跳到主要内容

4 篇博文 含有标签「zk-SNARKs」

零知识简洁非交互式知识论证

查看所有标签

zkEVM 的演进:在以太坊扩展中平衡兼容性与性能

· 阅读需 10 分钟
Dora Noda
Software Engineer

2022 年,Vitalik Buterin 提出了一个简单的问题,这个问题将定义以太坊扩容的未来四年:为了获得更快的零知识证明,你愿意牺牲多少以太坊兼容性?他的回答是针对 zkEVM 的五种类型分类系统,该系统自此成为评估这些关键扩容解决方案的行业标准。

快速跨越到 2026 年,答案不再那么简单了。证明时间已从 16 分钟缩短至 16 秒。成本降低了 45 倍。多个团队已经演示了比以太坊 12 秒出块时间更快的实时证明生成。然而,Vitalik 确定的基本权衡仍然存在 —— 对于任何选择在何处进行构建的开发者或项目来说,理解这一点至关重要。

Vitalik 的分类:类型 1 到类型 4

Vitalik 的框架将 zkEVM 归入一个光谱中,从完美的以太坊等效性到最高的证明效率。类型编号越高,意味着证明速度越快,但与现有以太坊基础设施的兼容性越低。

类型 1:完全以太坊等效

类型 1 zkEVM 不会对以太坊进行任何更改。它们证明的是以太坊 L1 所使用的完全相同的执行环境 —— 相同的操作码(opcodes)、相同的数据结构,一切都完全一致。

优势:完美的兼容性。以太坊执行客户端可以原样运行。每个工具、每个合约、每一项基础设施都可以直接迁移。这最终是以太坊为了让 L1 本身更具可扩展性所需要的。

劣势:以太坊最初并不是为零知识证明而设计的。EVM 基于堆栈的架构在 ZK 证明生成方面效率极低。早期的类型 1 实现生成单个证明需要数小时。

领先项目:Taiko 的目标是作为基于 rollup(based rollup)实现类型 1 等效,使用以太坊验证者进行排序,从而实现与其他基于 rollup 的同步组合性。

类型 2:完全 EVM 等效

类型 2 zkEVM 保持完全的 EVM 兼容性,但更改了内部表示形式 —— 如状态存储方式、数据结构组织方式 —— 以提高证明生成速度。

优势:为以太坊编写的合约无需修改即可运行。开发者体验保持一致。迁移摩擦接近于零。

劣势:区块链浏览器和调试工具可能需要修改。状态证明(state proofs)的运作方式与以太坊 L1 不同。

领先项目:Scroll 和 Linea 致力于类型 2 兼容性,在 VM 层面实现了近乎完美的 EVM 等效,无需转译器或自定义编译器。

类型 2.5:更改 Gas 成本的 EVM 等效

类型 2.5 是一个务实的中间地带。zkEVM 保持 EVM 兼容,但对于在零知识证明中特别昂贵的操作,会增加其 Gas 成本。

权衡:由于以太坊每个区块都有 Gas 限制,增加特定操作码的 Gas 成本意味着每个区块可以执行的这些操作码更少。应用程序可以运行,但某些计算模式会变得极其昂贵。

类型 3:几乎 EVM 等效

类型 3 zkEVM 牺牲了特定的 EVM 功能 —— 通常与预编译、内存处理或合约代码处理方式相关 —— 以大幅提高证明生成速度。

优势:证明速度更快,成本更低,性能更好。

劣势:某些以太坊应用程序在不修改的情况下无法运行。开发者可能需要重写依赖于不支持功能的合约。

现状:没有团队真正想停留在类型 3。它被理解为一个过渡阶段,团队在此期间致力于添加达到类型 2.5 或类型 2 所需的复杂预编译支持。Scroll 和 Polygon zkEVM 在向兼容性阶梯攀升之前,都曾作为类型 3 运行。

类型 4:高级语言兼容

类型 4 系统在字节码层面完全放弃了 EVM 兼容性。相反,它们将 Solidity 或 Vyper 编译为专为高效 ZK 证明设计的自定义 VM。

优势:证明生成最快。成本最低。性能最高。

劣势:合约的行为可能有所不同。地址可能与以太坊部署的不匹配。调试工具需要完全重写。迁移需要仔细测试。

领先项目:zkSync Era 和 StarkNet 代表了类型 4 的路径。zkSync 将 Solidity 转译为针对 ZK 优化的自定义字节码。StarkNet 使用 Cairo,这是一种专为可证明性设计的新语言。

