耐量子ブロックチェーン:量子耐性のある暗号資産の構築を競う 8 つのプロジェクト
2026 年 1 月に Coinbase がポスト量子諮問委員会を設立したことは、セキュリティ研究者が長年警告してきたことを裏付けました。それは、量子コンピュータが現在のブロックチェーン暗号を打破し、量子耐性を持つクリプト(暗号資産)への競争が始まったということです。QRL の XMSS 署名、StarkWare のハッシュベースの STARKs、そしてイーサリアムの 200 万ドルの研究賞金は、2026 年の市場リーダーシップを狙うプロジェクトの最前線を表しています。問題は、ブロックチェーンに量子耐性が必要かどうかではなく、「Q-Day」が到来したときにどの技術的アプローチが支配的になるかです。
ポスト量子ブロックチェーン分野は 2 つのカテゴリに分かれます。既存のチェーン(Bitcoin、Ethereum)の改修と、ネイティブな量子耐性プロトコル(QRL、Quantum1)です。それぞれが異なる課題に直面しています。改修の場 合は、後方互換性を維持し、分散化されたアップグレードを調整し、公開された公開鍵を管理する必要があります。ネイティブプロトコルは量子耐性暗号を用いてゼロからスタートしますが、ネットワーク効果に欠けています。どちらのアプローチも必要です。レガシーチェーンは保護されるべき数兆ドルの価値を保持しており、新しいチェーンはジェネシス(創設)時から量子耐性を最適化できるからです。
QRL:先駆的な量子耐性ブロックチェーン
Quantum Resistant Ledger (QRL) は、最初からポスト量子暗号を実装した最初のブロックチェーンとして 2018 年にローンチされました。このプロジェクトは、数論ではなくハッシュ関数を通じて量子耐性を提供するハッシュベースの署名アルゴリズムである XMSS (eXtended Merkle Signature Scheme) を採用しました。
なぜ XMSS なのか? SHA-256 のようなハッシュ関数は、量子コンピュータがハッシュ衝突を大幅に加速させないため(グローバーのアルゴリズムは 2 次の加速を提供しますが、ECDSA に対するショアのアルゴリズムのような指数関数的な加速は提供しません)、量子耐性があると考えられています。XMSS はこの特性を活用し、ハッシュ値のメルクルツリーから署名を構築します。
トレードオフ: XMSS 署名はサイズが大きく(ECDSA の 65 バイトに対し約 2,500 バイト)、トランザクションコストが高くなります。各アドレスの署名能力には制限があり、N 個の署名を生成した後、ツリーを再生成する必要があります。このステートフルな性質により、慎重な鍵管理が求められます。
市場の地位: QRL は、Bitcoin や Ethereum と比較してトランザクション量が少なく、ニッチな存在に留まっています。しかし、量子耐性を持つブロックチェーンが技術的に実行可能であることを証明しています。Q-Day が近づくにつれ、QRL は実戦で鍛えられた選択肢として注目を集める可能性があります。
今後の見通し: 量子の脅威が予想よりも早く現実化した場合、QRL の先行者利益が重要になります。このプロトコルには、ポスト量子署名を用いた長年の運用実績があります。量子セーフな資産保持を求める機関投資家は、「量子保険」として QRL に割り当てを行うかもしれません。
STARKs:量子耐性を備えたゼロ知識証明
StarkWare の STARK (Scalable Transparent Argument of Knowledge) 技術は、そのゼロ知識証明アーキテクチャの副次的なメリットとして量子耐性を提供します。STARKs はハッシュ関数と多項式を使用しており、ショアのアルゴリズムに対して脆弱な楕円曲線暗号を回避しています。
なぜ STARKs が重要なのか: (信頼できるセットアップを必要とし、楕円曲線を使 用する)SNARKs とは異なり、STARKs は透明(信頼できるセットアップが不要)であり、量子耐性があります。これにより、スケーリングソリューション (StarkNet) やポスト量子への移行に理想的です。
現在の用途: StarkNet は、Ethereum の L2 スケーリングとしてトランザクションを処理しています。量子耐性は潜在的なものであり、現時点では主要な機能ではありませんが、量子の脅威が増大するにつれて貴重な特性となります。
