几个新颖的用例:

  • 秘密 DeFi: 例如,SecretSwap (一个 AMM),用户的账户余额和交易金额是私密的,从而减轻了抢先交易并保护了交易策略。流动性提供者和交易者可以在不向竞争对手广播他们的一举一动的情况下操作。
  • 秘密拍卖: 拍卖合约中,出价在拍卖结束前保持秘密,防止了基于他人出价的策略性行为。
  • 私密投票和治理: 代币持有者可以在不透露其投票选择的情况下对提案进行投票,而计票结果仍然可以被验证——确保了公平、无恐吓的治理。
  • 数据市场: 敏感数据集可以在计算中进行交易和使用,而无需向买家或节点暴露原始数据。

Secret Network 实质上在协议层面整合了 TEE,创造了一个独特的价值主张:它提供_可编程的隐私_。他们解决的挑战包括在去中心化的验证者集合中协调飞地证明,以及管理密钥分发,以便合约可以解密输入,同时对验证者保密。从各方面来看,Secret 已经证明了在公共区块链上由 TEE 驱动的机密性的可行性,确立了自己在该领域的领导者地位。

Oasis Network

Oasis Network 是另一个旨在实现可扩展性和隐私的 Layer-1,其架构广泛利用了 TEE (英特尔 SGX)。Oasis 引入了一种创新的设计,将共识与计算分离到不同的层,称为共识层ParaTime 层。共识层处理区块链的排序和最终性,而每个 ParaTime 可以是智能合约的运行时环境。值得注意的是,Oasis 的 Emerald ParaTime 是一个 EVM 兼容的环境,而 Sapphire 是一个机密的 EVM,它使用 TEE 来保持智能合约状态的私密性。

Oasis 对 TEE 的使用专注于大规模的机密计算。通过将繁重的计算隔离在可并行的 ParaTime 中 (可以在许多节点上运行),他们实现了高吞吐量;通过在这些 ParaTime 节点内使用 TEE,他们确保了计算可以包含敏感数据而无需泄露。例如,一个机构可以在 Oasis 上运行信用评分算法,将私有数据输入到一个机密的 ParaTime 中——数据对节点保持加密 (因为它在飞地中处理),只有评分结果出来。与此同时,Oasis 共识只记录了计算正确发生的证明。

技术上,Oasis 在原生 SGX 之上增加了额外的安全层。他们实现了一个_“分层的信任根”_:使用英特尔的 SGX Quoting Enclave 和一个定制的轻量级内核来验证硬件的可信度,并对飞地的系统调用进行沙箱化。这减少了攻击面 (通过过滤飞地可以进行的操作系统调用),并防范了某些已知的 SGX 攻击。Oasis 还引入了诸如持久化飞地 (以便飞地可以在重启后保持状态) 和安全日志记录等功能,以减轻回滚攻击 (即节点可能试图重放旧的飞地状态)。这些创新在他们的技术论文中有所描述,也是 Oasis 被视为 TEE 区块链计算领域_研究驱动_项目的原因之一。

从生态系统的角度来看,Oasis 将自己定位为私密 DeFi (允许银行在不泄露客户数据的情况下参与) 和数据代币化 (个人或公司可以以机密方式与 AI 模型共享数据并获得报酬,所有这些都通过区块链实现) 等领域。他们还与企业合作进行试点 (例如,与宝马在数据隐私方面合作,以及与其他公司在医学研究数据共享方面合作)。总的来说,Oasis Network 展示了将 TEE 与可扩展架构相结合如何能够同时解决隐私_和_性能问题,使其成为基于 TEE 的 Web3 解决方案中的重要参与者。

Sanders Network

Sanders Network 是 Polkadot 生态系统中的一个去中心化云计算网络,它使用 TEE 提供机密和高性能的计算服务。它是 Polkadot 上的一个平行链,这意味着它受益于 Polkadot 的安全性和互操作性,但它引入了自己新颖的运行时,用于在安全飞地中进行链下计算。

Sanders 的核心思想是维护一个由工作节点 (称为 Sanders 矿工) 组成的庞大网络,这些节点在 TEE (目前特别是英特尔 SGX) 内部执行任务并产生可验证的结果。这些任务可以从运行智能合约的片段到用户请求的通用计算。因为工作者在 SGX 中运行,Sanders 确保了计算是以机密性 (输入数据对工作者运营商隐藏) 和完整性 (结果附有证明) 完成的。这有效地创建了一个_无需信任的云_,用户可以在其中部署工作负载,知道主机无法窥探或篡改它们。

可以把 Sanders 想象成类似于亚马逊 EC2 或 AWS Lambda,但是是去中心化的:开发者可以将代码部署到 Sanders 的网络中,让它在全球许多支持 SGX 的机器上运行,并用 Sanders 的代币支付服务费用。一些突出的用例:

  • Web3 分析和 AI: 一个项目可以在 Sanders 飞地中分析用户数据或运行 AI 算法,这样原始用户数据保持加密 (保护隐私),只有聚合的洞察离开飞地。
  • 游戏后端和元宇宙: Sanders 可以在链下处理密集的游戏逻辑或虚拟世界模拟,只将承诺或哈希发送到区块链,从而在不信任任何单个服务器的情况下实现更丰富的游戏体验。
  • 链上服务: Sanders 已经构建了一个名为 Sanders Cloud 的链下计算平台。例如,它可以作为机器人、去中心化 Web 服务,甚至是将交易发布到 DEX 智能合约并附带 TEE 证明的链下订单簿的后端。

Sanders 强调它可以水平扩展机密计算:需要更多容量?增加更多 TEE 工作节点。这与单一区块链的计算容量受共识限制不同。因此,Sanders 为那些既需要无需信任的安全性又计算密集型的 dApp 开辟了可能性。重要的是,Sanders 不仅仅依赖硬件信任;它正在与 Polkadot 的共识机制集成 (例如,对不良结果进行质押和惩罚),甚至探索将 TEE 与零知识证明相结合 (如前所述,他们即将推出的 L2 使用 TEE 来加速执行,并使用 ZKP 在以太坊上简洁地验证它)。这种混合方法通过在 TEE 之上增加加密验证,有助于减轻任何单一 TEE 妥协的风险。

总而言之,Sanders Network 利用 TEE 为 Web3 提供了一个去中心化的、机密的云,允许在有安全保证的情况下进行链下计算。这释放了一类既需要大量计算又需要数据隐私的区块链应用,弥合了链上和链下世界之间的差距。

iExec

iExec 是一个建立在以太坊上的去中心化云计算资源市场。与前三个 (它们是自己的链或平行链) 不同,iExec 作为一个与以太坊智能合约协调的 Layer-2 或链下网络运作。TEE (特别是英特尔 SGX) 是 iExec 建立链下计算信任的方法的基石。

iExec 网络由不同提供商贡献的工作节点组成。这些工作者可以执行用户 (dApp 开发者、数据提供商等) 请求的任务。为了确保这些链下计算是可信的,iExec 引入了一个**“可信链下计算”框架:任务可以在 SGX 飞地内执行,结果附带一个飞地签名,证明任务是在一个安全节点上正确执行的。iExec 与英特尔合作推出了这一可信计算功能,甚至加入了机密计算联盟以推进标准。他们的共识协议,称为贡献证明 (Proof-of-Contribution, PoCo)**,在需要时聚合多个工作者的投票/证明,以就正确结果达成共识。在许多情况下,如果代码是确定性的并且对 SGX 的信任度很高,单个飞地的证明可能就足够了;为了获得更高的保证,iExec 可以在多个 TEE 中复制任务,并使用共识或多数票。

iExec 的平台支持几个有趣的用例:

  • 去中心化预言机计算:如前所述,iExec 可以与 Chainlink 合作。Chainlink 节点可能会获取原始数据,然后将其交给 iExec SGX 工作者执行计算 (例如,专有算法或 AI 推理),最后将结果返回到链上。这扩展了预言机的功能,使其不仅仅是中继数据——它们现在可以提供_计算服务_ (如调用 AI 模型或聚合多个来源),并由 TEE 确保诚实。
  • AI 和 DePIN (去中心化物理基础设施网络):iExec 正将自己定位为去中心化 AI 应用的信任层。例如,一个使用机器学习模型的 dApp 可以在飞地中运行该模型,以保护模型本身 (如果是专有的) 和输入的用户数据。在 DePIN (如分布式物联网网络) 的背景下,TEE 可用于边缘设备,以信任传感器读数和对这些读数的计算。
  • 安全数据货币化:数据提供商可以在 iExec 的市场上以加密形式提供其数据集。买家可以发送他们的算法在 TEE 内对数据运行 (这样数据提供商的原始数据永远不会被泄露,保护了他们的知识产权,算法的细节也可以被隐藏)。计算结果返回给买家,对数据提供商的相应支付通过智能合约处理。这种通常被称为_安全数据交换_的方案,得益于 TEE 的机密性。

总的来说,iExec 提供了连接以太坊智能合约和安全链下执行的粘合剂。它展示了TEE “工作者”如何可以联网形成一个去中心化云,并配有市场 (使用 iExec 的 RLC 代币进行支付) 和共识机制。通过领导企业以太坊联盟的可信计算工作组并为标准做出贡献 (如 Hyperledger Avalon),iExec 也推动了 TEE 在企业区块链场景中的更广泛采用。

其他项目与生态系统

除了上述四个项目,还有一些其他值得注意的项目:

  • Integritee – 另一个 Polkadot 平行链,类似于 Sanders (实际上,它源于能源网络基金会的 TEE 工作)。Integritee 使用 TEE 为企业创建“平行链即服务”,结合了链上和链下飞地处理。
  • Automata Network – 一个用于 Web3 隐私的中间件协议,利用 TEE 进行私密交易、匿名投票和抗 MEV 的交易处理。Automata 作为一个提供服务的链下网络运行,例如私密 RPC 中继,并被提及使用 TEE 来实现屏蔽身份和无 gas 私密交易等功能。
  • Hyperledger Sawtooth (PoET) – 在企业领域,Sawtooth 引入了一种名为“流逝时间证明”的共识算法,该算法依赖于 SGX。每个验证者运行一个飞地,等待一个随机时间并产生一个证明;等待时间最短的那个“赢得”区块,这是一个由 SGX 强制执行的公平抽奖。虽然 Sawtooth 本身不是一个 Web3 项目 (更像是企业区块链),但这是 TEE 在共识机制中的一个创造性应用。
  • 企业/联盟链 – 许多企业区块链解决方案 (例如,ConsenSys Quorum, IBM Blockchain) 都集成了 TEE,以实现机密的联盟交易,其中只有授权节点才能看到某些数据。例如,企业以太坊联盟的可信计算框架 (TCF) 蓝图使用 TEE 在链下执行私密合约,并在链上提交默克尔证明。

这些项目共同展示了 TEE 的多功能性:它们驱动着整个以隐私为中心的 L1,充当链下网络,保护像预言机和跨链桥这样的基础设施,甚至支撑着共识算法。接下来,我们将考虑在去中心化环境中使用 TEE 的更广泛的优势和挑战。

4. TEE 在去中心化环境中的优势与挑战

在区块链系统中采用可信执行环境既带来了显著的技术优势,也带来了值得注意的挑战和权衡。我们将审视这两个方面:TEE 为去中心化应用提供了什么,以及它们的使用会带来什么问题或风险。

优势与技术强项

  • 强大的安全性与隐私: 最首要的好处是机密性和完整性保证。TEE 允许敏感代码在确信不会被外部恶意软件窥探或篡改的情况下运行。这为链下计算提供了一种前所未有的信任水平。对于区块链而言,这意味着可以利用私有数据 (增强 dApp 的功能) 而不牺牲安全性。即使在不受信任的环境中 (云服务器、由第三方运行的验证节点),TEE 也能确保秘密的安全。这对于在加密系统中管理私钥、用户数据和专有算法尤其有益。例如,硬件钱包或云签名服务可能会使用 TEE 在内部签署区块链交易,这样私钥就永远不会以明文形式暴露,从而将便利性与安全性结合起来。

  • 接近原生的性能: 与纯粹的加密安全计算方法 (如 ZK 证明或同态加密) 不同,TEE 的开销相对较小。代码直接在 CPU 上运行,因此在飞地内的计算速度与在外部运行大致相同 (有一些飞地转换和内存加密的开销,在 SGX 中通常是单位数百分比的性能下降)。这意味着 TEE 可以高效地处理计算密集型任务,从而实现一些用例 (如实时数据源、复杂智能合约、机器学习),如果使用加密协议来完成,速度会慢几个数量级。飞地的低延迟使其适用于需要快速响应的场景 (例如,由 TEE 保护的高频交易机器人,或用户体验会因高延迟而受损的交互式应用和游戏)。

  • 提高可扩展性 (通过卸载): 通过允许繁重的计算在链下安全地完成,TEE 有助于缓解主链的拥堵和 gas 成本。它们支持 Layer-2 设计和侧链协议,其中区块链仅用于验证或最终结算,而大部分计算在并行的飞地中进行。这种模块化 (计算密集型逻辑在 TEE 中,共识在链上) 可以极大地提高去中心化应用的吞吐量和可扩展性。例如,一个 DEX 可以在 TEE 中进行链下撮合,只将匹配的交易发布到链上,从而增加吞吐量并减少链上 gas。

  • 更好的用户体验与功能: 有了 TEE,dApp 可以提供机密性或复杂分析等功能,从而吸引更多用户 (包括机构)。TEE 还支持无 gas 或元交易,通过在链下安全地执行它们然后提交结果,正如 Automata 使用 TEE 来减少私密交易的 gas 所指出的。此外,将敏感状态存储在链下的飞地中可以减少在链上发布的数据量,这有利于用户隐私和网络效率 (需要存储/验证的链上数据更少)。

  • 与其他技术的组合性: 有趣的是,TEE 可以补充其他技术 (这不仅仅是 TEE 固有的好处,而是在组合中体现的)。它们可以充当连接混合解决方案的粘合剂:例如,在飞地中运行一个程序,并同时生成其执行的 ZK 证明,其中飞地有助于加速证明过程的某些部分。或者在 MPC 网络中使用 TEE 来处理某些任务,减少通信轮次。我们将在 §5 中讨论比较,但许多项目强调 TEE 不必_取代_加密技术——它们可以并肩工作以增强安全性 (Sanders 的口号:“TEE 的优势在于支持他人,而不是取代他们”)。

信任假设与安全漏洞

尽管 TEE 有其优势,但它们也引入了特定的信任假设,并且并非无懈可击。理解这些挑战至关重要:

  • 硬件信任与中心化: 使用 TEE,你本质上是在信任芯片供应商及其硬件设计和供应链的安全性。例如,使用英特尔 SGX 意味着信任英特尔没有后门,其制造过程是安全的,并且 CPU 的微码正确地实现了飞地隔离。与纯粹的加密技术 (依赖于所有用户之间分布的数学假设) 相比,这是一个更中心化的信任模型。此外,SGX 的证明历来依赖于联系英特尔的证明服务,这意味着如果英特尔下线或决定撤销密钥,全球的飞地都可能受到影响。这种对单一公司基础设施的依赖引发了担忧:它可能成为单点故障,甚至是政府监管的目标 (例如,美国的出口管制理论上可以限制谁可以使用强大的 TEE)。AMD SEV 通过允许更去中心化的证明 (虚拟机所有者可以证明他们的虚拟机) 来缓解这个问题,但仍然需要信任 AMD 的芯片和固件。中心化风险常常被认为与区块链的去中心化精神有些背道而驰。像 Keystone (开源 TEE) 这样的项目和其他研究正在探索减少对专有黑盒依赖的方法,但这些尚未成为主流。