性能基准:我们在 2026 年的现状

自 Vitalik 最初发布该分类以来,数据发生了翻天覆地的变化。2022 年的理论在 2026 年已成为生产现实。

证明时间

早期的 zkEVM 生成证明大约需要 16 分钟。目前的实现完成同样的过程大约需要 16 秒 —— 提升了 60 倍。多个团队已经演示了在 2 秒内生成证明,比以太坊 12 秒的出块时间还要快。

以太坊基金会设定了一个宏伟目标:在不到 10 万美元的硬件和 10kW 功耗下,在 10 秒内证明 99% 的主网区块。多个团队已经展示了接近这一目标的能力。

交易成本

2024 年 3 月的 Dencun 升级(引入 “blobs” 的 EIP-4844)将 L2 费用降低了 75-90%,使得所有 Rollup 的成本效益大幅提升。目前的基准测试显示:

平台交易成本备注
Polygon zkEVM$0.00275全量批处理的每笔交易成本
zkSync Era$0.00378交易成本中位数
Linea$0.05-0.15平均每笔交易成本

吞吐量

实际性能根据交易复杂程度而有很大差异:

平台TPS (复杂 DeFi)备注
Polygon zkEVM5.4 tx/sAMM 兑换基准测试
zkSync Era71 TPS复杂的 DeFi 兑换
理论值 (Linea)100,000 TPS配合高级分片技术

随着硬件加速、并行化处理和算法优化的成熟,这些数据将继续提升。

市场采用情况:TVL 和开发者吸引力

zkEVM 领域已经围绕几个明确的领导者完成了整合,每个领导者代表了分类频谱中的不同位置:

当前 TVL 排名 (2025)

  • Scroll: TVL 7.48 亿美元,最大的原生 zkEVM
  • StarkNet: TVS (总安全价值) 8.26 亿美元
  • zkSync Era: TVL 5.69 亿美元,已部署 270 多个 dApp
  • Linea: TVS 约 9.63 亿美元,日活跃地址增长超过 400%

整个 Layer 2 生态系统的 TVL 已达到 700 亿美元,随着证明成本持续下降,ZK Rollup 正在夺取更多的市场份额。

开发者采用信号

  • 2025 年超过 65% 的新智能合约部署在 Layer 2 网络上
  • zkSync Era 吸引了约 19 亿美元的代币化现实世界资产 (RWA),占据了约 25% 的链上 RWA 市场份额
  • 2025 年 Layer 2 网络预计每日处理 190 万笔交易

实践中的兼容性与性能权衡

理解理论上的类型很有用,但对开发者而言,实际的影响更为重要。

类型 1-2:零迁移摩擦

对于 Scroll 和 Linea(类型 2),迁移意味着大多数应用程序几乎不需要修改任何代码。部署相同的 Solidity 字节码,使用相同的工具(MetaMask、Hardhat、Remix),并获得预期的相同行为。

最适合:优先考虑无缝迁移的现有以太坊应用;经过审计且必须保持代码不变的项目;没有资源进行广泛测试和修改的团队。

类型 3:需要仔细测试

对于 Polygon zkEVM 及类似的类型 3 实现,大多数应用可以运行,但存在边缘情况。某些预编译合约的行为可能有所不同或不受支持。

最适合:有资源进行全面测试网验证的团队;不依赖特殊 EVM 功能的项目;优先考虑成本效率而非完美兼容性的应用。

类型 4:不同的思维模型

对于 zkSync Era 和 StarkNet,开发体验与以太坊有显著不同:

zkSync Era 支持 Solidity,但会将其转译为自定义字节码。合约可以编译运行,但行为可能在细节上有所不同。不保证地址与以太坊部署的一致。

StarkNet 使用 Cairo 语言,要求开发者学习全新的语言——尽管这是一种专门为可证明计算设计的语言。

最适合:不受现有代码约束的全新项目;追求极致性能且值得投入工具链建设的应用;愿意投资专门工具和测试的团队。

安全性:不可逾越的约束

以太坊基金会在 2025 年为 zkEVM 开发者引入了明确的密码学安全要求:

  • 到 2026 年 5 月达到 100 位可证明安全性
  • 到 2026 年底达到 128 位安全性

这些要求反映了一个现实:如果底层的密码学不是无懈可击的,那么再快的证明速度也毫无意义。无论属于哪种类型,各团队都必须达到这些门槛。

对安全性的关注减缓了部分性能提升——以太坊基金会明确在 2026 年前选择了安全而非速度——但这确保了主流采用的基础保持稳固。

选择你的 zkEVM:决策框架

在以下情况下选择类型 1-2 (Taiko, Scroll, Linea):

  • 你正在迁移现有的经过实战检验的合约
  • 审计成本是一个顾虑(无需重新审计)
  • 你的团队熟悉以太坊原生开发,没有 ZK 专长
  • 与以太坊 L1 的组合性至关重要
  • 你需要与其他 Based Rollup 进行同步互操作

在以下情况下选择类型 3 (Polygon zkEVM):

  • 你希望在兼容性和性能之间取得平衡
  • 你可以投入资源进行彻底的测试网验证
  • 成本效率是首要任务
  • 你不依赖特殊的 EVM 预编译合约

在以下情况下选择类型 4 (zkSync Era, StarkNet):

  • 你正从零开始构建,没有迁移约束
  • 极致的性能证明了工具链投资的合理性
  • 你的用例受益于 ZK 原生设计模式
  • 你拥有专门开发的资源

未来展望

类型分类不会保持静态。Vitalik 指出,zkEVM 项目可以“轻松地从高编号类型开始,随着时间的推移跃迁到低编号类型”。我们正在实践中看到这一点——最初作为类型 3 启动的项目在完成预编译实现后,正在向类型 2 迈进。

更有趣的是,如果以太坊 L1 进行修改以变得对 ZK 更加友好,类型 2 和类型 3 的实现无需更改自身代码即可成为类型 1。

最终结局正变得越来越清晰:证明时间将继续缩短,成本将继续下降,随着硬件加速和算法改进消除性能差距,不同类型之间的区别将变得模糊。问题不在于哪种类型会胜出,而在于整个频谱向实际等效收敛的速度有多快。

目前,这个框架仍然具有价值。了解 zkEVM 在兼容性-性能频谱中所处的位置,可以告诉你在开发、部署和运营过程中应该期待什么。对于任何构建在以太坊 ZK 驱动未来之上的团队来说,这些知识都是必不可少的。


正在基于 zkEVM 基础设施进行开发?BlockEden.xyz 在多个 zkEVM 链(包括 Polygon zkEVM、Scroll 和 Linea)上提供高性能 RPC 终端。探索我们的 API 市场,获取你的 ZK 应用所需的基础设施层。

Boundless by RISC Zero:去中心化证明市场能否解决 ZK 的 9700 万美元瓶颈?

· 阅读需 11 分钟
Dora Noda
Software Engineer

零知识卷集(ZK Rollups)曾被认为是区块链扩容的未来。然而,它们却成了价值 9700 万美元的中心化证明者(prover)市场的“人质”,少数公司从中榨取了 60-70% 的费用,而用户却在为本应几秒钟内完成的证明等待数分钟。

Boundless 是 RISC Zero 旗下的去中心化证明市场,于 2025 年 9 月在主网上线,声称已经破解了这一难题。通过将 ZK 证明生成转变为一个 GPU 运营商竞争工作的开放市场,Boundless 承诺让可验证计算变得“与执行一样廉价”。但是,一个由代币激励的网络真的能打破让 ZK 技术昂贵且难以触及的中心化死循环吗?

