Was passiert, wenn eine Blockchain beschließt, nicht durch eine Neuerfindung, sondern einfach durch das Aufdrehen der Regler zu skalieren? Am 7. Januar 2026 aktivierte Ethereum BPO-2 – den zweiten „Blob Parameters Only“-Fork – und schloss damit die letzte Phase des Fusaka-Upgrades geräuschlos ab. Das Ergebnis: eine Kapazitätserweiterung um 40 %, die die Layer-2-Gebühren über Nacht um bis zu 90 % senkte. Dies war keine prunkvolle Protokollüberholung. Es war chirurgische Präzision, die bewies, dass die Skalierbarkeit von Ethereum nun parametrisch und nicht mehr prozedural ist.

Das BPO-2-Upgrade: Zahlen, die zählen
BPO-2 erhöhte das Blob-Ziel von Ethereum von 10 auf 14 und das maximale Blob-Limit von 15 auf 21. Jeder Blob enthält 128 Kilobyte an Daten, was bedeutet, dass ein einzelner Block nun etwa 2,6 – 2,7 Megabyte an Blob-Daten transportieren kann – gegenüber etwa 1,9 MB vor dem Fork.
Zum Hintergrund: Blobs sind Datenpakete, die Rollups auf Ethereum veröffentlichen. Sie ermöglichen es Layer-2-Netzwerken wie Arbitrum, Base und Optimism, Transaktionen außerhalb der Chain zu verarbeiten und gleichzeitig die Sicherheitsgarantien von Ethereum zu übernehmen. Wenn der Blob-Speicher knapp ist, konkurrieren Rollups um Kapazität, was die Kosten in die Höhe treibt. BPO-2 hat diesen Druck gemildert.
Der Zeitplan: Der dreiphasige Rollout von Fusaka
Das Upgrade fand nicht isoliert statt. Es war die letzte Phase des methodischen Deployments von Fusaka:
- 3. Dezember 2025: Aktivierung des Fusaka-Mainnets, Einführung von PeerDAS (Peer Data Availability Sampling)
- 9. Dezember 2025: BPO-1 erhöhte das Blob-Ziel auf 10 und das Maximum auf 15
- 7. Januar 2026: BPO-2 steigerte das Ziel auf 14 und das Maximum auf 21
Dieser gestufte Ansatz ermöglichte es den Entwicklern, den Zustand des Netzwerks zwischen jeder Erhöhung zu überwachen, um sicherzustellen, dass Home-Node-Betreiber die gestiegenen Bandbreitenanforderungen bewältigen konnten.
Warum „Ziel“ und „Limit“ unterschiedlich sind
Das Verständnis der Unterscheidung zwischen Blob-Ziel (Target) und Blob-Limit ist entscheidend, um die Gebührenmechanik von Ethereum zu begreifen.
Das Blob-Limit (21) stellt die harte Obergrenze dar – die absolute maximale Anzahl von Blobs, die in einem einzigen Block enthalten sein können. Das Blob-Ziel (14) ist der Gleichgewichtspunkt, den das Protokoll über die Zeit beizubehalten versucht.
Wenn die tatsächliche Blob-Nutzung das Ziel überschreitet, steigen die Base Fees (Grundgeb ühren), um den Überverbrauch einzudämmen. Wenn die Nutzung unter das Ziel fällt, sinken die Gebühren, um mehr Aktivität anzureizen. Diese dynamische Anpassung schafft einen selbstregulierenden Markt:
- Volle Blobs: Die Base Fee steigt um ca. 8,2 %
- Keine Blobs: Die Base Fee sinkt um ca. 14,5 %
Diese Asymmetrie ist beabsichtigt. Sie ermöglicht es den Gebühren, in Zeiten geringer Nachfrage schnell zu sinken, während sie bei hoher Nachfrage allmählicher steigen, was Preissprünge verhindert, die die Ökonomie der Rollups destabilisieren könnten.
Die Auswirkungen auf die Gebühren: Echte Zahlen aus echten Netzwerken
Die Transaktionskosten auf Layer 2 sind seit dem Deployment von Fusaka um 40 – 90 % eingebrochen. Die Zahlen sprechen für sich:
| Netzwerk | Durchschnittliche Gebühr nach BPO-2 | Vergleich mit Ethereum Mainnet |
|---|
| Base | $ 0,000116 | $ 0,3139 |
| Arbitrum | ~$ 0,001 | $ 0,3139 |
| Optimism | ~$ 0,001 | $ 0,3139 |
Die medianen Blob-Gebühren sind auf bis zu $ 0,0000000005 pro Blob gefallen – was für praktische Zwecke effektiv kostenlos ist. Für Endnutzer bedeutet dies nahezu Nullkosten für Swaps, Transfers, NFT-Mints und Gaming-Transaktionen.
Wie sich Rollups angepasst haben
Führende Rollups haben ihre Abläufe umstrukturiert, um die Blob-Effizienz zu maximieren:
- Optimism hat seinen Batcher aktualisiert, um sich primär auf Blobs statt auf Calldata zu verlassen, wodurch die Kosten für die Datenverfügbarkeit um mehr als die Hälfte gesenkt wurden.