  • 侧信道及其他漏洞: TEE 并非万能灵药;它可以通过间接手段被攻击。侧信道攻击利用了这样一个事实:即使直接内存访问被阻止,飞地的操作也可能通过时序、缓存使用、功耗、电磁辐射等方式对系统产生微妙的影响。在过去几年中,学术界已经展示了许多针对英特尔 SGX 的攻击:从 Foreshadow (通过 L1 缓存时序泄漏提取飞地秘密) 到 Plundervolt (通过特权指令进行电压故障注入) 再到 SGAxe (提取证明密钥) 等等。这些复杂的攻击表明,TEE 可以在不破坏加密保护的情况下被攻破——而是通过利用微架构行为或实现中的缺陷。因此,人们承认_“研究人员已经识别出各种潜在的攻击向量,这些向量可能利用硬件漏洞或 TEE 操作中的时序差异”_。虽然这些攻击并非易事,并且通常需要本地访问或恶意硬件,但它们是真实存在的威胁。TEE 通常也无法防范物理攻击,如果对手手中有芯片 (例如,芯片开盖、探测总线等可以击败大多数商用 TEE)。

    供应商对侧信道发现的反应是发布微码补丁和飞地 SDK 更新以减轻已知的泄漏 (有时以牺牲性能为代价)。但这仍然是一场猫鼠游戏。对于 Web3 来说,这意味着如果有人在 SGX 上发现了一个新的侧信道,一个在 SGX 中运行的_“安全”_ DeFi 合约可能会被利用 (例如,泄露秘密数据或操纵执行)。因此,依赖 TEE 意味着接受一个硬件层面的潜在漏洞面,这超出了典型的区块链威胁模型。加强 TEE 以抵御这些攻击是一个活跃的研究领域 (例如,通过设计具有恒定时间操作的飞地代码,避免依赖秘密的内存访问模式,以及使用像混淆 RAM 这样的技术)。一些项目还通过次要检查来增强 TEE——例如,与 ZK 证明结合,或者让多个飞地在不同的硬件供应商上运行以减少单一芯片风险。

  • 性能与资源限制: 尽管 TEE 对于 CPU 密集型任务能以接近原生的速度运行,但它们确实存在一些开销和限制。进入飞地 (一个 ECALL) 和退出 (OCALL) 都有成本,内存页的加密/解密也是如此。这可能会影响非常频繁的飞地边界穿越的性能。飞地通常也有内存大小限制。例如,早期的 SGX 有一个有限的飞地页缓存 (Enclave Page Cache),当飞地使用更多内存时,页面必须被交换 (并加密),这会极大地降低性能。即使是较新的 TEE 通常也不允许轻易使用_所有_系统 RAM——有一个可能会有上限的安全内存区域。这意味着非常大规模的计算或数据集可能难以完全在 TEE 内部处理。在 Web3 的背景下,这可能会限制可以在飞地中运行的智能合约或机器学习模型的复杂性。开发者必须优化内存并可能拆分工作负载。

  • 证明与密钥管理的复杂性: 在去中心化环境中使用 TEE 需要强大的证明工作流:每个节点都需要向其他节点证明它正在运行一个带有预期代码的真实飞地。在链上设置这种证明验证可能很复杂。它通常涉及将供应商的公共证明密钥或证书硬编码到协议中,并将验证逻辑写入智能合约或链下客户端。这在协议设计中引入了开销,任何变更 (如英特尔将其证明签名密钥格式从 EPID 更改为 DCAP) 都可能导致维护负担。此外,在 TEE 内部管理密钥 (用于解密数据或签署结果) 增加了另一层复杂性。飞地密钥管理中的错误可能会破坏安全性 (例如,如果一个飞地因 bug 无意中暴露了解密密钥,其所有的机密性承诺都会崩溃)。最佳实践包括使用 TEE 的 sealing API 来安全地存储密钥,并在需要时轮换密钥,但这同样需要开发者仔细设计。

  • 拒绝服务与可用性: 一个可能较少被讨论的问题是:TEE 对可用性没有帮助,甚至可能引入新的 DoS 途径。例如,攻击者可能会用处理成本高昂的输入淹没一个基于 TEE 的服务,因为他们知道操作员无法轻易检查或中断飞地 (因为它被隔离了)。此外,如果发现了一个漏洞并且补丁需要固件更新,那么在这个周期内,许多飞地服务可能不得不暂停 (为了安全),直到节点被打上补丁,从而导致停机。在区块链共识中,想象一下如果发现了一个关键的 SGX bug——像 Secret 这样的网络可能不得不暂停,直到修复完成,因为对飞地的信任将被打破。在去中心化网络中协调此类响应是具有挑战性的。

可组合性与生态系统限制

  • 与其他合约的可组合性有限: 在像以太坊这样的公共智能合约平台上,合约可以轻松地调用其他合约,并且所有状态都是公开的,这使得 DeFi 货币乐高和丰富的组合成为可能。在基于 TEE 的合约模型中,私有状态不能在不破坏机密性的情况下自由共享或组合。例如,如果一个飞地中的合约 A 需要与合约 B 交互,并且两者都持有某些秘密数据,它们如何协作?它们要么必须执行一个复杂的安全多方协议 (这抵消了 TEE 的一些简单性),要么它们合并成一个飞地 (降低了模块化)。这是 Secret Network 和其他项目面临的挑战:带有隐私的跨合约调用并非易事。一些解决方案涉及让单个飞地处理多个合约的执行,以便它可以内部管理共享的秘密,但这可能使系统更加单体化。因此,私密合约的可组合性比公共合约更有限,或者需要新的设计模式。同样,将基于 TEE 的模块集成到现有的区块链 dApp 中需要仔细的接口设计——通常只有飞地的结果被发布到链上,这可能是一个 snark 或一个哈希,其他合约只能使用这些有限的信息。这无疑是一种权衡;像 Secret 这样的项目提供查看密钥并允许在需要时共享秘密,但这并不像正常的链上可组合性那样无缝。

  • 标准化与互操作性: TEE 生态系统目前缺乏跨供应商的统一标准。英特尔 SGX、AMD SEV、ARM TrustZone 都有不同的编程模型和证明方法。这种碎片化意味着为 SGX 飞地编写的 dApp 不能轻易地移植到 TrustZone 等。在区块链中,这可能将一个项目绑定到特定的硬件 (例如,Secret 和 Oasis 目前都绑定到带有 SGX 的 x86 服务器)。如果将来他们想支持 ARM 节点 (比如,移动设备上的验证者),这将需要额外的开发,并可能需要不同的证明验证逻辑。有一些努力 (如 CCC – 机密计算联盟) 旨在标准化证明和飞地 API,但我们还没有完全实现。缺乏标准也影响了开发者工具——人们可能会发现 SGX SDK 很成熟,但随后需要适应另一个具有不同 SDK 的 TEE。这种互操作性挑战可能会减缓采用速度并增加成本。

  • 开发者学习曲线: 构建在 TEE 内部运行的应用程序需要许多区块链开发者可能不具备的专业知识。通常需要底层 C/C++ 编程 (对于 SGX/TrustZone) 或对内存安全和抗侧信道编码的理解。调试飞地代码是出了名的棘手 (出于安全原因,你无法在飞地运行时轻易地看到其内部情况!)。尽管存在框架和更高级的语言 (如 Oasis 在其机密运行时中使用 Rust,甚至有在飞地中运行 WebAssembly 的工具),但开发者体验仍然比典型的智能合约开发或链下 web2 开发要粗糙。这种陡峭的学习曲线和不成熟的工具可能会吓退开发者,或者如果处理不当会导致错误。还有一个方面是需要硬件来进行测试——运行 SGX 代码需要支持 SGX 的 CPU 或模拟器 (速度较慢),因此入门门槛更高。因此,如今相对较少的开发者深入了解飞地开发,使得审计和社区支持比在,比如说,成熟的 solidity 社区中更为稀缺。