統合パス: イーサリアムは、移行期間中に ECDSA との後方互換性を維持しながら、ポスト量子セキュリティのために STARK ベースの署名を統合する可能性があります。このハイブリッドアプローチにより、段階的な移行が可能になります。
課題: STARK 証明はサイズが大きく(数百キロバイト)、圧縮技術は向上しているものの、依然として課題です。検証は高速ですが、証明の生成には高い計算コストがかかります。これらのトレードオフにより、高頻度アプリケーションのスループットが制限されます。
展望: STARKs は、直接的な署名スキームとして、あるいはレガシーアドレスを移行するためのラッパーとして、イーサリアムのポスト量子ソリューションの一部になる可能性が高いです。StarkWare の本番環境での実績とイーサリアムへの統合により、この道筋は有力視されています。
イーサリアム財団の 200 万ドルの研究賞金:ハッシュベースの署名
イーサリアム財団が 2026 年 1 月にポスト量子暗号を「最優先の戦略的課題」に指定した際、実用的な移行ソリューションに対して 200 万ドルの研究賞金が授与されました。焦点は、ハッシュベースの署名 (SPHINCS+, XMSS) と格子ベースの暗号 (Dilithium) です。
SPHINCS+: NIST によって標準化されたステートレスなハッシュベースの署名スキームです。XMSS とは異なり、SPHINCS+ は状態管理を必要としません。つまり、1 つの鍵で無制限にメッセージを署名できます。署名サイズは大きくなりますが(約 16~40KB)、ステートレスな特性により統合が簡素化されます。
Dilithium: ハッシュベースの代替案よりも署名サイズが小さく(約 2.5KB)、検証が高速な格子ベースの署名スキームです。セキュリティは、量子耐性があると信じられている格子問題に依存しています。
イーサリアムの課題: イーサリアムの移行には、過去のトランザクションから露出した公開鍵への対処、移行中の後方互換性の維持、および L2 の経済性を損なわないための署名サイズの肥大化の最小化が必要です。
研究の優先事項: 200 万ドルの賞金は、実用的な移行パスを対象としています。ネットワークをどのようにフォークするか、アドレス形式をどのように移行するか、レガシーキーをどのように処理するか、そして数年にわたる移行期間中のセキュリティをどのように 維持するかといった点です。
タイムライン: イーサリアムの開発者は、研究から本番環境へのデプロイまで 3~5 年かかると見積もっています。これは、Q-Day がそれより早く到来しないと仮定すれば、メインネットでのポスト量子アクティベーションは 2029 年から 2031 年頃になることを示唆しています。
ビットコイン BIP:耐量子移行への保守的なアプローチ
耐量子計算機暗号を議論する Bitcoin Improvement Proposals(BIPs)はドラフト段階にありますが、コンセンサス形成は緩やかです。ビットコインの保守的な文化は、未検証の暗号技術を拒み、十分に実戦で鍛えられたソリューションを好みます。
有力なアプローチ:保守的なセキュリティプロファイルを持つハッシュベース署名(SPHINCS+)が検討されています。ビットコインは効率性よりもセキュリティを優先し、リスクを低減するために署名サイズが大きくなることを許容します。
Taproot の統合:ビットコインの Taproot アップグレードにより、ハードフォークなしで耐量子署名に対応できるスクリプトの柔軟性が実現しました。Taproot スクリプトには、ECDSA と並行して耐量子署名の検証を組み込むことができ、ユーザーが任意で移行(オプトイン)できるようになります。
課題:公開されたアドレスに存在する 665 万 BTC です。ビットコインは、強制的な移行(紛失したコインのバーン)、自発的な移行(量子攻撃による盗難リスク)、あるいは損失を許容するハイブリッドアプローチのいずれかを選択しなければなりません。
タイムライン:ビットコインの動きはイーサリアムよりも低速です。BIP が 2026 年から 2027 年にコンセンサスを得たとしても、メインネットでのアクティベーションは 2032 年から 2035 年までかかる可能性があります。このタイムラインは、Q-Day(量子計算機が暗号を打破する日)が差し迫っていないことを前提としています。
コミュニティの分裂:一部のビットコインマキシマリストは量子の緊急性を否定し、遠い脅威と見なしています。一方で、即時の行動を主張する者もいます。この緊張関係がコンセンサス形成を遅らせています。
Quantum1:ネイティブな耐量子スマートコントラクトプラットフォーム
