量子移行の問題: 1回の取引後にビットコインアドレスが安全ではなくなる理由
ビットコインのトランザクションに署名すると、公開鍵がブロックチェーン上に恒久的に公開されます。これまでの 15 年間、これは問題ではありませんでした。ビットコインを保護する ECDSA 暗号は、古典的なコンピュータでは計算上解読が不可能だからです。しかし、量子コンピュータがすべてを変えます。十分に強力な量子コンピュータ(Q-Day)が登場すると、公開された公開鍵から秘密鍵を数時間で再構築し、アドレスから資産を流出させることが可能になります。あまり認識されていない Q-Day の問題は、単なる「暗号のアップグレード」ではありません。署名済みのトランザクションを持つアドレスにある 665 万 BTC がすでに脆弱な状態にあり、その移行は企業の IT システムのアップグレードよりも指数関数的に困難であるということです。
イーサリアム財団による 200 万ドルの耐量子計算機研究賞と、2026 年 1 月の専用 PQ チームの結成は、「最優先の戦略的課題」となったことを示しています。これは将来の計画ではなく、緊急の準備です。Project Eleven は、耐量子暗号セキュリティに特化して 2,000 万ドルを調達しました。Coinbase は耐量子アドバイザリーボードを設立しました。Q-Day への競争はすでに始まっており、ブロックチェーンは、不変の履歴、分散型の調整、公開鍵が露出したアドレスに眠る 665 万 BTC といった、従来のシステムにはない独自の課題に直面しています。
公開鍵露出問題:なぜ署名後にアドレスが脆弱になるのか
ビットコインのセキュリティは、根本的な非対称性に依存しています。秘密鍵から公開鍵を導出するのは簡単ですが、その逆は計算上不可能です。ビットコインアドレスは公開鍵のハッシュであり、さらなる保護レイヤーを提供しています。公開鍵が隠されている限り、攻撃者は特定の鍵を標的にすることはできません。
しかし、トランザクションに署名した瞬間、公開鍵はブロックチェーン上で可視化されます。これは避けられないことです。署名の検証には公開鍵が必要だからです。資金を受け取るにはアドレス(公開鍵のハッシュ)で十分ですが、資金を使うには鍵を明かす必要があります。
古典的なコンピ ュータはこの露出を悪用できません。ECDSA-256(ビットコインの署名方式)を破るには離散対数問題を解く必要があり、それには 2^128 回の演算が必要と推定されています。これは、スーパーコンピュータが数千年稼働しても不可能です。
量子コンピュータはこの前提を崩します。十分な量子ビットと誤り訂正を備えた量子コンピュータ上で動作するショアのアルゴリズムは、多項式時間で離散対数問題を解くことができます。推定では、約 1,500 個の論理量子ビットを持つ量子コンピュータがあれば、数時間で ECDSA-256 を解読できるとされています。
これにより、重大な脆弱性の窓(ウィンドウ)が生じます。一度アドレスからトランザクションに署名すると、公開鍵はオンチェーンで永久に公開されます。後に量子コンピュータが登場すると、過去に公開されたすべての鍵が脆弱になります。署名済みのトランザクションを持つアドレスに保持されている 665 万 BTC は、公開鍵が恒久的に露出した状態で Q-Day を待っていることになります。
トランザクション履歴のない新しいアドレスは、公開鍵が露出していないため、最初に使用するまで安全です。しかし、レガシーアドレス(サトシのコイン、初期採用者の保有分、署名履歴のある取引所のコールドストレージなど)は、時限爆弾のような状態です。
なぜブロックチェーンの移行は従来の暗号アップグレードよりも困難なのか
従来の IT システムも量子脅威に直面しています。銀行、政府、企業は、量子攻撃に脆弱な暗号を使用しています。しかし、彼らの移行パスは明確です。暗号アルゴリズムをアップグレードし、鍵を更新(ローテーション)し、データを再暗号化することです。費用がかかり複雑ではありますが、技術的には可能です。
ブロックチェーンの移行は、独自の課題に直面しています。
不変性: ブロックチェーンの履歴は永続的です。過去のトランザクションを遡って変更し、露出した公開鍵を隠すことはできません。一度公開されれば、数千のノードにわたって永遠に公開されたままになります。
分散型の調整: ブロックチェーンにはアップグレードを強制する中央当局がありません。ビットコインのコンセンサスには、マイナー、ノード、ユーザーの間での多数派の合意が必要です。耐量子移行のためのハードフォークを調整することは、政治的および技術的に複雑です。
後方互換性: 移行期間中、新しい耐量子アドレスはレガシーアドレスと共存する必要があります。これにより、2 つの署名方式、二重のアドレス形式、混合モードのトランザクション検証といったプロトコルの複雑さが生じます。
紛失した鍵と非アクティブなユーザー: 数百万 BTC が、鍵を紛失した人、亡くなった人、あるいは数年前に暗号資産を放棄した 人が所有するアドレスに眠っています。これらのコインは自発的に移行することができません。これらを脆弱なままにしておくのか、それともプロトコルが強制的に移行させ、アクセス権を失わせるリスクを取るのかという問題があります。
トランザクションサイズとコスト: 耐量子署名は ECDSA よりも大幅に大きくなります。署名サイズは、方式によって 65 バイトから 2,500 バイト以上に増加する可能性があります。これによりトランザクションデータが膨張し、手数料の上昇やスループットの制限を招きます。
コンセンサスによるアルゴリズムの選択: どの耐量子アルゴリズムを採用すべきか。NIST はいくつかを標準化しましたが、それぞれにトレードオフがあります。選択を誤れば、後に再移行が必要になるかもしれません。ブロックチェーンは、数十年にわたって安全性を維持できるアルゴリズムに賭ける必要があります。
イーサリアム財団の 200 万ドルの研究賞は、まさにこれらの問題を対象としています。ネットワークを壊さず、後方互換性を失わず、また署名の肥大化によってブロックチェーンが使用不能になることなしに、どのようにイーサリアムを耐量子暗号へと移行させるかという課題です。