メインコンテンツまでスキップ

プライバシー・スタック戦争:ZK vs FHE vs TEE vs MPC - ブロックチェーンにおける最重要レースを制するのはどの技術か?

· 約 17 分
Dora Noda
Software Engineer

世界のコンフィデンシャル コンピューティング(機密計算)市場は、2024 年に 133 億ドルと評価されました。2032 年までに、年平均成長率 46.4% で 3,500 億ドルに達すると予測されています。すでに 10 億ドル以上が分散型コンフィデンシャル コンピューティング(DeCC)プロジェクトに特化して投資されており、20 以上のブロックチェーン ネットワークがプライバシー保護技術を促進するために DeCC アライアンスを結成しています。

しかし、どのプライバシー技術を使用するかを決定しようとしているビルダーにとって、その展望は極めて複雑です。ゼロ知識証明(ZK)、完全準同型暗号(FHE)、信頼実行環境(TEE)、マルチパーティ計算(MPC)は、それぞれ根本的に異なる問題を解決します。間違ったものを選択すると、数年間の開発期間と数百万ドルの資金が無駄になります。

このガイドでは、業界が必要としている比較を提供します。実際のパフォーマンス ベンチマーク、正直な信頼モデルの評価、本番環境へのデプロイ状況、そして 2026 年に実際にリリースされるハイブリッドな組み合わせについて解説します。

各技術の実際の役割

比較する前に、これら 4 つの技術は相互に置き換え可能な代替手段ではないことを理解することが不可欠です。これらは異なる問いに答えます。

ゼロ知識証明(ZK) は、「データを明かさずに何かが真実であることをどう証明するか?」という問いに答えます。ZK システムは、入力を開示することなく、計算が正しく実行されたという暗号化された証明を生成します。出力はバイナリであり、ステートメントが有効か無効かのどちらかです。ZK は主に計算ではなく、検証に関するものです。

完全準同型暗号(FHE) は、「データを復号することなく、どうやってそのデータを計算するか?」という問いに答えます。FHE は、暗号化されたデータに対して直接、任意の計算を行うことを可能にします。結果は暗号化されたままであり、キーの所有者のみが復号できます。FHE はプライバシーを保護した計算に関するものです。

信頼実行環境(TEE) は、「隔離されたハードウェア エンクレーブ内で、どうやって機密データを処理するか?」という問いに答えます。TEE は、プロセッサ レベルの分離(Intel SGX、AMD SEV、ARM CCA)を使用して、オペレーティング システムからさえもコードとデータが保護される安全なエンクレーブを作成します。TEE はハードウェアによって強制される機密性に関するものです。

マルチパーティ計算(MPC) は、「個々の入力を明かさずに、複数の当事者がどのように共同で結果を計算するか?」という問いに答えます。MPC は、最終的な出力以外の情報を単一の参加者が知ることができないように、計算を複数の当事者に分散させます。MPC は信頼を必要としない共同計算に関するものです。

パフォーマンス ベンチマーク:重要な数値

ヴィタリック・ブテリン氏は、業界が絶対的な TPS(秒間トランザクション数)指標から「暗号化オーバーヘッド比率」へと移行すべきだと主張しています。これは、プライバシーがある場合とない場合のタスク実行時間を比較するものです。この枠組みにより、各アプローチの真のコストが明らかになります。

FHE:使用不可能なレベルから実用的なレベルへ

FHE は歴史的に、暗号化されていない計算よりも数百万倍遅いものでした。それはもはや真実ではありません。

最初の FHE ユニコーン(1 億 5,000 万ドル以上の資金調達後、評価額 10 億ドル)である Zama は、2022 年以降、2,300 倍を超える速度向上を報告しています。現在の CPU 上のパフォーマンスは、機密性の高い ERC-20 転送で約 20 TPS に達します。GPU 加速により、これは 20 ~ 30 TPS(Inco Network)に向上し、CPU のみの実行と比較して最大 784 倍の改善が見られます。

Zama のロードマップでは、GPU への移行により 2026 年末までにチェーンあたり 500 ~ 1,000 TPS を目標としており、2027 年から 2028 年には ASIC ベースのアクセラレータによって 100,000 TPS 以上を目指しています。