十亿美元的瓶颈:为什么 ZK 证明仍然如此昂贵

零知识卷集的愿景非常优雅:在链下执行交易,生成正确执行的加密证明,并以极低的成本在以太坊(Ethereum)上验证该证明。理论上,这将以不到一美分的交易成本提供以太坊级别的安全性。

现实却更加混乱。

在高端 A100 GPU 上,为一批 4000 笔交易生成单个 ZK 证明需要 2 到 5 分钟,仅云计算费用就达 0.04 到 0.17 美元。这还没有考虑到运行可靠证明服务所需的专用软件、工程专业知识和冗余基础设施。

结果如何?超过 90% 的 ZK-L2 依赖于少数几个“证明者即服务”(prover-as-a-service)提供商。这种中心化恰恰引入了区块链旨在消除的风险:审查、MEV 提取、单点故障以及 Web2 式的租金提取。

技术挑战

瓶颈不在于网络拥塞,而在于数学本身。ZK 证明依赖于椭圆曲线上的多标量乘法(MSM)和数论变换(NTT)。这些操作与使 GPU 在 AI 工作负载中表现卓越的矩阵数学有本质不同。

经过多年的 MSM 优化,NTT 现在占据了 GPU 上证明生成延迟的 90%。密码学界在单纯的软件优化上已经遇到了边际效用递减。

Boundless 登场:开放的证明市场

Boundless 试图通过将证明生成与区块链共识完全解耦来解决这个问题。Boundless 不再让每个卷集运行自己的证明者基础设施,而是创建了一个市场:

  1. 请求者(Requestors):提交证明请求(来自任何链)
  2. 证明者(Provers):使用 GPU 和通用硬件竞争生成证明
  3. 结算(Settlement):在请求者指定的目的链上进行

其核心创新是“可验证工作证明”(Proof of Verifiable Work, PoVW)——一种奖励机制,奖励证明者生成有用的 ZK 证明,而不是像比特币挖矿那样生成无用的哈希。每个证明都带有加密元数据,证明其投入了多少计算量,从而创建透明的工作记录。

实际运作方式

在底层,Boundless 构建在 RISC Zero 的 zkVM 之上。zkVM 是一种零知识虚拟机,可以执行为 RISC-V 指令集编译的任何程序。这意味着开发者可以使用 Rust、C++ 或任何可编译为 RISC-V 的语言编写应用程序,然后生成正确执行的证明,而无需学习专门的 ZK 电路。

其三层架构包括:

  • zkVM 层:执行任意程序并生成 STARK 证明
  • 递归层:将多个 STARK 聚合为紧凑证明
  • 结算层:将证明转换为 Groth16 格式,以便在链上进行验证

这种设计使 Boundless 能够生成足够小(约 200KB)的证明,以便经济地进行链上验证,同时支持复杂的计算。

ZKC 代币:通过挖掘证明而非哈希

Boundless 推出了 ZK Coin (ZKC) 作为其证明市场的原生代币。与典型的效用代币不同,ZKC 是通过证明生成来主动挖掘的——证明者根据他们贡献的计算工作量赚取 ZKC 奖励。

代币经济学概览

  • 总供应量:10 亿 ZKC(第一年通胀率为 7%,到第八年逐渐降至 3%)
  • 生态系统增长:41.6% 分配给采用计划
  • 战略合作伙伴:21.5%,包含 1 年锁定期和 2 年归属期
  • 社区:8.3% 用于代币销售和空投
  • 当前价格:约 0.12 美元(较 0.29 美元的 ICO 价格有所下降)

这种通胀模型引发了争论。支持者认为,持续的排放对于激励健康的证明者网络是必要的。批评者则指出, 7% 的年通胀率会产生持续的抛压,即使在网络增长的情况下,也可能限制 ZKC 的价值增值。

市场动荡

ZKC 的头几个月并不顺利。2025 年 10 月,韩国交易所 Upbit 将该代币列为“投资警告”,引发了 46% 的价格暴跌。在 Boundless 澄清其代币经济学后,Upbit 取消了警告,但这一事件突显了与新兴市场挂钩的基础设施代币的波动风险。

主网现状:谁在真正使用 Boundless?

自 2025 年 7 月在 Base 上启动主网测试版以及 9 月发布正式主网以来,Boundless 已获得了显著的集成:

Wormhole 集成

Wormhole 正在集成 Boundless,以为以太坊共识添加 ZK 验证,使跨链传输更加安全。Wormhole NTT (原生代币传输) 现在不再仅仅依赖多签守护者,还可以为需要密码学保证的用户提供可选的 ZK 证明。

Citrea 比特币 L2

Citrea 是由 Chainway Labs 构建的比特币 Layer-2 zk-rollup,它使用 RISC Zero 的 zkVM 生成有效性证明,并通过 BitVM 发布到比特币网络。这在利用 BTC 进行结算和数据可用性的同时,实现了比特币上等同于 EVM 的可编程性。