  • 运营成本: 运行基于 TEE 的基础设施可能成本更高。硬件本身可能更昂贵或稀缺 (例如,某些云提供商对支持 SGX 的虚拟机收取额外费用)。运营中也有开销:保持固件最新 (为了安全补丁)、管理证明网络等,这对于小项目来说可能很繁重。如果每个节点都必须有特定的 CPU,这可能会减少潜在的验证者池 (不是每个人都有所需的硬件),从而影响去中心化,并可能导致更多地使用云托管。

总而言之,虽然 TEE 解锁了强大的功能,但它们也带来了信任权衡 (硬件信任 vs. 数学信任)、潜在的安全弱点 (特别是侧信道) 以及在去中心化环境中的集成障碍。使用 TEE 的项目必须仔细地围绕这些问题进行工程设计——采用深度防御 (不要假设 TEE 是不可破解的),保持可信计算基础最小化,并对用户透明地说明信任假设 (以便清楚地知道,例如,除了区块链共识之外,还在信任英特尔的硬件)。

5. TEE 与其他隐私保护技术 (ZKP, FHE, MPC) 的对比

可信执行环境是实现 Web3 隐私和安全的一种方法,但还有其他主要技术,包括零知识证明 (Zero-Knowledge Proofs, ZKPs)全同态加密 (Fully Homomorphic Encryption, FHE)安全多方计算 (Secure Multi-Party Computation, MPC)。这些技术中的每一种都有不同的信任模型和性能特征。在许多情况下,它们并非相互排斥——它们可以相互补充——但比较它们在性能、信任和开发者可用性方面的权衡是很有用的:

简要定义这些替代技术:

  • ZKP: 加密证明 (如 zk-SNARKs, zk-STARKs),允许一方在不透露_为什么_陈述为真的情况下 (隐藏秘密输入),向他人证明一个陈述是真实的 (例如,“我知道一个满足此计算的秘密”)。在区块链中,ZKP 用于私密交易 (例如,Zcash, Aztec) 和可扩展性 (发布正确执行证明的 rollups)。它们确保了强大的隐私 (没有秘密数据泄露,只有证明) 和由数学保证的完整性,但生成这些证明可能在计算上非常繁重,并且电路必须仔细设计。
  • FHE: 一种加密方案,允许对加密数据进行任意计算,使得解密后的结果与对明文进行计算的结果相匹配。理论上,FHE 提供了终极隐私——数据始终保持加密——你不需要信任任何人来处理原始数据。但 FHE 对于通用计算极其缓慢 (尽管研究正在改进);由于性能原因,它目前主要仍处于实验或专门用途。
  • MPC: 多方共同计算一个关于他们私有输入的函数,而无需向彼此透露这些输入的协议。它通常涉及在各方之间秘密共享数据并执行加密操作,以便输出是正确的,但单个输入保持隐藏。MPC 可以分散信任 (没有单点能看到所有数据),并且对于某些操作可能很高效,但通常会产生通信和协调开销,并且对于大型网络来说实现可能很复杂。

以下是一个比较表,总结了关键差异:

技术信任模型性能数据隐私开发者可用性
TEE (Intel SGX 等)信任硬件制造商 (在某些情况下是中心化的证明服务器)。假设芯片是安全的;如果硬件被攻破,安全性就会被破坏。接近原生的执行速度;开销极小。适合实时计算和大型工作负载。可扩展性受限于支持 TEE 的节点的可用性。数据在飞地_内部_是明文,但对外部世界是加密的。如果硬件可靠,则具有强大的机密性,但如果飞地被攻破,秘密就会暴露 (没有额外的数学保护)。中等复杂性。通常可以重用现有代码/语言 (C, Rust),只需稍作修改即可在飞地中运行。是这些技术中入门门槛最低的——无需学习高级密码学——但需要系统编程和 TEE 特定 SDK 的知识。
ZKP (zk-SNARK/STARK)信任数学假设 (例如,加密问题的难度) 和有时是可信设置 (对于 SNARKs)。运行时不依赖任何单一方。证明生成在计算上非常繁重 (特别是对于复杂程序),通常比原生慢几个数量级。链上验证速度快 (几毫秒)。由于证明时间长,不适合大数据计算。可扩展性:适合简洁验证 (rollups),但证明者是瓶颈。非常强的隐私——可以在不透露任何私有输入的情况下证明正确性。只泄露极少信息 (如证明大小)。非常适合金融隐私等。高复杂性。需要学习专门的语言 (电路、像 Circom 或 Noir 这样的 zkDSL) 并以算术电路的方式思考。调试困难。专家较少。
FHE信任数学 (格问题)。没有可信方;只要加密不被破解,安全性就成立。对于通用用途非常慢。对加密数据的操作比对明文慢几个数量级。随着硬件改进和更好的算法有所扩展,但目前在区块链环境中用于实时用途不切实际。终极隐私——数据在整个计算过程中都保持加密。如果性能允许,这对于敏感数据 (例如,医疗、跨机构分析) 是理想的。非常专业。开发者需要密码学背景。存在一些库 (如 Microsoft SEAL, TFHE),但在 FHE 中编写任意程序是困难且迂回的。尚未成为 dApp 的常规开发目标。

| MPC | 信任分散在多方之间。假设有一个阈值的参与方是诚实的 (在一定数量内没有共谋)。不需要硬件信任。如果太多方共谋,信任就会失败。 | 通常比原生慢,因为有通信轮次,但通常比 FHE 快。性能各异:简单操作 (加、乘) 可以很高效;复杂逻辑可能会导致通信成本激增。延迟对网络速度敏感。可通过分片或部分信任假设提高可扩展性。 | 如果假设成立,则具有强隐私性——没有单个节点能看到整个输入。但某些信息可能通过输出泄露,或者如果参与方掉线 (此外,它缺乏 ZK 的简洁性——你得到结果但没有易于共享的证明,除非再次运行协议)。 | 高复杂性。需要为每个用例设计自定义协议或使用框架 (如 SPDZ 或 Partisia 的产品)。开发者必须思考加密协议,并常常需要协调多个节点的部署。集成到区块链应用中可能很复杂 (需要链下轮次)。 |

引用: 上述比较借鉴了 Sanders Network 的分析等来源,这些来源强调 TEE 在速度和易用性方面表现出色,而 ZK 和 FHE 则以牺牲大量计算为代价,专注于最大限度的去信任化,MPC 则分散了信任但引入了网络开销。

从表中可以清楚地看出一些关键的权衡:

  • 性能: TEE 在原始速度和低延迟方面具有巨大优势。MPC 通常可以处理中等复杂性,但速度有所减慢;ZK 生成证明慢但验证快 (异步使用);FHE 目前对于任意任务是迄今为止最慢的 (尽管对于简单的加法/乘法等有限操作还可以)。如果你的应用需要实时的复杂处理 (如交互式应用、高频决策),TEE 或许 MPC (在良好连接下少数参与方) 是目前唯一可行的选择。在这种场景下,ZK 和 FHE 会太慢。

  • 信任模型: ZKP 和 FHE 是纯粹无需信任的 (只信任数学)。MPC 将信任转移到对参与者诚实度的假设上 (可以通过拥有众多参与方或经济激励来加强)。TEE 将信任置于硬件和供应商身上。这是一个根本性的区别:TEE 将一个_受信任的第三方_ (芯片) 引入了通常无需信任的区块链世界。相比之下,ZK 和 FHE 常因更符合去中心化精神而受到称赞——没有特殊的实体需要信任,只有计算难度。MPC 介于两者之间:信任是去中心化的,但并未消除 (如果 M 个节点中有 N 个共谋,隐私就会被破坏)。因此,为了最大限度的去信任化 (例如,一个真正抗审查、去中心化的系统),人们可能倾向于加密解决方案。另一方面,许多实际系统很乐意假设英特尔是诚实的,或者一组主要验证者不会共谋,用一点信任换取效率的巨大提升。