アーキテクチャが重要です。Zama の機密ブロックチェーン プロトコルは、スマート コントラクトが実際の暗号文ではなく軽量な「ハンドル」を操作するシンボリック実行を使用しています。重い FHE 演算はオフチェーンのコプロセッサで非同期に実行され、オンチェーンのガス代を低く抑えます。

結論: FHE のオーバーヘッドは、一般的な操作において 1,000,000 倍から約 100 ~ 1,000 倍に減少しました。現在は機密性の高い DeFi で利用可能であり、2027 年から 2028 年までには主流の DeFi スループットと同等の競争力を持つようになるでしょう。

ZK:成熟しており高性能

現代の ZK プラットフォームは驚異的な効率を達成しています。SP1、Libra、その他の zkVM は、大規模なワークロードにおいて 20% という低い暗号化オーバーヘッドで、ほぼ線形のプルーバー スケーリングを実証しています。単純な支払いの証明生成は、消費者向けハードウェアで 1 秒未満に短縮されました。

ZK エコシステムは 4 つの技術の中で最も成熟しており、ロールアップ(zkSync、Polygon zkEVM、Scroll、Linea)、アイデンティティ(Worldcoin)、プライバシー プロトコル(Aztec、Zcash)にわたって本番環境でのデプロイ実績があります。

結論: 検証タスクにおいて、ZK は最も低いオーバーヘッドを提供します。この技術は本番環境で実証されていますが、汎用的なプライベート計算はサポートしていません。つまり、実行中の計算の機密性ではなく、正確性を証明するものです。

TEE:高速だがハードウェアに依存

TEE はネイティブに近い速度で動作します。分離が暗号演算ではなくハードウェアによって強制されるため、計算オーバーヘッドが最小限に抑えられるからです。これにより、機密計算において圧倒的に最速の選択肢となります。

トレードオフは信頼です。ハードウェア メーカー(Intel、AMD、ARM)を信頼し、サイドチャネルの脆弱性が存在しないことを信頼しなければなりません。2022 年、致命的な SGX の脆弱性により、Secret Network はネットワーク全体のキー更新を余儀なくされました。これは運用上のリスクを示しています。2025 年の実証研究では、現実世界の TEE プロジェクトの 32% がサイドチャネル暴露のリスクを伴うエンクレーブ内での暗号実装を再実施しており、25% が TEE の保証を弱める安全でない慣行を示していることが明らかになりました。

結論: 最速の実行速度と最低のオーバーヘッドを誇りますが、ハードウェアの信頼という前提条件が導入されます。速度が重要であり、ハードウェア侵害のリスクが許容できるアプリケーションに最適です。

MPC: ネットワークに依存するがレジリエント

MPC のパフォーマンスは、計算能力よりも主にネットワーク通信によって制限されます。各参加者はプロトコル中にデータを交換する必要があり、参加者数や参加者間のネットワーク状況に比例したレイテンシが発生します。

Partisia Blockchain の REAL プロトコルは、事前処理の効率を向上させ、リアルタイムの MPC 計算を可能にしました。Nillion の Curl プロトコルは、線形秘密分散法を拡張し、従来の MPC が苦手としていた複雑な演算(除算、平方根、三角関数)を処理できるようにしています。

結論: 強力なプライバシー保証を備えていますが、パフォーマンスは中程度です。「誠実な過半数(honest-majority)」の仮定は、一部の参加者が侵害されてもプライバシーが保たれることを意味しますが、一方で任意のメンバーが計算を検閲できるという、FHE や ZK と比較した際の根本的な制限があります。

信頼モデル: 真の違いはどこにあるか

ほとんどの分析ではパフォーマンスの比較が重視されますが、長期的なアーキテクチャの決定においては、信頼モデルの方が重要です。

技術信頼モデル発生し得る問題
ZK暗号学的(信頼できる第三者は不要)なし — 証明は数学的に健全である
FHE暗号学的 + 鍵管理鍵の漏洩により、すべての暗号化データが公開される
TEEハードウェアベンダー + アテステーションサイドチャネル攻撃、ファームウェアのバックドア
MPCしきい値ベースの誠実な過半数しきい値を超える共謀によりプライバシーが損なわれる。また、任意の当事者が計算を検閲できる