Google Cloud 合作伙伴关系

通过其可验证 AI 计划 (Verifiable AI Program),Boundless 与 Google Cloud 合作实现了由 ZK 驱动的 AI 证明。开发者可以构建能够证明 AI 模型输出而无需泄露输入的应用程序 —— 这是保护隐私的机器学习的一项关键功能。

Stellar 桥接

2025 年 9 月,Nethermind 为 Stellar zk Bridge 集成部署了 RISC Zero 验证器,实现了 Stellar 低成本支付网络与以太坊安全保证之间的跨链证明。

竞争对手:Succinct SP1 与 zkVM 之战

Boundless 并不是唯一一家竞相解决 ZK 可扩展性问题的参与者。Succinct Labs 的 SP1 zkVM 已成为主要竞争对手,引发了两支团队之间的基准测试之战。

RISC Zero 的主张

RISC Zero 声称,配置得当的 zkVM 部署 “比 SP1 便宜至少 7 倍”,对于小型工作负载,成本最高可降低 60 倍。他们指出其证明尺寸更小,且 GPU 利用率更高。

Succinct 的回应

Succinct 反驳称,RISC Zero 的基准测试 “误导性地将 CPU 性能与 GPU 结果进行了比较”。其 SP1 Hypercube 证明器声称能以约 2 分钟的延迟实现 0.02 美元的证明成本 —— 尽管它目前仍是闭源的。

独立分析

分布式资本 (Fenbushi Capital) 的一项对比发现,RISC Zero 在 “GPU 环境下的所有基准测试类别中均表现出卓越的速度和效率”,但也指出 SP1 在开发者采用方面表现出色,为 Celestia 的 Blobstream 等项目提供支持,其保护的总价值 (TVL) 达 31.4 亿美元,而 RISC Zero 为 2.39 亿美元。

真正的竞争优势可能不在于原始性能,而在于生态系统锁定。Boundless 计划支持包括 SP1、ZKsync 的 Boojum 和 Jolt 在内的竞争对手 zkVM —— 将其自身定位为协议无关的证明市场,而非单一供应商解决方案。

2026 路线图:Boundless 的下一步计划

RISC Zero 为 Boundless 制定的路线图包括几个宏伟目标:

生态系统扩张 (2025 Q4 - 2026)

  • 将 ZK 证明支持扩展到 Solana
  • 通过 BitVM 集成比特币
  • 部署更多 L2

混合 Rollup 升级

最重要的技术里程碑是将 Optimistic Rollup (如 Optimism 和 Base 链) 过渡到使用有效性证明,以实现更快的终局性。与其等待 7 天的欺诈证明窗口,OP 链可以在几分钟内完成结算。

多 zkVM 支持

路线图中包含了对竞争对手 zkVM 的支持,允许开发者在不离开市场的情况下,在 RISC Zero、SP1 或其他证明系统之间切换。

完成去中心化

RISC Zero 于 2025 年 12 月停止了其托管证明服务,强制所有证明生成通过去中心化的 Boundless 网络进行。这标志着对去中心化命题的重大承诺 —— 但也意味着网络的可靠性现在完全取决于独立的证明者。

大局观:去中心化证明会成为标准吗?

Boundless 的成功取决于一个根本性的赌注:证明生成将像云计算那样商品化。如果这一论点成立,拥有最高效的证明器网络就不如拥有最大且流动性最强的市场重要。

几个因素支持这一观点:

  1. 硬件商品化:来自 Cysic 等公司的 ZK 专用 ASIC 承诺将能效提高 50 倍,可能降低准入门槛。
  2. 证明聚合:像 Boundless 这样的网络可以批量处理来自多个应用程序的证明,从而分摊固定成本。
  3. 跨链需求:随着更多区块链采用 ZK 验证,对证明生成的需求可能会超过任何单一供应商的能力。

但风险依然存在:

  1. 中心化蔓延:由于规模经济有利于大型运营商,早期的证明器网络往往趋于集中。
  2. 代币依赖:如果 ZKC 价格崩溃,证明者的激励就会消失 —— 可能导致死亡螺旋。
  3. 技术复杂性:运行具有竞争力的证明器需要大量的专业知识,这在实践中可能会限制去中心化程度。