- zkSync hat seine Proof-Submission-Pipeline überarbeitet, um Status-Updates in weniger, größere Blobs zu komprimieren, was die Frequenz der Veröffentlichungen reduziert.
- Arbitrum hat sich auf sein ArbOS Dia-Upgrade (Q1 2026) vorbereitet, das mit Fusaka-Unterstützung reibungslosere Gebühren und einen höheren Durchsatz einführt.
Seit der Einführung von EIP-4844 wurden über 950.000 Blobs auf Ethereum gepostet. Optimistische Rollups verzeichneten eine Reduzierung der Calldata-Nutzung um 81 %, was beweist, dass das Blob-Modell wie vorgesehen funktioniert.
Der Weg zu 128 Blobs: Was als Nächstes kommt
BPO-2 ist ein Zwischenziel, kein Endpunkt. Die Roadmap von Ethereum sieht eine Zukunft vor, in der Blöcke 128 oder mehr Blobs pro Slot enthalten – eine Verachtfachung gegenüber dem aktuellen Stand.
PeerDAS: Die technische Grundlage
PeerDAS (EIP-7594) ist das Netzwerkprotokoll, das eine aggressive Blob-Skalierung erst möglich macht. Anstatt von jedem Node zu verlangen, jeden Blob herunterzuladen, nutzt PeerDAS das Data Availability Sampling, um die Datenintegrität zu verifizieren, während nur eine Teilmenge heruntergeladen wird.
So funktioniert es:
- Erweiterte Blob-Daten werden in 128 Teile, sogenannte Columns (Spalten), unterteilt.
- Jeder Node nimmt an mindestens 8 zufällig ausgewählten Column-Subnetzen teil.
- Der Empfang von 8 der 128 Spalten (etwa 12,5 % der Daten) ist mathematisch ausreichend, um die vollständige Datenverfügbarkeit zu beweisen.
- Erasure Coding stellt sicher, dass das Original selbst dann rekonstruiert werden kann, wenn einige Daten fehlen.
Dieser Ansatz ermöglicht eine theoretische 8-fache Skalierung des Datendurchsatzes, während die Anforderungen an die Nodes für Home-Betreiber bewältigbar bleiben.
Der Zeitplan für die Blob-Skalierung
| Phase | Blob-Ziel | Max. Blobs | Status |
|---|
| Dencun (März 2024) | 3 | 6 | Abgeschlossen |
| Pectra (Mai 2025) | 6 | 9 | Abgeschlossen |
| BPO-1 (Dezember 2025) | 10 | 15 | Abgeschlossen |
| BPO-2 (Januar 2026) | 14 | 21 | Abgeschlossen |
| BPO-3/4 (2026) | Noch offen | 72+ | Geplant |
| Langfristig | 128+ | 128+ | Roadmap |
In einem kürzlich abgehaltenen Call der All-Core-Devs wurde ein „spekulativer Zeitplan“ diskutiert, der nach Ende Februar alle zwei Wochen zusätzliche BPO-Forks beinhalten könnte, um ein Ziel von 72 Blobs zu erreichen. Ob dieser aggressive Zeitplan umgesetzt wird, hängt von den Daten der Netzwerküberwachung ab.
Glamsterdam: Der nächste große Meilenstein
Über die BPO-Forks hinausgehend ist das kombinierte Glamsterdam-Upgrade (Glam für die Konsensschicht, Amsterdam für die Ausführungsschicht) derzeit für Q2 / Q3 2026 geplant. Es verspricht noch drastischere Verbesserungen:
- Block Access Lists (BALs): Dynamische Gas-Limits, die eine parallele Transaktionsverarbeitung ermöglichen.
- Enshrined Proposer-Builder Separation (ePBS): On-Chain-Protokoll zur Trennung der Rollen bei der Blockerstellung, das mehr Zeit für die Block-Propagierung bietet.
- Erhöhung des Gas-Limits: Potenziell bis zu 200 Millionen, was eine „perfekte parallele Verarbeitung“ ermöglicht.
Vitalik Buterin prognostizierte, dass das späte Jahr 2026 aufgrund von BALs und ePBS „große, nicht von ZK-EVM abhängige Erhöhungen des Gas-Limits“ bringen wird. Diese Änderungen könnten den nachhaltigen Durchsatz im gesamten Layer-2-Ökosystem auf über 100.000 + TPS steigern.
Was BPO-2 über die Strategie von Ethereum verrät
Das BPO-Fork-Modell stellt einen philosophischen Wandel in der Herangehensweise von Ethereum an Upgrades dar. Anstatt mehrere komplexe Änderungen in monolithische Hard-Forks zu bündeln, isoliert der BPO-Ansatz Anpassungen einzelner Variablen, die schnell bereitgestellt und bei Problemen rückgängig gemacht werden können.