ZK は、証明システムの数学的な健全性以外に信頼を必要としません。これは利用可能な中で最も強力な信頼モデルです。

FHE は理論上、暗号学的に安全ですが、「誰が復号鍵を保持するか」という問題を導入します。Zama は、しきい値 MPC を使用して秘密鍵を複数の当事者に分散させることでこれを解決しています。つまり、実用的な FHE は、鍵管理において MPC に依存することがよくあります。

TEE は、Intel、AMD、または ARM のハードウェアとファームウェアを信頼する必要があります。この信頼は過去に繰り返し裏切られてきました。CCS 2025 で発表された WireTap 攻撃は、DRAM バスの介在を通じて SGX を突破できることを実証しました。これはソフトウェアアップデートでは修正できない物理的な攻撃ベクトルです。

MPC は参加者間で信頼を分散させますが、誠実な過半数が必要です。しきい値を超えると、すべての入力が公開されてしまいます。さらに、単一の参加者が協力を拒否するだけで、事実上計算を検閲することが可能です。

量子耐性 も別の側面です。FHE は格子ベース暗号(lattice-based cryptography)に依存しているため、本質的に量子耐性があります。TEE は量子耐性を提供しません。ZK と MPC の耐性は、使用される特定のスキームに依存します。

誰が何を構築しているか: 2026 年の展望

FHE プロジェクト

Zama(1 億 5,000 万ドル以上を調達、評価額 10 億ドル): ほとんどの FHE ブロックチェーンプロジェクトを支えるインフラストラクチャ層。2025 年 12 月下旬に Ethereum 上でメインネットをローンチ。$ZAMA トークンのオークションは 2026 年 1 月 12 日に開始されました。Confidential Blockchain Protocol と、暗号化されたスマートコントラクトのための fhEVM フレームワークを構築しました。

Fhenix(2,200 万ドルを調達): Zama の TFHE-rs を使用した、FHE 搭載のオプティミスティック・ロールアップ L2 を構築。最初の実用的な FHE コプロセッサ実装として、Arbitrum 上に CoFHE コプロセッサを展開。日本の大手 IT プロバイダーの 1 つである BIPROGY から戦略的投資を受けています。

Inco Network(450 万ドルを調達): Zama の fhEVM を使用して Confidentiality-as-a-service(サービスとしての機密性)を提供。TEE ベースの高速処理と、FHE+MPC による安全な計算モードの両方を提供しています。

Fhenix と Inco はどちらも Zama のコア技術に依存しています。つまり、どの FHE アプリケーションチェーンが覇権を握るかにかかわらず、Zama が価値を享受する構造になっています。

TEE プロジェクト

Oasis Network: 計算(TEE 内)とコンセンサスを分離する ParaTime アーキテクチャを開拓。TEE 内の鍵管理委員会としきい値暗号を使用しており、単一のノードが復号鍵を制御することはありません。

Phala Network: 分散型 AI インフラストラクチャと TEE を組み合わせています。すべての AI 計算と Phat Contracts は、pRuntime を介して Intel SGX エンクレーブ内で実行されます。

Secret Network: すべてのバリデータが Intel SGX TEE を実行します。コントラクトコードと入力はオンチェーンで暗号化され、実行時にエンクレーブ内でのみ復号されます。2022 年の SGX の脆弱性は、この単一の TEE への依存が持つ脆弱性を露呈させました。

MPC プロジェクト

Partisia Blockchain: 2008 年に実用的な MPC プロトコルを開拓したチームによって設立。彼らの REAL プロトコルは、効率的なデータ事前処理を備えた量子耐性のある MPC を可能にします。最近のトッパン・エッジとの提携では、MPC を生体認証デジタル ID に活用し、顔認証データを復号することなく照合を行っています。

Nillion(4,500 万ドル以上を調達): 2025 年 3 月 24 日にメインネットをローンチし、続いて Binance Launchpool に上場。MPC、準同型暗号、ZK 証明を組み合わせています。エンタープライズ・クラスターには、STC Bahrain、Alibaba Cloud の Cloudician、Vodafone の Pairpoint、Deutsche Telekom などが名を連ねています。

