隐私技术栈之争:ZK vs FHE vs TEE vs MPC —— 哪种技术将赢得区块链最重要的竞赛?
2024 年,全球机密计算市场价值为 133 亿美元。预计到 2032 年,这一数字将达到 3,500 亿美元 —— 复合年增长率为 46.4%。目前已有超过 10 亿美元专门投入到去中心化机密计算(DeCC)项目中,20 多个区块链网络组成了 DeCC 联盟,以推广隐私保护技术。
然而,对于决定使用哪种隐私技术的开发者来说,现状令人困惑。零知识证明(ZK)、全同态加密(FHE)、可信执行环境(TEE)和多方计算(MPC)各自解决的是根本不同的问题。选择错误的技术会浪费数年的开发时间和数百万美元的资金。
本指南提供了行业所需的对比:真实的性能基准测试、诚实的信任模型评估、生产环境部署状态,以及将在 2026 年实际交付的混合方案。
每项技术的实际作用
在进行对比之前,必须理解这四种技术并不是可以互换的替代方案。它们回答的是不同的问题。
零知识证明 (ZK) 回答的是:“如何在不泄露数据的情况下证明某事是真的?” ZK 系统生成密码学证明,证明计算被正确执行,而无需披露输入。输出是二进 制的:陈述要么有效,要么无效。ZK 主要关注的是验证,而非计算。
全同态加密 (FHE) 回答的是:“如何在不解密数据的情况下对其进行计算?” FHE 允许直接在加密数据上进行任意计算。结果保持加密状态,只能由密钥持有者解密。FHE 关注的是保护隐私的计算。
可信执行环境 (TEE) 回答的是:“如何在隔离的硬件飞地中处理敏感数据?” TEE 使用处理器级的隔离(Intel SGX, AMD SEV, ARM CCA)来创建安全飞地(Enclaves),即使是操作系统也无法访问其中的代码和数据。TEE 关注的是硬件强制的机密性。
多方计算 (MPC) 回答的是:“如何在不泄露个人输入的情况下,由多个参与方计算出共同结果?” MPC 将计算分布在多个参与方之间,因此没有任何一个参与者能了解最终输出之外的任何信息。MPC 关注的是无需信任的协作计算。
性能基准:至关重要的数据
Vitalik Buterin 曾主张,行业应从绝对的 TPS 指标转向“密码学开销比(cryptographic overhead ratio)” —— 即对比使用隐私技术与不使用隐私技术的任务执行时间。这种框架揭示了每种方法的真实成本。
FHE:从不可用到可行
在历史上,FHE 曾比未加密的计算慢数百万倍。但现在情况已经改变。
Zama 是首个 FHE 独角兽企业(在融资超过 1.5 亿美元后估值达到 10 亿美元),其报告显示自 2022 年以来速度提升了超过 2,300 倍。目前在 CPU 上的性能可达约 20 TPS,用于机密 ERC-20 转账。GPU 加速将这一数值推高至 20-30 TPS(Inco Network),相比仅使用 CPU 执行,提升了高达 784 倍。
Zama 的路线图目标是到 2026 年底通过 GPU 迁移实现每条链 500-1,000 TPS,并预计在 2027-2028 年推出基于 ASIC 的加速器,目标是 100,000+ TPS。
架构也至关重要:Zama 的机密区块链协议使用符号执行,智能合约在轻量级的“句柄(handles)”上操作,而不是实际的密文。繁重的 FHE 操作在链下协处理器上异步运行,从而保持链上 Gas 费用处于较低水平。
底线: 对于典型操作,FHE 的开销已从 1,000,000 倍下降到大约 100-1,000 倍。目前已可用于机密 DeFi;到 2027-2028 年,其吞吐量将具备与主流 DeFi 竞争的能力。
ZK:成熟且高效
现代 ZK 平台已经实现了显著的效率。SP1、Libra 和其他 zkVM 展示了近乎线性的证明者扩展能力,对于大型工作负载,密码学开销低至 20%。在消费级硬件上,简单支付的证明生成时间已降至一秒以下。
ZK 生态系统是这四种技术中最成熟的,已在 Rollup(zkSync, Polygon zkEVM, Scroll, Linea)、身份验证(Worldcoin)和隐私协议(Aztec, Zcash)中实现了生产级部署。
底线: 对于验证任务,ZK 提供的开销最低。该技术已通过生产验证,但不支持通用的隐私计算 —— 它证明的是正确性,而不是持续计算过程中的机密性。
TEE:快速但依赖硬件
