Direkt zum Hauptinhalt

30 Beiträge getaggt mit „KI“

Künstliche Intelligenz und Machine-Learning-Anwendungen

Alle Tags anzeigen

Camp Network: Die Blockchain, die das Milliarden-Dollar-IP-Problem der KI löst 🏕️

· 5 Min. Lesezeit
Dora Noda
Software Engineer

Der Aufstieg generativer KI war geradezu explosiv. Von atemberaubender digitaler Kunst bis hin zu menschenähnlichem Text erstellt KI Inhalte in einem beispiellosen Umfang. Doch dieser Boom hat eine Schattenseite: Woher bezieht die KI ihre Trainingsdaten? Oft stammen sie aus den Weiten des Internets – aus Kunst, Musik und Texten, die von Menschen geschaffen wurden, die keine Anerkennung oder Vergütung erhalten.

Hier kommt Camp Network ins Spiel, ein neues Blockchain-Projekt, das dieses grundlegende Problem lösen will. Es ist nicht nur eine weitere Krypto-Plattform; es ist eine speziell entwickelte „Autonome IP-Schicht“, die Urhebern im Zeitalter der KI Eigentum und Kontrolle über ihre Arbeit geben soll. Tauchen wir ein in das, was Camp Network zu einem Projekt macht, das man im Auge behalten sollte.


Was ist die große Idee?

Im Kern ist Camp Network eine Blockchain, die als globales, überprüfbares Register für geistiges Eigentum (IP) fungiert. Die Mission ist es, jedem – vom unabhängigen Künstler bis zum Social-Media-Nutzer – zu ermöglichen, seine Inhalte On-Chain zu registrieren. Dies schafft eine dauerhafte, manipulationssichere Aufzeichnung von Eigentum und Herkunft.

Warum ist das wichtig? Wenn ein KI-Modell Inhalte verwendet, die auf Camp registriert sind, können die Smart Contracts des Netzwerks Lizenzbedingungen automatisch durchsetzen. Das bedeutet, dass der ursprüngliche Urheber sofort Anerkennung und sogar Tantiemenzahlungen erhalten kann. Camps Vision ist es, eine neue Creator Economy aufzubauen, in der Vergütung kein nachträglicher Gedanke ist; sie ist direkt in das Protokoll integriert.


Unter der Haube: Der Technologie-Stack

Camp ist nicht nur ein Konzept; es wird von ernsthafter Technologie unterstützt, die auf hohe Leistung und Entwicklerfreundlichkeit ausgelegt ist.

  • Modulare Architektur: Camp ist als souveränes Rollup konzipiert, das Celestia für die Datenverfügbarkeit nutzt. Dieses Design ermöglicht es, unglaublich schnell (Ziel sind ~50.000 Transaktionen pro Sekunde) und kostengünstig zu sein, während es vollständig mit den Tools von Ethereum (EVM) kompatibel bleibt.
  • Proof of Provenance (PoP): Dies ist Camps einzigartiger Konsensmechanismus. Anstatt sich auf energieintensives Mining zu verlassen, ist die Sicherheit des Netzwerks an die Überprüfung der Herkunft von Inhalten gebunden. Jede Transaktion verstärkt die Herkunft des IP im Netzwerk und macht das Eigentum „durch Design durchsetzbar“.
  • Dual-VM-Strategie: Um die Leistung zu maximieren, integriert Camp die Solana Virtual Machine (SVM) neben seiner EVM-Kompatibilität. Dies ermöglicht Entwicklern, die beste Umgebung für ihre App zu wählen, insbesondere für Anwendungsfälle mit hohem Durchsatz wie Echtzeit-KI-Interaktionen.
  • Creator- & KI-Toolkits: Camp bietet zwei wichtige Frameworks:
    • Origin Framework: Ein benutzerfreundliches System für Urheber, um ihr IP zu registrieren, es zu tokenisieren (als NFT) und Lizenzregeln einzubetten.
    • mAItrix Framework: Ein Toolkit für Entwickler, um KI-Agenten zu erstellen und bereitzustellen, die sicher und mit Berechtigungen mit dem On-Chain-IP interagieren können.