Quantum1(新興プロジェクトの仮の例)は、ジェネシス段階から耐量子設計がなされたブロックチェーンの新しい波を象徴しています。QRL(単純な決済)とは異なり、これらのプラットフォーム は耐量子セキュリティを備えたスマートコントラクト機能を提供します。
アーキテクチャ:格子ベース署名(Dilithium)、ハッシュベースのコミットメント、およびゼロ知識証明を組み合わせ、プライバシーを保護した耐量子スマートコントラクトを実現します。
価値提案:10 年以上の長期的なスパンを持つアプリケーションを構築する開発者は、後付けで対策を講じるチェーンよりも、ネイティブな耐量子プラットフォームを好む可能性があります。2030 年に移行するためだけに、なぜ今日イーサリアム上で構築するのでしょうか。
課題:ネットワーク効果は既存のチェーンに有利に働きます。ビットコインとイーサリアムには流動性、ユーザー、開発者、そしてアプリケーションが存在します。新しいチェーンは、技術的な優位性に関わらず、普及に苦戦します。
潜在的な起爆剤:主要なチェーンに対する量子攻撃が発生すれば、耐量子代替案への資金逃避が起こるでしょう。Quantum1 型のプロジェクトは、既存チェーンの失敗に対する保険のような存在です。
Coinbase 諮問委員会:機関レベルの連携
Coinbase による耐量子諮問委員会の設立は、量子の備えに対する機関投資家レベルの関心を示しています。受託者責任を負う上場企業として、Coinbase は顧客資産に対するリスクを無視することはできません。
諮問委員会の役割:量子脅威の評価、移行戦略の推奨、プロトコル開発者との調整、および Coinbase のインフラが耐量子移行に対応できる状態にあることの確認。
機関投資家の影響力:Coinbase は数十億ドル相当の顧客資産を保有しています。Coinbase が特定の耐量子標準に向けてプロトコルを後押しすれば、その影響力は無視できません。取引所の参加は採用を加速させます。取引所が耐量子アドレスのみをサポートするようになれば、ユーザーの移行は早まります。
タイムラインの圧力:Coinbase の公的な関与は、機関投資家のタイムラインがコミュニティで語られているものよりも短いことを示唆しています。上場企業は 30 年先のリスクのために諮問委員会を設立したりはしません。
リーダーシップを狙う 8 つのプロジェクト
競争環境の要約:
- QRL:先駆者であり、実用的な XMSS 実装を持つニッチ市場のリーダー
- StarkWare / StarkNet:STARK ベースの耐量子性、イーサリアムとの統合
- Ethereum Foundation:200 万ドルの研究賞金、SPHINCS+ / Dilithium に注力
- Bitcoin Core:BIP 提案、Taproot を活用したオプトイン移行
- Quantum1 型プラットフォーム:ネイティブな耐量子スマートコントラクトチェーン
- Algorand:将来のアップグレードに向けた耐量子計算機暗号の探求
- Cardano:格子ベース暗号の統合に関する研究
- IOTA:Tangle アーキテクチャにおける耐量子ハッシュ関数
各プロジェクトは、セキュリティ対効率性、後方互換性対クリーンステート、NIST 標準アルゴリズム対実験的アルゴリズムなど、異なるトレードオフを最適化しています。
開発者と投資家にとっての意味
開発者にとって:10 年以上の展望を持つアプリケーションを構築する場合、耐量子移行を考慮すべきです。イーサリアム上のアプリケーションはいずれ耐量子アドレス形式をサポートする必要があります。今計画を立てることで、将来の技術的負債を軽減できます。
投資家にとって:耐量子チェーンとレガシーチェーンの両方に分散投資することは、量子リスクに対するヘッジとなります。QRL や同様のプロジェクトは投機的ですが、量子脅威が予想よりも早く現実化した場合、非対称なアップサイド(大きな利益)を提供します。
機関にとって:耐量子の備えは投機ではなくリスク管理です。顧客資産を預かるカストディアンは、移行戦略を策定し、プロ トコル開発者と連携し、インフラが耐量子署名をサポートできるようにする必要があります。
プロトコルにとって:移行の窓口は閉まりつつあります。2026 年に耐量子研究を開始するプロジェクトは、2029 年から 2031 年までデプロイできません。Q-Day が 2035 年に到来する場合、耐量子セキュリティを確立するための時間は 5 年から 10 年しか残されていません。開始が遅れると、時間が不足するリスクがあります。