TEE 以接近原生的速度运行 —— 它们增加的计算开销极小,因为隔离是由硬件强制执行的,而不是通过密码学操作。这使得它们成为机密计算中速度最快的选择。
权衡点在于信任。你必须信任硬件制造商(Intel, AMD, ARM),并相信不存在侧信道漏洞。2022 年,一个关键的 SGX 漏洞迫使 Secret Network 协调了一次全网密钥更新 —— 这展示了操作风险。2025 年的实证研究显示,32% 的真实世界 TEE 项目在飞地内部重新实现密码学时存在侧信道暴露风险,25% 的项目表现出不安全的实践,削弱了 TEE 的保障。
底线: 执行速度最快,开销最低,但引入了硬件信任假设。最适合对速度要求极高且可以接受硬件被攻破风险的应用。
MPC:受限于网络但具备韧性
MPC 性能主要受限于网络通信而非计算。在协议执行期间,每个参与者必须交换数据,产生的延迟与参与者数量以及他们之间的网络状况成正比。
Partisia Blockchain 的 REAL 协议提高了预处理效率,实现了实时 MPC 计算。Nillion 的 Curl 协议扩展了线性秘密共享方案,以处理传统 MPC 难以应对的复杂操作(除法、平方根、三角函数)。
总结: 性能中等,但具备强大的隐私保证。诚实多数假设意味着即使部分参与者被攻破,隐私 依然安全,但任何成员都可以审查计算 —— 这是与 FHE 或 ZK 相比的一个根本性局限。
信任模型:真正的区别所在
性能比较占据了大多数分析的主导地位,但对于长期架构决策而言,信任模型更为重要。
| 技术 | 信任模型 | 可能出现的问题 |
|---|---|---|
| ZK | 密码学(无需信任第三方) | 无 —— 证明在数学上是完备的 |
| FHE | 密码学 + 密钥管理 | 密钥泄露会暴露所有加密数据 |
| TEE | 硬件厂商 + 远程度量 (Attestation) | 侧信道攻击、固件后门 |
| MPC | 门限诚实多数 | 超过阈值的共谋会破坏隐私;任何一方都可以进行审查 |
ZK 除了证明系统的数学完备性外,不需要任何额外信任。这是目前最强大的信任模型。
FHE 在理论上是密码学安全的,但引入了“谁持有解密密钥”的问题。Zama 通过使用门限 MPC 将私钥分发给多个参与者来解决这个问题 —— 这意味着 FHE 在实践中往往依赖 MPC 进行密钥管理。
TEE 需要信任 Intel、AMD 或 ARM 的硬件和固件。这种信任已被多次打破。在 CCS 2025 上展示的 WireTap 攻击证明了通过 DRAM 总线拦截(DRAM bus interposition)可以攻破 SGX —— 这是一个任何软件更新都无法修复的物理攻击向量。
MPC 将信任分发给参与者,但需要诚实多数。如果超过阈值,所有输入都会暴露。此外,任何单一参与者都可以拒绝配合,从而有效地审查计算。
抗量子性 是另一个维度。FHE 天生具备量子安全性,因为它依赖于基于格的密码学(Lattice-based cryptography)。TEE 不提供抗量子性。ZK 和 MPC 的抗量子性取决于所使用的具体方案。
谁在构建什么:2026 年的市场格局
FHE 项目
Zama(融资 1.5 亿美元+,估值 10 亿美元):为大多数 FHE 区块链项目提供支持的基础设施层。于 2025 年 12 月底在以太坊上启动主网。$ZAMA 代币拍卖于 2026 年 1 月 12 日开始。创建了机密区块链协议(Confidential Blockchain Protocol)和用于加密智能合约的 fhEVM 框架。
Fhenix(融资 2200 万美元):利用 Zama 的 TFHE-rs 构建 FHE 驱动的乐观 Rollup L2。在 Arbitrum 上部署了 CoFHE 协处理器,这是第一个实用的 FHE 协处理器实现。获得了日本最大的 IT 供应商之一 BIPROGY 的战略投资。
Inco Network(融资 450 万美元):利用 Zama 的 fhEVM 提供机密性即服务(Confidentiality-as-a-service)。提供基于 TEE 的快速处理模式以及 FHE+MPC 安全计算模式。
Fhenix 和 Inco 都依赖 Zama 的核心技术 —— 这意味着无论哪个 FHE 应用链占据主导地位,Zama 都能捕获价值。
TEE 项目