  • 安全性/漏洞: 如前所述,TEE 可能因硬件 bug 或侧信道而受到破坏。如果底层数学 (比如椭圆曲线或格问题) 被破解,ZK 和 FHE 的安全性可能会被破坏,但这些都是经过充分研究的问题,攻击很可能会被注意到 (此外,参数选择可以减轻已知风险)。如果协议不是为主动攻击者设计的,MPC 的安全性可能会被其破坏 (一些 MPC 协议假设参与者是“诚实但好奇的”,如果有人公然作弊,可能会失败)。在区块链背景下,TEE 泄露可能更具灾难性 (所有基于飞地的合约在打补丁前都可能处于危险之中),而 ZK 加密技术的破解 (比如发现 ZK rollup 使用的哈希函数存在缺陷) 也可能是灾难性的,但通常被认为可能性较小,因为其假设更简单。攻击面非常不同:TEE 必须担心功耗分析之类的事情,而 ZK 则必须担心数学上的突破。

  • 数据隐私: FHE 和 ZK 提供了最强的隐私保证——数据始终受到加密保护。MPC 确保数据是秘密共享的,因此没有单一方能看到它 (尽管如果输出是公开的或协议设计不仔细,某些信息可能会泄露)。TEE 使数据对外部保密,但_在_飞地内部数据是解密的;如果有人以某种方式控制了飞地,数据的机密性就会丧失。此外,TEE 通常允许代码对数据做任何事情 (包括如果代码是恶意的,通过侧信道或网络无意中泄露数据)。因此,TEE 要求你不仅信任硬件,还要信任飞地_代码_。相比之下,ZKP 证明了代码的属性而从不泄露秘密,所以你甚至不必信任代码 (除了它确实具有被证明的属性)。如果一个飞地应用程序有一个将数据泄露到日志文件的 bug,TEE 硬件不会阻止它——而 ZK 证明系统根本不会透露除预期证明之外的任何东西。这是一个细微差别:TEE 防范外部对手,但不一定防范飞地程序本身的逻辑 bug,而 ZK 的设计强制采用更具声明性的方法 (你只证明预期的内容,不多也不少)。

  • 可组合性与集成: TEE 相当容易集成到现有系统中——你可以拿一个现有程序,放入飞地,在不怎么改变编程模型的情况下获得一些安全优势。ZK 和 FHE 通常需要将程序重写为电路或限制性形式,这可能是一项巨大的工作。例如,用 ZK 编写一个简单的 AI 模型验证涉及将其转换为一系列算术运算和约束,这与仅仅在 TEE 中运行 TensorFlow 并证明结果相去甚远。MPC 同样可能需要为每个用例定制协议。因此,从开发者生产力和成本的角度来看,TEE 很有吸引力。我们看到 TEE 在某些领域的采用速度更快,正是因为你可以利用现有的软件生态系统 (许多库只需稍作调整即可在飞地中运行)。ZK/MPC 需要稀缺的专业工程人才。然而,另一方面,TEE 产生的解决方案通常更加孤立 (你必须信任那个飞地或那组节点),而 ZK 给你一个任何人都可以在链上检查的证明,使其具有高度的可组合性 (任何合约都可以验证一个 zk 证明)。所以 ZK 的结果是_可移植的_——它们产生一个小小的证明,任何数量的其他合约或用户都可以用它来获得信任。TEE 的结果通常以与特定硬件相关的证明形式出现,并且可能不简洁;它们可能不容易共享或与链无关 (尽管你可以发布结果的签名,并让合约编程为如果它们知道飞地的公钥就接受它)。

在实践中,我们正在看到混合方法:例如,Sanders Network 认为 TEE、MPC 和 ZK 各自在不同领域大放异彩,并且可以相互补充。一个具体的例子是去中心化身份:人们可能会使用 ZK 证明来证明一个身份凭证而不泄露它,但该凭证可能是由一个基于 TEE 的流程验证和颁发的,该流程私下检查了你的文件。或者考虑扩展:ZK rollups 为大量交易提供了简洁的证明,但生成这些证明可以通过使用 TEE 来更快地进行一些计算来加速 (然后只证明一个更小的陈述)。这种组合有时可以降低对 TEE 的信任要求 (例如,使用 TEE 来提高性能,但仍然通过 ZK 证明或链上挑战游戏来验证最终的正确性,这样被攻破的 TEE 就无法在不被发现的情况下作弊)。同时,MPC 可以与 TEE 结合,让每个参与方的计算节点都是一个 TEE,增加一个额外的层次,这样即使一些参与方共谋,他们仍然无法看到彼此的数据,除非他们也破解了硬件安全。

总而言之,TEE 提供了一条非常_实用和直接的路径_来实现安全计算,只需适度的假设 (硬件信任),而 ZK 和 FHE 提供了一条更_理论化和无需信任的路径_,但计算成本高昂,MPC 则提供了一条_分布式信任的路径_,但有网络成本。在 Web3 中,正确的选择取决于应用需求:

  • 如果你需要_对私有数据进行快速、复杂的计算_ (如 AI、大数据集)——TEE (或少数参与方的 MPC) 是目前唯一可行的方式。
  • 如果你需要_最大限度的去中心化和可验证性_——ZK 证明大放异彩 (例如,私密加密货币交易偏爱 ZKP,如 Zcash,因为用户除了数学不想信任任何东西)。
  • 如果你需要_多个利益相关者之间的协作计算_——MPC 天然适合 (如多方密钥管理或拍卖)。
  • 如果你有_极其敏感的数据并且长期隐私是必须的_——如果性能提高,FHE 可能会很有吸引力,因为即使多年后有人拿到了你的密文,没有密钥他们也学不到任何东西;而飞地被攻破可能会追溯性地泄露秘密,如果日志被保留的话。

值得注意的是,区块链领域正在并行积极探索所有这些技术。我们很可能会看到组合:例如,集成 TEE 的 Layer 2 解决方案用于对交易进行排序,然后使用 ZKP 来证明 TEE 遵守了规则 (这是以太坊研究中正在探索的一个概念),或者使用 TEE 的 MPC 网络,在每个节点中使用 TEE 来降低 MPC 协议的复杂性 (因为每个节点内部是安全的,可以模拟多个参与方)。

最终,TEE vs ZK vs MPC vs FHE 并非一个零和选择——它们各自针对安全性、性能和去信任化这个三角形中的不同点。正如一篇文章所说,所有四种技术都面临着性能、成本和安全的“不可能三角”——没有单一的解决方案在所有方面都优越。最优的设计通常是为问题的不同部分使用正确的工具。

6. 在主流区块链生态系统中的采用情况

可信执行环境在不同的区块链生态系统中有着不同程度的采用,这通常受到这些社区的优先事项和集成难易度的影响。在这里,我们评估 TEE 在一些主要生态系统中的使用情况 (或探索情况):以太坊、Cosmos 和 Polkadot,并简要提及其他生态系统。

以太坊 (及通用 Layer-1)

在以太坊主网本身,TEE 并非核心协议的一部分,但它们已被用于应用程序和 Layer-2。以太坊的理念倾向于加密安全 (例如,新兴的 ZK-rollups),但 TEE 在预言机和以太坊的链下执行中找到了自己的角色:

  • 预言机服务: 如前所述,Chainlink 已经整合了基于 TEE 的解决方案,如 Town Crier。虽然并非所有 Chainlink 节点都默认使用 TEE,但对于需要额外信任的数据源,该技术是可用的。此外,API3 (另一个预言机项目) 也提到使用英特尔 SGX 来运行 API 并签署数据以确保真实性。这些服务以更强的保证向以太坊合约提供数据。

  • Layer-2 和 Rollups: 以太坊社区中关于在 rollup 排序器或验证器中使用 TEE 的研究和辩论正在进行中。例如,_ConsenSys 的“ZK-Portal”_概念和其他人已经提出使用 TEE 在 optimistic rollups 中强制执行正确的排序,或保护排序器免受审查。我们看到的一篇 Medium 文章甚至建议,到 2025 年,TEE 可能会成为某些 L2 中用于高频交易保护等功能的默认特性。像 Catalyst (一个高频交易 DEX) 和 Flashbots (用于 MEV 中继) 这样的项目已经研究了 TEE,以在交易到达区块链之前强制执行公平排序。

  • 企业以太坊: 在联盟链或许可的以太坊网络中,TEE 的采用更为广泛。企业以太坊联盟的可信计算框架 (TCF) 基本上是将 TEE 集成到以太坊客户端的蓝图。Hyperledger Avalon (前身为 EEA TCF) 允许以太坊智能合约的部分在 TEE 中链下执行,然后在链上验证。IBM、微软和 iExec 等几家公司都对此做出了贡献。虽然这在公共以太坊上尚未普及,但在私有部署中 (例如,一组银行使用 Quorum 或 Besu),可以使用 TEE,这样即使是联盟成员也看不到彼此的数据,只能看到授权的结果。这可以在企业环境中满足隐私要求。

  • 知名项目: 除了在以太坊上运行的 iExec,还有像 Enigma 这样的项目 (最初是 MIT 的一个 MPC 项目,后来转向使用 SGX;它后来成为 Cosmos 上的 Secret Network)。另一个是早期以太坊讨论中的去中心化云服务 (DCS)。最近,OAuth (Oasis Ethereum ParaTime) 允许 solidity 合约通过使用 Oasis 的 TEE 后端但在以太坊上结算来实现机密运行。此外,一些基于以太坊的 DApp,如医疗数据共享或游戏,也通过拥有一个与它们的合约交互的链下飞地组件来试验 TEE。

所以以太坊的采用有些间接——它没有改变协议来要求 TEE,但它有一套丰富的可选服务和扩展,为需要它们的人利用 TEE。重要的是,以太坊研究人员仍然保持谨慎:提出建立一个“仅 TEE 分片”或深度集成 TEE 的建议遭到了社区的怀疑,因为存在信任问题。相反,TEE 被视为以太坊的_“协处理器”_,而不是核心组件。

Cosmos 生态系统

Cosmos 生态系统通过其模块化的 SDK 和主权链,对实验持友好态度,而 Secret Network (上文已述) 是 Cosmos 中 TEE 采用的一个典型例子。Secret Network 实际上是一个带有 Tendermint 共识的 Cosmos SDK 链,经过修改以强制其验证者使用 SGX。它是继主要的 Cosmos Hub 之后最著名的 Cosmos 区域之一,表明 TEE 技术在该社区得到了显著采用。Secret 在提供跨链隐私方面的成功 (通过其 IBC 连接,Secret 可以作为其他 Cosmos 链的隐私中心) 是 TEE 在 L1 集成的一个值得注意的案例。

另一个与 Cosmos 相关的项目是 Oasis Network (虽然不是基于 Cosmos SDK 构建,但它是由一些对 Tendermint 有贡献的同一些人设计的,并共享类似的模块化架构理念)。Oasis 是独立的,但可以通过桥等方式连接到 Cosmos。Secret 和 Oasis 都表明,在 Cosmos 的世界里,通过 TEE 实现_“隐私即特性”_的想法获得了足够的吸引力,足以支持专门的网络。

Cosmos 甚至有一个为跨链应用提供_“隐私提供者”_的概念——例如,一个链上的应用可以通过 IBC 调用 Secret Network 上的合约来执行机密计算,然后取回结果。这种可组合性现在正在兴起。

此外,Anoma 项目 (不完全是 Cosmos,但在互操作性方面相关) 已经讨论过在以意图为中心的架构中使用 TEE,尽管这更多是理论上的。

简而言之,Cosmos 至少有一个主要链完全拥抱 TEE (Secret),并且其他链与之互动,这说明了在该领域健康的采用情况。Cosmos 的模块化可能会允许更多这样的链 (例如,可以想象一个专门从事基于 TEE 的预言机或身份的 Cosmos 区域)。

Polkadot 与 Substrate

Polkadot 的设计允许平行链专业化,事实上 Polkadot 托管了多个使用 TEE 的平行链

  • Sanders Network: 已经描述过;一个提供基于 TEE 的计算云的平行链。Sanders 已经作为平行链上线,通过 XCMP (跨链消息传递) 为其他链提供服务。例如,另一个 Polkadot 项目可以将一个机密任务卸载给 Sanders 的工作者,并取回一个证明或结果。Sanders 的原生代币经济学激励运行 TEE 节点,并且它拥有一个相当大的社区,这标志着强劲的采用。
  • Integritee: 另一个专注于使用 TEE 的企业和数据隐私解决方案的平行链。Integritee 允许团队部署他们自己的私有侧链 (称为 Teewasms),其中执行在飞地中完成。它针对的用例是为那些仍希望锚定 Polkadot 安全性的公司进行机密数据处理。
  • /Root 或 Crust?: 在一些与 Polkadot 相关的项目中,曾有过使用 TEE 进行去中心化存储或随机信标的想法。例如,Crust Network (去中心化存储) 最初计划了一个基于 TEE 的存储证明 (尽管后来转向了另一种设计)。而 Polkadot 的随机平行链 (Entropy) 考虑过 TEE 与 VRF 的对比。

Polkadot 对链上治理和升级的依赖意味着平行链可以迅速整合新技术。Sanders 和 Integritee 都经历了升级,以改进它们的 TEE 集成 (比如支持新的 SGX 功能或完善证明方法)。Web3 基金会也资助了早期的基于 Substrate 的 TEE 项目,如 SubstraTEE (一个早期的原型,展示了在 TEE 中进行链下合约执行并在链上验证)。

因此,Polkadot 生态系统显示出多个独立的团队在 TEE 技术上下注,这表明了一个积极的采用趋势。这正在成为 Polkadot 的一个卖点:“如果你需要机密智能合约或链下计算,我们有专门的平行链”。

其他生态系统与总体采用情况

  • 企业与联盟: 在公共加密货币之外,Hyperledger 和企业链已经稳步地在许可设置中采用 TEE。例如,巴塞尔委员会测试了一个基于 TEE 的贸易融资区块链。总的模式是:在隐私或数据机密性是必须的,并且参与者是已知的 (因此他们甚至可能集体投资于硬件安全模块) 的地方,TEE 找到了一个舒适的家。这些可能不会成为加密新闻的头条,但在供应链、银行联盟或医疗数据共享网络等领域,TEE 通常是首选 (作为信任第三方或使用重型密码学的替代方案)。

  • 以太坊之外的 Layer-1: 一些较新的 L1 已经涉足 TEE。NEAR Protocol 有一个早期的基于 TEE 的私密合约分片概念 (尚未实现)。Celo 曾考虑过 TEE 用于轻客户端证明 (他们的 Plumo 证明现在依赖于 snarks,但他们曾研究过使用 SGX 为移动设备压缩链数据)。Concordium,一个受监管的隐私 L1,使用 ZK 实现匿名性,但也探索 TEE 用于身份验证。Dfinity/Internet Computer 在其节点机器中使用安全飞地,但用于引导信任 (而不是用于合约执行,因为他们的“链密钥”密码学处理了这个问题)。