Menschen, Partnerschaften und Fortschritt

Eine Idee ist nur so gut wie ihre Umsetzung, und Camp scheint gut umzusetzen.

Das Team und die Finanzierung

Das Projekt wird von einem Team mit einer starken Mischung aus Erfahrung von The Raine Group (Medien- & IP-Deals), Goldman Sachs, Figma und CoinList geleitet. Diese Mischung aus Finanz-, Tech-Produkt- und Krypto-Engineering-Expertise hat ihnen geholfen, 30 Millionen US-Dollar an Finanzmitteln von Top-VCs wie 1kx, Blockchain Capital und Maven 11 zu sichern.

Ein wachsendes Ökosystem

Camp hat aggressiv Partnerschaften aufgebaut. Die bedeutendste ist eine strategische Beteiligung am KOR Protocol, einer Plattform zur Tokenisierung von Musik-IP, die mit großen Künstlern wie Deadmau5 und Franchises wie Black Mirror zusammenarbeitet. Diese einzige Partnerschaft stattet Camp mit einer riesigen Bibliothek hochkarätiger, rechtefreier Inhalte aus. Weitere wichtige Kollaborationspartner sind:

  • RewardedTV: Eine dezentrale Video-Streaming-Plattform, die Camp für On-Chain-Inhaltsrechte nutzt.
  • Rarible: Ein integrierter NFT-Marktplatz für den Handel mit IP-Assets.
  • LayerZero: Ein Cross-Chain-Protokoll zur Sicherstellung der Interoperabilität mit anderen Blockchains.

Roadmap und Community

Nach erfolgreichen incentivierten Testnet-Kampagnen, die Zehntausende von Nutzern anzogen (und sie mit Punkten belohnten, die in Tokens umgewandelt werden sollen), strebt Camp einen Mainnet-Start im 3. Quartal 2025 an. Dies wird von einem Token Generation Event für seinen nativen Token, $CAMP, begleitet, der für Gasgebühren, Staking und Governance verwendet wird. Das Projekt hat bereits eine leidenschaftliche Community aufgebaut, die darauf brennt, die Plattform vom ersten Tag an zu nutzen und darauf aufzubauen.


Wie schneidet es im Vergleich ab?

Camp Network ist in diesem Bereich nicht allein. Es steht im harten Wettbewerb mit Projekten wie dem von a16z unterstützten Story Protocol und dem mit Sony verbundenen Soneium. Camp hebt sich jedoch in mehreren wichtigen Punkten ab:

  1. Bottom-Up-Ansatz: Während Wettbewerber große Unternehmens-IP-Inhaber anzusprechen scheinen, konzentriert sich Camp darauf, unabhängige Urheber und Krypto-Communities durch Token-Anreize zu stärken.
  2. Umfassende Lösung: Es bietet eine vollständige Suite von Tools, von einem IP-Register bis zu einem KI-Agenten-Framework, und positioniert sich als One-Stop-Shop.
  3. Leistung und Skalierbarkeit: Seine modulare Architektur und Dual-VM-Unterstützung sind für die hohen Durchsatzanforderungen von KI und Medien ausgelegt.

Das Fazit

Camp Network liefert überzeugende Argumente, um die grundlegende Schicht für geistiges Eigentum in der Web3-Ära zu werden. Durch die Kombination innovativer Technologie, eines starken Teams, strategischer Partnerschaften und eines Community-First-Ethos baut es eine praktische Lösung für eines der drängendsten Probleme auf, die durch generative KI entstehen.

Der eigentliche Test wird mit dem Mainnet-Start und der realen Adoption kommen. Aber mit einer klaren Vision und einer bisher starken Umsetzung ist Camp Network zweifellos ein Schlüsselprojekt, das man beobachten sollte, während es versucht, eine gerechtere Zukunft für digitale Urheber aufzubauen.