ハイブリッド・アプローチ: 真の未来

Aztec の研究チームが述べたように、完璧な単一のソリューションは存在せず、一つの手法がその完璧なソリューションとして台頭する可能性は低いです。未来はハイブリッド・アーキテクチャにあります。

ZK + MPC は、各当事者が証拠(witness)の一部のみを保持する共同証明生成を可能にします。これは、単一のエンティティがすべてのデータを見るべきではない、複数機関にまたがるシナリオ(コンプライアンス・チェック、国境を越えた決済など)において重要です。

MPC + FHE は FHE の鍵管理問題を解決します。Zama のアーキテクチャは、しきい値 MPC を使用して復号鍵を複数の当事者に分割し、単一障害点を排除しながら、暗号化されたデータ上での計算という FHE の能力を維持します。

ZK + FHE は、暗号化されたデータの内容を明かすことなく、暗号化された計算が正しく実行されたことを証明することを可能にします。オーバーヘッドは依然として大きく、Zama の報告によると、1 回の正しいブートストラップ操作の証明生成には大型の AWS インスタンスで 21 分かかりますが、ハードウェアアクセラレーションによってこの差は縮まりつつあります。

TEE + 暗号学的フォールバック は、高速な実行のために TEE を使用し、ハードウェアが侵害された場合のバックアップとして ZK または FHE を使用します。この「多層防御」アプローチは、TEE のパフォーマンス上の利点を受け入れつつ、その信頼に関する前提条件を緩和します。

2026 年における最も高度なプロダクションシステムは、これら 2 つまたは 3 つの技術を組み合わせています。Nillion のアーキテクチャは、計算要件に応じて MPC、準同型暗号、ZK 証明を使い分けています。Inco Network は、TEE による高速モードと FHE+MPC による安全モードの両方を提供しています。この構成的なアプローチが、今後の標準になる可能性が高いでしょう。

適切な技術の選択

2026 年にアーキテクチャの決定を下すビルダーにとって、その選択は次の 3 つの質問に依存します。

何をしようとしていますか?

  • データを公開せずに事実を証明する → ZK
  • 複数の当事者からの暗号化されたデータに対して計算を行う → FHE
  • 機密データを最高速度で処理する → TEE
  • 互いを信頼することなく、複数の当事者が共同で計算を行う → MPC

信頼に関する制約は何ですか?

  • 完全にトラストレスである必要がある → ZK または FHE
  • ハードウェアの信頼性を受け入れられる → TEE
  • しきい値の仮定を受け入れられる → MPC

パフォーマンスの要件は何ですか?

  • リアルタイム、 1 秒未満 → TEE( または検証のみの ZK )
  • 適度なスループット、高いセキュリティ → MPC
  • 大規模なプライバシー保護 DeFi → FHE( 2026 年 〜 2027 年のタイムライン )
  • 最大限の検証効率 → ZK

機密コンピューティング市場は、 2025 年の 240 億ドルから 2032 年までに 3,500 億ドルに成長すると予測されています。 Zama の FHE コプロセッサから Nillion の MPC オーケストレーション、 Oasis の TEE ParaTimes に至るまで、今日構築されているブロックチェーン プライバシー インフラストラクチャは、その 3,500 億ドルの市場でどのアプリケーションが存在でき、どのアプリケーションが存在できないかを決定することになります。

プライバシーは単なる機能ではありません。それは、規制に準拠した DeFi 、機密 AI 、およびエンタープライズ ブロックチェーンの採用を可能にするインフラストラクチャ レイヤーです。勝利するテクノロジーは、最速のものでも理論的に最もエレガントなものでもありません。開発者が実際に構築できる、本番環境に対応したコンポーザブルなプリミティブを提供するテクノロジーです。

現在の軌道に基づくと、答えはおそらく 4 つすべてです。


BlockEden.xyz は、プライバシー重視のブロックチェーン ネットワークや機密コンピューティング アプリケーションをサポートするマルチチェーン RPC インフラストラクチャを提供しています。プライバシー保護プロトコルが研究段階から本番環境へと成熟するにつれ、信頼性の高いノード インフラストラクチャは、あらゆる暗号化されたトランザクションの基盤となります。エンタープライズ グレードのブロックチェーン アクセスについては、 API マーケットプレイスを探索 してください。