„Der BPO2-Fork unterstreicht, dass die Skalierbarkeit von Ethereum jetzt parametrisch und nicht mehr prozedural ist“, bemerkte ein Entwickler. „Der Blob-Speicher ist noch weit von der Sättigung entfernt, und das Netzwerk kann den Durchsatz einfach durch Feinabstimmung der Kapazität erweitern.“
Diese Beobachtung hat weitreichende Konsequenzen:
- Vorhersehbare Skalierung: Rollups können den Kapazitätsbedarf planen, da sie wissen, dass Ethereum den Blob-Speicher weiter ausbauen wird.
- Reduziertes Risiko: Isolierte Parameteränderungen minimieren das Risiko kaskadierender Fehler.
- Schnellere Iteration: BPO-Forks können in Wochen statt in Monaten erfolgen.
- Datengesteuerte Entscheidungen: Jede Erhöhung liefert reale Daten für den nächsten Schritt.
Die Ökonomie: Wer profitiert?
Die Nutznießer von BPO-2 gehen über die Endnutzer hinaus, die von günstigeren Transaktionen profitieren:
Rollup-Betreiber
Niedrigere Kosten für das Posten von Daten verbessern die Einheitenökonomie für jedes Rollup. Netzwerke, die zuvor mit geringen Margen arbeiteten, haben nun Spielraum für Investitionen in Nutzerakquise, Entwickler-Tools und das Wachstum des Ökosystems.
Anwendungsentwickler
Transaktionskosten im Sub-Cent-Bereich ermöglichen Anwendungsfälle, die zuvor unwirtschaftlich waren: Mikrozahlungen, High-Frequency-Gaming, soziale Anwendungen mit On-Chain-Status und IoT-Integrationen.
Ethereum-Validatoren
Ein erhöhter Blob-Durchsatz bedeutet mehr Gesamtgebühren, selbst wenn die Gebühren pro Blob sinken. Das Netzwerk verarbeitet mehr Wert und erhält die Anreize für Validatoren aufrecht, während gleichzeitig die Benutzererfahrung verbessert wird.
Das breitere Ökosystem
Günstigere Datenverfügbarkeit auf Ethereum macht alternative DA-Layer für Rollups, die Sicherheit priorisieren, weniger attraktiv. Dies stärkt die Position von Ethereum im Zentrum des modularen Blockchain-Stacks.
Herausforderungen und Überlegungen
BPO-2 ist nicht ohne Kompromisse:
Anforderungen an Nodes
Während PeerDAS die Bandbreitenanforderungen durch Sampling reduziert, fordern erhöhte Blob-Zahlen den Node-Betreibern dennoch mehr ab. Der stufenweise Rollout zielt darauf ab, Engpässe zu identifizieren, bevor sie kritisch werden, aber Home-Operator mit begrenzter Bandbreite könnten Schwierigkeiten bekommen, wenn die Blob-Zahlen auf 72 oder 128 steigen.
MEV-Dynamik
Mehr Blobs bedeuten mehr Möglichkeiten zur MEV-Extraktion über Rollup-Transaktionen hinweg. Das ePBS-Upgrade in Glamsterdam zielt darauf ab, dies zu adressieren, aber in der Übergangszeit könnte die MEV-Aktivität zunehmen.
Volatilität des Blob-Speichers
Bei Nachfragespitzen können die Blob-Gebühren immer noch schnell ansteigen. Die Erhöhung um 8,2 % pro vollem Block bedeutet, dass eine anhaltend hohe Nachfrage zu einem exponentiellen Gebührenwachstum führt. Zukünftige BPO-Forks müssen die Kapazitätserweiterung gegen diese Volatilität abwägen.
Fazit: Skalierung in Etappen
BPO-2 zeigt, dass eine sinnvolle Skalierung nicht immer revolutionäre Durchbrüche erfordert. Manchmal ergeben sich die effektivsten Verbesserungen aus der sorgfältigen Kalibrierung bestehender Systeme.
Die Blob-Kapazität von Ethereum ist von maximal 6 bei Dencun auf 21 bei BPO-2 gestiegen – eine Steigerung von 250 % in weniger als zwei Jahren. Die Layer-2-Gebühren sind um Größenordnungen gesunken. Und die Roadmap zu 128 + Blobs deutet darauf hin, dass dies erst der Anfang ist.
Für Rollups ist die Botschaft klar: Die Datenverfügbarkeitsschicht von Ethereum wird skaliert, um die Nachfrage zu decken. Für die Nutzer wird das Ergebnis zunehmend unsichtbar: Transaktionen, die Bruchteile von Cents kosten, in Sekunden finalisiert werden und durch die am meisten praxiserprobte Smart-Contract-Plattform gesichert sind.
Die parametrische Ära der Ethereum-Skalierung ist angebrochen. BPO-2 ist der Beweis dafür, dass es manchmal ausreicht, am richtigen Knopf zu drehen.
Bauen Sie auf der wachsenden Blob-Kapazität von Ethereum auf? BlockEden.xyz bietet RPC-Dienste in Enterprise-Qualität für Ethereum und sein Layer-2-Ökosystem, einschließlich Arbitrum, Optimism und Base. Entdecken Sie unseren API-Marktplatz, um sich mit der Infrastruktur zu verbinden, die die nächste Generation skalierbarer Anwendungen antreibt.