BeFreed.ai kennenlernen – Lern-Booster für BlockEden.xyz Builder

· 4 Min. Lesezeit
Dora Noda
Software Engineer

Warum BlockEden.xyz das wichtig ist

In der schnelllebigen Welt von Web3 ist Geschwindigkeit alles. Die Bereitstellung von produktionsreifer RPC- und Staking-Infrastruktur erfordert, dass unser Team und unsere Community ständig an der Spitze der Innovation stehen. Das bedeutet, sich über komplexe Protokolle, bahnbrechende Kryptographie-Papiere und sich schnell entwickelnde Governance-Diskussionen auf dem Laufenden zu halten. Je schneller unsere Community neue Ideen aufnehmen und verstehen kann, desto schneller kann sie die nächste Generation dezentraler Anwendungen aufbauen. Hier kommt BeFreed.ai ins Spiel.

Was BeFreed.ai ist

BeFreed.ai ist ein in San Francisco ansässiges Startup mit einer einfachen, aber wirkungsvollen Mission: Lernen im Zeitalter der KI freudvoll und persönlich zu gestalten. Sie haben einen intelligenten Micro-Learning-Begleiter entwickelt, der auf den anspruchsvollen Lebensstil von Buildern und Kreativen zugeschnitten ist.

Kernbestandteile:

  • Mehrere Formate → ein Klick: BeFreed.ai kann eine Vielzahl von Inhalten – von umfangreichen Büchern und detaillierten Videos bis hin zu komplexen technischen Dokumenten – sofort in schnelle Zusammenfassungen, Lernkarten, detaillierte Notizen und sogar Audio im Podcast-Stil umwandeln.
  • Adaptiver Motor: Die Plattform ist darauf ausgelegt, mit Ihnen gemeinsam zu lernen. Sie achtet auf Ihr Lerntempo und Ihre Interessen und zeigt als Nächstes die relevantesten Informationen an, anstatt Sie durch einen starren, einheitlichen Lehrplan zu zwingen.
  • Integrierter Chat & „Warum-dies“-Erklärungen: Haben Sie eine Frage? Fragen Sie einfach. BeFreed.ai ermöglicht spontane Anfragen zur Klärung komplexer Themen. Es bietet auch Erklärungen, die neue Erkenntnisse mit Ihren übergeordneten Zielen verbinden und den Lernprozess so bedeutungsvoller machen.
  • Eine 43.000 starke Lerngemeinschaft: Lernen ist oft eine gemeinschaftliche Aktivität. BeFreed.ai fördert eine lebendige Gemeinschaft von über 43.000 Lernenden, die ihre Fortschritte teilen, auf aufschlussreiche Inhalte reagieren und wichtige Erkenntnisse hervorheben, wodurch Motivation und Dynamik hochgehalten werden.

Warum es für BlockEden.xyz Builder wichtig ist

Für die engagierten Builder im BlockEden.xyz-Ökosystem ist BeFreed.ai mehr als nur ein Lernwerkzeug; es ist ein strategischer Vorteil. So kann es Ihren Vorsprung schärfen:

  • Zeitgewinn: Verwandeln Sie ein 300-seitiges Whitepaper in eine prägnante 10-minütige Audiozusammenfassung, die Sie vor einer wichtigen Governance-Abstimmung anhören können.
  • Kontextspeicherung: Verwenden Sie Lernkarten und Mind-Maps, um Ihr Verständnis von Protokolldetails zu festigen, die Sie beim Schreiben von Smart-Contract-Indizes benötigen.
  • Cross-Skill-Wachstum: Erweitern Sie Ihre Fähigkeiten, ohne Ihre Entwicklungsumgebung zu verlassen. Erlernen Sie die Grundlagen des Design Thinking, verstehen Sie Wachstumszyklen oder erhalten Sie Tipps zur Go-Concurrency in Ihrer Freizeit.
  • Gemeinsames Vokabular: Erstellen Sie Playlists auf Teamebene, um sicherzustellen, dass jeder Mitwirkende aus derselben destillierten und konsistenten Informationsquelle lernt, was eine bessere Zusammenarbeit und Abstimmung fördert.