Oasis Network:开创了将计算(在 TEE 中)与共识分离的 ParaTime 架构。在 TEE 中使用密钥管理委员会和门限密码学,因此没有单个节点可以控制解密密钥。
Phala Network:将去中心化 AI 基础设施与 TEE 相结合。所有 AI 计算和 Phat 合约都通过 pRuntime 在 Intel SGX 飞地(Enclaves)内执行。
Secret Network:每个验证者都运行 Intel SGX TEE。合约代码和输入在链上加密,仅在执行时在飞地内部解密。2022 年的 SGX 漏洞暴露了这种单一 TEE 依赖的脆弱性。
MPC 项目
Partisia Blockchain:由 2008 年开创实用 MPC 协议的团队创立。其 REAL 协议通过高效的数据预处理实现了抗量子的 MPC。最近与 Toppan Edge 合作,将 MPC 用于生物识别数字身份 —— 在不解密的情况下匹配人脸识别数据。
Nillion(融资 4500 万美元+):于 2025 年 3 月 24 日启动主网,随后在币安 Launchpool 上市。结合了 MPC、同态加密和 ZK 证明。企业集群包括 STC Bahrain、阿里云的 Cloudician、沃达丰的 Pairpoint 和德国电信。
混合方法:真正的未来
正如 Aztec 研究团队所言:不存在完美的单一解决方案,而且也不太可能出现某种技术成为 那个完美的解决方案。未来属于混合架构。
ZK + MPC 支持协作证明生成,其中每个参与者仅持有见证数据(Witness)的一部分。这对于多机构场景(合规性检查、跨境结算)至关重要,因为在这种场景下,任何单一实体都不应看到所有数据。
MPC + FHE 解决了 FHE 的密钥管理问题。Zama 的架构使用门限 MPC 将解密密钥分发给多个参与者 —— 在消除单点故障的同时,保留了 FHE 对加密数据进行计算的能力。
ZK + FHE 允许在不泄露加密数据的情况下,证明加密计算已正确执行。其开销仍然显著 —— Zama 报告称,在大型 AWS 实例上为一个正确的自举(Bootstrapping)操作生成证明需要 21 分钟 —— 但硬件加速正在缩小这一差距。
TEE + 密码学回退 使用 TEE 进行快速执行,并将 ZK 或 FHE 作为硬件受损时的备份。这种“深度防御”方法在接受 TEE 性能优势的同时,减轻了其信任假设。
2026 年最先进的生产系统结合了两到三种此类技术。Nillion 的架构根据计算要求编排 MPC、同态加密和 ZK 证明。Inco Network 同时提供 TEE 快速模式和 FHE+MPC 安全模式。这种组合方法很可能成为行业标准。
选择合适的技术
对于在 2026 年做出架构决策的开发者来说,选择取决于三个问题:
你在做什么?
- 在不泄露数据的情况下证明事实 → ZK
- 对来自多个方的加密数据进行计算 → FHE
- 以最高速度处理敏感数据 → TEE
- 多个方在互不信任的情况 下进行联合计算 → MPC
你的信任约束是什么?
- 必须完全无需信任 → ZK 或 FHE
- 可以接受硬件信任 → TEE
- 可以接受阈值假设 → MPC
你的性能要求是什么?
- 实时、亚秒级 → TEE(或仅用于验证的 ZK)
- 中等吞吐量、高安全性 → MPC
- 大规模隐私保护 DeFi → FHE(2026-2027 年时间表)
- 最高验证效率 → ZK
机密计算市场预计将从 2025 年的 240 亿美元增长到 2032 年的 3500 亿美元。如今正在构建的区块链隐私基础设施 —— 从 Zama 的 FHE 协处理器到 Nillion 的 MPC 编排,再到 Oasis 的 TEE ParaTimes —— 将决定哪些应用能够在这个 3500 亿美元的市场中存在,而哪些不能。
隐私不是一项功能。它是使符合监管要求的 DeFi、机密 AI 和企业级区块链采用成为可能的基础设施层。最终胜出的技术不一定是速度最快或理论上最优雅的 —— 而是能够交付生产就绪、可组合的原语,供开发者实际在其上构建的技术。
根据目前的发展轨迹,答案很可能是这四者兼而有之。
BlockEden.xyz 提供支持隐私保护区块链网络和机密计算应用的多链 RPC 基础设施。随着隐私保护协议从研究走向生产,可靠的节点基础设施成为每一笔加密交易的基石。探索我们的 API 市场 以获取企业级区块链接入服务。