这对开发者意味着什么

对于考虑集成 ZK 的构建者来说,Boundless 代表了一个务实的中道方案:

  • 无需基础设施开销:通过 API 提交证明请求,无需运行自己的证明器。
  • 多链结算:一次生成证明,在任何支持的链上进行验证。
  • 语言灵活性:使用 Rust 或任何兼容 RISC-V 的语言编写,无需学习 ZK DSL (领域专用语言)。

其代价是依赖于一个由代币激励的网络,该网络的长期稳定性仍有待验证。对于生产级应用,许多团队可能更倾向于在测试网和实验阶段使用 Boundless,同时为关键工作负载保留备用的证明器基础设施。

结论

Boundless 代表了迄今为止解决 ZK 中心化问题最雄心勃勃的尝试。通过将证明生成转变为由 ZKC 代币激励的开放市场,RISC Zero 正押注竞争将比任何单一供应商单独实现的速度更快地降低成本。

主网的发布、与 Wormhole 和 Citrea 的重大整合,以及对支持竞争对手 zkVM 的承诺,都展示了其强大的技术能力。但通胀的代币经济学、交易所的波动性以及大规模下未经证实的去中心化程度,仍留下了重要的未解之谜。

对于 ZK 生态系统而言,Boundless 的成败将预示着去中心化基础设施是否能够与中心化的效率相竞争 —— 或者区块链行业的扩展未来是否仍掌握在少数资金雄厚的证明者服务商手中。


正在构建需要在多个链上进行 ZK 验证的应用程序? BlockEden.xyz 为 Ethereum、Base 和 20 多个网络提供企业级 RPC 端点和 API —— 这是你的跨链 ZK 应用程序所需的可靠连接层。

zkTLS 详解:零知识证明如何解锁 Web 隐藏的数据层

· 阅读需 11 分钟
Dora Noda
Software Engineer

如果你可以在不泄露余额、交易历史甚至姓名的情况下,证明你的银行账户里有 10,000 美元,会怎么样?这并非假设 —— 这正通过 zkTLS 变成现实。这项密码学突破正在悄然重塑 Web3 应用程序访问那 99% 被困在登录页面后的互联网数据的方式。

虽然像 Chainlink 这样的区块链预言机在多年前就解决了价格喂价问题,但一个更大的挑战仍未解决:如何在不信任中心化中间商或暴露敏感信息的情况下,将私有的、经过身份验证的网页数据引入链上?答案就是 zkTLS —— 它已经开始支持欠抵押 DeFi 贷款、保护隐私的 KYC,以及连接 Web2 凭证与 Web3 可组合性的新一代应用程序。

可验证 AI 动态:Lagrange Labs 的动态 zk-SNARKs 实现持续信任

· 阅读需 5 分钟
Dora Noda
Software Engineer

在人工智能与区块链快速融合的时代,对信任与透明度的需求前所未有。我们如何确保 AI 模型的输出准确且未被篡改?我们又如何在不牺牲安全性或可扩展性的前提下,对海量链上数据执行复杂计算?Lagrange Labs 正在通过其零知识(ZK)基础设施套件正面回应这些问题,致力于构建“可证明的 AI”。本文客观概述其使命、技术以及近期突破,重点聚焦其最新的动态 zk‑SNARKs 论文。

1. 团队与使命

Lagrange Labs 正在构建基础设施,为任何 AI 推理或链上应用生成密码学证明。其目标是让计算可验证,为数字世界注入全新信任层。生态系统围绕三大核心产品线:

  • ZK Prover Network:由超过 85 个证明节点组成的去中心化网络,提供从 AI、Rollup 到去中心化应用(dApp)等多种证明任务所需的计算能力。
  • DeepProve(zkML):专用于生成神经网络推理的 ZK 证明。Lagrange 声称其速度比竞争方案快 158 倍,让可验证 AI 成为可落地的现实。
  • ZK Coprocessor 1.0:首个基于 SQL 的 ZK 协处理器,允许开发者对海量链上数据执行自定义查询,并获得可验证的准确结果。