BeFreed mit BlockEden.xyz Workflows nutzen

Die Integration von BeFreed.ai in Ihre bestehenden Entwicklungsprozesse ist nahtlos und sofort vorteilhaft:

  1. Spezifikation einfügen: Fügen Sie die URL des neuesten Tokenomics-PDFs oder eines YouTube-Entwickler-Calls in BeFreed ein, um eine sofortige, verständliche Zusammenfassung zu erhalten.
  2. Lernkarten exportieren: Überprüfen Sie Schlüsselkonzepte während CI-Läufen. Diese Form der Wiederholung ist weitaus effektiver als die mentale Ermüdung, die durch ständiges Kontextwechseln entsteht.
  3. Link in Docs: Betten Sie eine BeFreed-Zusammenfassungs-URL neben jeder API-Referenz in Ihrer Dokumentation ein, um neuen Teammitgliedern zu helfen, sich schneller einzuarbeiten.
  4. Auf dem Laufenden bleiben: Richten Sie wöchentliche Digests in BeFreed zu neuen L2s ein und setzen Sie dieses Wissen sofort in die Praxis um, indem Sie mit den Multi-Chain-RPC-Diensten von BlockEden.xyz Prototypen entwickeln.

Erste Schritte

BeFreed.ai ist jetzt für iOS, Android und im Web verfügbar. Wir ermutigen Sie, es während Ihres nächsten BlockEden.xyz-Projekt-Sprints auszuprobieren und zu erleben, wie es Ihre Lern- und Entwicklungsgeschwindigkeit steigern kann. Unser Team erforscht bereits engere Integrationen – stellen Sie sich eine Zukunft vor, in der ein Webhook jede zusammengeführte PR-Beschreibung automatisch in ein umfassendes Lernset verwandelt.

KI und Web3 durch MCP verbinden: Eine Panorama-Analyse

· 44 Min. Lesezeit
Dora Noda
Software Engineer

Einleitung

KI und Web3 konvergieren auf wirkungsvolle Weise, wobei allgemeine KI-Schnittstellen nun als Bindegewebe für das dezentrale Web konzipiert werden. Ein Schlüsselkonzept, das aus dieser Konvergenz hervorgeht, ist MCP, das je nach Kontext für „Model Context Protocol“ (wie von Anthropic eingeführt) steht oder in breiteren Diskussionen lose als Metaverse Connection Protocol beschrieben wird. Im Wesentlichen ist MCP ein standardisiertes Framework, das KI-Systemen ermöglicht, auf natürliche und sichere Weise mit externen Tools und Netzwerken zu interagieren – und potenziell KI-Agenten in jeden Winkel des Web3-Ökosystems „einzubinden“. Dieser Bericht bietet eine umfassende Analyse, wie allgemeine KI-Schnittstellen (wie Agenten großer Sprachmodelle und neuronal-symbolische Systeme) alles in der Web3-Welt über MCP verbinden könnten, einschließlich des historischen Hintergrunds, der technischen Architektur, der Branchenlandschaft, der Risiken und des Zukunftspotenzials.

1. Entwicklungshintergrund

1.1 Die Evolution von Web3 und unerfüllte Versprechen

Der Begriff „Web3“ wurde um 2014 geprägt, um ein Blockchain-gestütztes dezentrales Web zu beschreiben. Die Vision war ehrgeizig: ein berechtigungsfreies Internet, das auf Benutzerbesitz ausgerichtet ist. Enthusiasten stellten sich vor, die zentralisierte Infrastruktur von Web2 durch Blockchain-basierte Alternativen zu ersetzen – z. B. Ethereum Name Service (für DNS), Filecoin oder IPFS (für Speicher) und DeFi für Finanzschienen. Theoretisch würde dies Big Tech-Plattformen die Kontrolle entreißen und Einzelpersonen Selbstsouveränität über Daten, Identität und Vermögenswerte geben.