  • 比特币:虽然比特币本身不使用 TEE,但有一些侧链项目。例如,用于比特币密钥的基于 TEE 的托管解决方案 (如 Vault 系统),或者在 DLC (离散对数合约) 中的某些提案中使用可能由 TEE 保护的预言机。总的来说,比特币社区更为保守,不会轻易信任英特尔作为共识的一部分,但作为辅助技术 (带有安全元件的硬件钱包),它已经被接受。

  • 监管机构与政府: 一个有趣的采用方面是:一些 CBDC (央行数字货币) 研究已经着眼于使用 TEE 来强制执行隐私,同时允许可审计性。例如,法国银行进行了一些实验,他们使用 TEE 来处理对其他私密交易的某些合规性检查。这表明即使是监管机构也认为 TEE 是平衡隐私与监督的一种方式——你可以有一个 CBDC,其中交易对公众是加密的,但监管机构的飞地可以在某些条件下审查它们 (这是假设性的,但在政策圈中被讨论)。

  • 采用指标: 很难量化采用情况,但我们可以看一些指标,如:项目数量、投资资金、基础设施的可用性。在这方面,今天 (2025 年) 我们有:至少 3-4 个公共链 (Secret, Oasis, Sanders, Integritee, Automata 作为链下) 明确使用 TEE;主要的预言机网络正在整合它;大型科技公司支持机密计算 (微软 Azure、谷歌云提供 TEE 虚拟机——这些服务正被区块链节点作为选项使用)。机密计算联盟现在包括专注于区块链的成员 (以太坊基金会、Chainlink、Fortanix 等),显示了跨行业的合作。这些都指向一个增长但小众的采用——TEE 在 Web3 中尚未普及,但它们已经在需要隐私和安全链下计算的领域开辟了重要的利基市场。

7. 商业与监管考量

在区块链应用中使用 TEE 引发了几个利益相关者必须考虑的商业和监管问题:

隐私合规与机构采用

TEE 采用的商业驱动力之一是在利用区块链技术的同时,需要遵守数据隐私法规 (如欧洲的 GDPR,美国的 HIPAA 用于健康数据)。公共区块链默认在全球广播数据,这与要求保护敏感个人数据的法规相冲突。TEE 提供了一种在链上保持数据机密并仅以受控方式共享的方法,从而实现合规。正如所指出的,“TEE 通过隔离敏感用户数据并确保其得到安全处理,促进了数据隐私法规的合规性”。这一能力对于将企业和机构引入 Web3 至关重要,因为他们不能冒险违反法律。例如,一个处理患者信息的医疗 dApp 可以使用 TEE 来确保没有原始患者数据泄露到链上,满足 HIPAA 对加密和访问控制的要求。同样,一家欧洲银行可以使用基于 TEE 的链来代币化和交易资产,而无需暴露客户的个人详细信息,这与 GDPR 一致。

这有一个积极的监管角度:一些监管机构已经表示,像 TEE (以及相关的机密计算概念) 这样的解决方案是受欢迎的,因为它们提供了隐私的技术强制执行。我们看到世界经济论坛和其他机构强调 TEE 是将_“设计即隐私”_构建到区块链系统中的一种手段 (本质上是在协议层面嵌入合规性)。因此,从商业角度来看,TEE 可以通过消除一个关键障碍 (数据机密性) 来加速机构采用。如果公司知道有硬件保障他们的数据,他们就更愿意使用或构建在区块链上。

另一个合规方面是可审计性与监督。企业通常需要审计日志和向审计员证明他们控制数据的能力。TEE 实际上可以在这里提供帮助,通过生成证明报告和安全日志来记录访问了什么。例如,Oasis 在飞地中的“持久化日志记录”提供了一个防篡改的敏感操作日志。企业可以向监管机构展示该日志,以证明,比如说,只有授权的代码运行,并且只对客户数据进行了某些查询。这种_经证明的审计_可能比你信任系统管理员日志的传统系统更能满足监管机构的要求。

信任与责任

另一方面,引入 TEE 改变了信任结构,从而也改变了区块链解决方案中的责任模型。如果一个 DeFi 平台使用 TEE,并且由于硬件缺陷出了问题,谁来负责?例如,考虑一个场景,英特尔 SGX 的一个 bug 导致秘密交换交易细节泄露,使用户蒙受损失 (被抢先交易等)。用户信任了平台的安全声明。是平台的错,还是英特尔的错?法律上,用户可能会追究平台 (平台反过来可能需要追究英特尔)。这使事情复杂化,因为你的安全模型中有一个_第三方技术提供商_ (CPU 供应商)。使用 TEE 的企业必须在合同和风险评估中考虑这一点。一些企业可能会在使用其 TEE 于关键基础设施时寻求硬件供应商的保修或支持。

还有一个中心化担忧:如果一个区块链的安全性依赖于单一公司的硬件 (英特尔或 AMD),监管机构可能会对此持怀疑态度。例如,政府能否传唤或胁迫该公司来破坏某些飞地?这并非纯粹的理论担忧——考虑出口管制法:高级加密硬件可能受到监管。如果大部分加密基础设施依赖于 TEE,可以想象政府可能会试图插入后门 (尽管没有证据表明这一点,但_观念_很重要)。一些隐私倡导者向监管机构指出这一点:TEE 集中了信任,如果有什么的话,监管机构应该仔细审查它们。相反,希望有更多控制权的监管机构可能_更喜欢_ TEE 而不是像 ZK 这样的基于数学的隐私,因为对于 TEE,至少有一个概念,即执法部门在绝对必要时可以带着法院命令接触硬件供应商 (例如,获取主证明密钥之类的——不是说这很容易或可能,但这是 ZK 所没有的途径)。所以监管机构的接受度可能会分化:隐私监管机构 (数据保护机构) 支持 TEE 的合规性,而执法部门可能持谨慎乐观态度,因为 TEE 不像强加密那样“走向黑暗”——有一个理论上的杠杆 (硬件) 他们可能会尝试拉动。

企业需要通过可能参与认证来应对这种情况。硬件模块有像 FIPS 140 或通用标准这样的安全认证。目前,SGX 和其他一些产品有一些认证 (例如,SGX 在某些用途上有通用标准 EAL 的东西)。如果一个区块链平台能够指出其使用的飞地技术已通过高标准认证,监管机构和合作伙伴可能会更放心。例如,一个 CBDC 项目可能要求任何使用的 TEE 都经过 FIPS 认证,以便他们信任其随机数生成等。这引入了额外的流程,并可能限制于某些硬件版本。

生态系统与成本考量

从商业角度来看,使用 TEE 可能会影响区块链运营的成本结构。节点必须有特定的 CPU (可能更昂贵或能效更低)。这可能意味着更高的云托管账单或资本支出。例如,如果一个项目强制所有验证者使用带有 SGX 的英特尔至强处理器,这就是一个限制——验证者不能只是任何有树莓派或旧笔记本电脑的人;他们需要那种硬件。这可能会集中化谁可以参与 (可能有利于那些能负担得起高端服务器或使用提供 SGX 虚拟机的云提供商的人)。在极端情况下,这可能会推动网络变得更加许可化或依赖云提供商,这是一个去中心化的权衡,也是一个商业权衡 (网络可能需要补贴节点提供商)。

另一方面,一些企业可能会觉得这是可以接受的,因为他们_想要_已知的验证者或有一个白名单 (尤其是在企业联盟中)。但在公共加密网络中,这引起了辩论——例如,当要求使用 SGX 时,人们会问“这是否意味着只有大型数据中心才能运行节点?”这影响了社区情绪,从而影响了市场采用。例如,一些加密纯粹主义者可能会避开一个需要 TEE 的链,称其为“不够去信任化”或过于中心化。因此,项目必须处理公关和社区教育,明确信任假设是什么,以及为什么它仍然是安全的。我们看到 Secret Network 通过解释对英特尔更新的严格监控以及如果验证者不更新飞地就会被惩罚等方式来应对 FUD,基本上是在硬件信任之上建立了一个社会信任层。