2. 可验证 AI 的路线图

Lagrange 按部就班执行路线图,逐步解决 AI 可验证性难题。

  • 2024 年 Q3:ZK Coprocessor 1.0 发布:引入超并行递归电路,平均提升约 2 倍。Azuki、Gearbox 等项目已在链上数据需求中 使用该协处理器
  • 2025 年 Q1:DeepProve 正式亮相:Lagrange 宣布推出针对零知识机器学习(zkML)的 DeepProve,支持 MLP、CNN 等主流网络结构。系统在一次性设置、证明生成、验证三个关键阶段均实现数量级加速,最高可达 158 倍
  • 2025 年 Q2:动态 zk‑SNARKs 论文(最新里程碑):该论文提出突破性的 “update” 算法。无需每次数据或计算变更时重新生成完整证明,而是将旧证明 (π) 打补丁 成新证明 (π'),复杂度仅为 O(√n log³n),大幅优于全量重算。此创新尤为适用于持续学习的 AI 模型、实时游戏逻辑以及可演化的智能合约。

3. 动态 zk‑SNARKs 的意义

可更新证明的出现标志着零知识技术成本模型的根本转变。

  • 全新成本范式:行业从“每次都全量重算”转向“基于变更规模的增量证明”,显著降低频繁小幅更新应用的计算与费用开支。

  • 对 AI 的影响

    • 持续微调:当模型参数微调幅度低于 1% 时,证明生成时间几乎与变更参数数量 (Δ 参数) 成线性关系,而非与模型整体规模成正比。
    • 流式推理:这 使得证明生成可以与推理过程同步进行,大幅压缩 AI 决策到链上结算并验证的延迟,开启链上 AI 服务、Rollup 压缩证明等新用例。
  • 对链上应用的影响

    • 动态 zk‑SNARKs 为频繁小幅状态变更的场景(如 DEX 订单簿、演化游戏状态、频繁增删的账本)带来巨大的 Gas 与时间优化。

4. 技术栈概览

Lagrange 的强大基础设施基于以下集成技术栈:

  • 电路设计:系统灵活,可直接在电路中嵌入 ONNX(开放神经网络交换)模型、SQL 解析器以及自定义算子。
  • 递归与并行:ZK Prover Network 支持分布式递归证明,ZK Coprocessor 通过 “微电路” 分片实现任务并行执行,最大化效率。
  • 经济激励:Lagrange 计划发行原生代币 LA,并将其纳入 双拍卖递归拍卖(DARA) 机制,构建完善的计算竞价市场,配套激励与惩罚以确保网络完整性。

5. 生态与真实落地

Lagrange 的技术已被多个项目在不同领域采纳:

  • AI 与 ML:如 0G LabsStory Protocol 等使用 DeepProve 验证 AI 输出,确保来源可信。
  • Rollup 与基础设施EigenLayerBaseArbitrum 等作为验证节点或集成伙伴加入 ZK Prover Network,提升网络安全与算力。
  • NFT 与 DeFiAzukiGearbox 等项目利用 ZK Coprocessor 增强数据查询可信度与奖励分配的公正性。

6. 挑战与前路

尽管进展显著,Lagrange Labs 与整个 ZK 领域仍面临若干障碍:

  • 硬件瓶颈:即便拥有分布式网络,可更新 SNARK 仍需高带宽,并依赖 GPU 友好的密码曲线以实现高效运算。
  • 标准化缺失:将 ONNX、PyTorch 等 AI 框架映射到 ZK 电路的过程尚未形成统一接口,导致开发者摩擦。
  • 竞争激烈:zkVM 与通用 zkCompute 平台的竞争日趋白热化,Risc‑Zero、Succinct 等竞争者亦在快速迭代。最终的胜者或许是最先实现商业化、开发者友好、社区驱动的完整工具链者。

7. 结论

Lagrange Labs 正在通过 可验证性 的视角系统性重塑 AI 与区块链的交叉领域。其整体解决方案包括:

  • DeepProve:解决 可信推理 的难题。
  • ZK Coprocessor:解决 可信数据 的难题。
  • 动态 zk‑SNARKs:将 持续更新 的真实需求直接嵌入证明系统。

只要 Lagrange 能保持性能优势、突破标准化瓶颈并继续壮大其网络,它有望成为新兴 “AI + ZK 基础设施” 领域的基石玩家。