另一个考虑因素是合作伙伴关系与支持。围绕 TEE 的商业生态系统包括大型科技公司 (英特尔、AMD、ARM、微软、谷歌等)。使用 TEE 的区块链项目通常与这些公司合作 (例如,iExec 与英特尔合作,Secret Network 与英特尔在证明改进方面合作,Oasis 与微软在机密 AI 方面合作等)。这些合作伙伴关系可以提供资金、技术援助和信誉。这是一个战略要点:与机密计算行业结盟可以打开大门 (用于融资或企业试点),但也意味着一个加密项目可能与大公司结盟,这在社区中有意识形态上的影响。

监管不确定性

随着使用 TEE 的区块链应用增长,可能会出现新的监管问题。例如:

  • 数据管辖权: 如果数据在某个国家的 TEE 内部处理,它被认为是“在该国处理”还是无处处理 (因为它被加密了)?一些隐私法要求公民的数据不得离开某些地区。TEE 可能会模糊界限——你可能在某个云区域有一个飞地,但只有加密数据进出。监管机构可能需要澄清他们如何看待这种处理。
  • 出口管制: 先进的加密技术可能受到出口限制。TEE 涉及内存加密——历史上这不成问题 (因为带有这些功能的 CPU 在全球销售),但如果这种情况发生变化,可能会影响供应。此外,一些国家可能出于国家安全原因禁止或不鼓励使用外国 TEE (例如,中国有自己的等同于 SGX 的技术,因为他们不信任英特尔的,并且可能不允许 SGX 用于敏感用途)。
  • 法律强制: 一个场景:政府能否传唤节点运营商从飞地中提取数据?通常他们不能,因为即使是运营商也看不到内部。但如果他们传唤英特尔要求提供特定的证明密钥呢?英特尔的设计是,即使是他们也无法解密飞地内存 (他们向 CPU 发行密钥,由 CPU 完成工作)。但如果存在后门或者英特尔可以签署一个特殊的固件来转储内存,这是一个令人担忧的假设。法律上,像英特尔这样的公司如果被要求破坏其安全性,可能会拒绝 (他们很可能会这样做,以免破坏对其产品的信任)。但仅仅是这种可能性就可能出现在关于合法访问的监管讨论中。使用 TEE 的企业应随时关注任何此类发展,尽管目前没有公开的机制让英特尔/AMD 提取飞地数据——这正是 TEE 的意义所在。

市场差异化与新服务

从商业的积极方面来看,TEE 催生了可以货币化的新产品和服务。例如:

  • 机密数据市场: 正如 iExec 和 Ocean Protocol 等所指出的,公司持有有价值的数据,如果他们能保证数据不会泄露,就可以将其货币化。TEE 实现了“数据租赁”,即数据永远不离开飞地,只有洞察离开。这可以解锁新的收入来源和商业模式。我们看到 Web3 中的初创公司向企业提供机密计算服务,本质上是在销售“从区块链或跨公司数据中获取洞察而不暴露任何东西”的理念。
  • 企业 DeFi: 金融机构常常将缺乏隐私作为不参与 DeFi 或公共区块链的原因。如果 TEE 能保证其头寸或交易的隐私,他们可能会参与,为生态系统带来更多流动性和业务。迎合这一需求的项目 (如 Secret 的秘密贷款,或 Oasis 的带有合规控制的私密 AMM) 正在定位以吸引机构用户。如果成功,这可能是一个巨大的市场 (想象一下机构 AMM 池,其中身份和金额被屏蔽,但飞地确保内部完成了像 AML 这样的合规检查——这是一个可以在监管舒适度下为 DeFi 带来大笔资金的产品)。
  • 保险与风险管理: 随着 TEE 降低某些风险 (如预言机操纵),我们可能会看到智能合约平台的保险费降低或出现新的保险产品。相反,TEE 引入了新的风险 (如飞地的技术故障),这本身可能成为可保事件。加密保险领域正在萌芽;他们如何对待依赖 TEE 的系统将很有趣。一个平台可能会宣传它使用 TEE 来降低数据泄露的风险,从而使其更容易/更便宜地投保,从而获得竞争优势。

总之,支持 TEE 的 Web3 的商业和监管格局是关于平衡信任与创新。TEE 提供了一条遵守法律和解锁企业用例的途径 (这对主流采用是一个巨大的加分项),但它们也带来了对硬件提供商的依赖和必须透明管理的复杂性。利益相关者需要与科技巨头 (寻求支持) 和监管机构 (寻求清晰度和保证) 进行接触,以充分实现 TEE 在区块链中的潜力。如果做得好,TEE 可能成为一个基石,允许区块链与处理敏感数据的行业深度整合,从而将 Web3 的触角延伸到以前因隐私问题而禁入的领域。

结论

可信执行环境已成为 Web3 工具箱中的一个强大组件,催生了一类需要机密性和安全链下计算的新型去中心化应用。我们已经看到,像英特尔 SGX、ARM TrustZone 和 AMD SEV 这样的 TEE 为计算提供了一个硬件隔离的“保险箱”,这一特性已被用于隐私保护智能合约、可验证预言机、可扩展的链下处理等。跨生态系统的项目——从 Secret Network 在 Cosmos 上的私密合约,到 Oasis 的机密 ParaTimes,再到 Sanders 在 Polkadot 上的 TEE 云,以及 iExec 在以太坊上的链下市场——都展示了 TEE 被集成到区块链平台中的多样化方式。

技术上,TEE 提供了速度和强大数据机密性的引人注目的优势,但它们也带来了自身的挑战:需要信任硬件供应商、潜在的侧信道漏洞,以及在集成和可组合性方面的障碍。我们将 TEE 与加密替代方案 (ZKP、FHE、MPC) 进行了比较,发现每种技术都有其利基市场:TEE 在性能和易用性方面表现出色,而 ZK 和 FHE 以高昂的成本提供最大限度的去信任化,MPC 则在参与者之间分散信任。事实上,许多前沿解决方案都是混合的,将 TEE 与加密方法结合使用,以取长补短。

基于 TEE 的解决方案的采用正在稳步增长。以太坊 dApp 利用 TEE 实现预言机安全和私密计算,Cosmos 和 Polkadot 通过专门的链提供原生支持,企业区块链的努力正在拥抱 TEE 以实现合规。在商业上,TEE 可以成为连接去中心化技术与监管的桥梁——允许敏感数据在硬件安全的保障下在链上处理,这为机构使用和新服务打开了大门。同时,使用 TEE 意味着要接受新的信任范式,并确保区块链的去中心化精神不被不透明的芯片所破坏。

总而言之,可信执行环境在 Web3 的演进中扮演着至关重要的角色:它们解决了隐私和可扩展性这两个最紧迫的问题,虽然它们不是万能药 (也并非没有争议),但它们显著扩展了去中心化应用的功能。随着技术的成熟——硬件安全性的提高和证明标准的完善——以及更多项目展示其价值,我们可以期待 TEE (以及互补的加密技术) 成为旨在以安全可信的方式释放 Web3 全部潜力的区块链架构的标准组件。未来很可能出现分层解决方案,其中硬件和密码学携手合作,提供既高性能又可证明安全的系统,满足用户、开发者和监管机构的需求。

参考资料: 本报告中的信息收集自各种最新来源,包括官方项目文档和博客、行业分析以及学术研究,并在全文中引用。值得注意的参考文献包括 Metaschool 2025 年关于 Web3 中 TEE 的指南、Sanders Network 的比较、ChainCatcher 等对 FHE/TEE/ZKP/MPC 的技术见解,以及 Binance Research 等关于监管合规的声明。这些来源提供了更多细节,建议希望更深入探讨特定方面的读者参考。