Die Realität blieb hinter den Erwartungen zurück. Trotz jahrelanger Entwicklung und Hype blieb der Mainstream-Einfluss von Web3 marginal. Durchschnittliche Internetnutzer strömten nicht zu dezentralen sozialen Medien oder begannen, private Schlüssel zu verwalten. Hauptgründe waren eine schlechte Benutzererfahrung, langsame und teure Transaktionen, aufsehenerregende Betrügereien und regulatorische Unsicherheit. Das dezentrale „Besitz-Web“ „materialisierte sich“ weitgehend nicht über eine Nischengemeinschaft hinaus. Mitte der 2020er Jahre gaben selbst Krypto-Befürworter zu, dass Web3 keinen Paradigmenwechsel für den Durchschnittsnutzer gebracht hatte.

Währenddessen erlebte die KI eine Revolution. Als Kapital und Entwicklertalente von Krypto zu KI wechselten, eroberten transformative Fortschritte im Deep Learning und bei den Grundmodellen (GPT-3, GPT-4 usw.) die öffentliche Vorstellungskraft. Generative KI zeigte einen klaren Nutzen – die Produktion von Inhalten, Code und Entscheidungen – auf eine Weise, die Krypto-Anwendungen nur schwer erreichen konnten. Tatsächlich übertraf der Einfluss großer Sprachmodelle in nur wenigen Jahren die Benutzerakzeptanz der Blockchain über ein Jahrzehnt hinweg deutlich. Dieser Kontrast führte dazu, dass einige spöttisch bemerkten, „Web3 sei an Krypto verschwendet worden“ und dass das eigentliche Web 3.0 aus der KI-Welle hervorgehe.

1.2 Der Aufstieg allgemeiner KI-Schnittstellen

Über Jahrzehnte hinweg entwickelten sich Benutzeroberflächen von statischen Webseiten (Web1.0) zu interaktiven Apps (Web2.0) – aber immer innerhalb der Grenzen des Klickens auf Schaltflächen und Ausfüllens von Formularen. Mit moderner KI, insbesondere großen Sprachmodellen (LLMs), ist ein neues Schnittstellenparadigma da: natürliche Sprache. Benutzer können einfach ihre Absicht in einfacher Sprache ausdrücken und KI-Systeme komplexe Aktionen über viele Domänen hinweg ausführen lassen. Dieser Wandel ist so tiefgreifend, dass einige vorschlagen, „Web 3.0“ als die Ära der KI-gesteuerten Agenten („das Agentic Web“) neu zu definieren, anstatt der früheren Blockchain-zentrierten Definition.

Frühe Experimente mit autonomen KI-Agenten zeigten jedoch einen kritischen Engpass auf. Diese Agenten – z. B. Prototypen wie AutoGPT – konnten Text oder Code generieren, aber es fehlte ihnen an einer robusten Möglichkeit, mit externen Systemen und untereinander zu kommunizieren. Es gab „keine gemeinsame KI-native Sprache“ für Interoperabilität. Jede Integration mit einem Tool oder einer Datenquelle war ein maßgeschneiderter Hack, und die KI-zu-KI-Interaktion hatte kein Standardprotokoll. Praktisch gesehen könnte ein KI-Agent eine große Denkfähigkeit besitzen, aber bei der Ausführung von Aufgaben scheitern, die die Nutzung von Web-Apps oder On-Chain-Diensten erforderten, einfach weil er nicht wusste, wie er mit diesen Systemen „sprechen“ sollte. Diese Diskrepanz – leistungsstarke Gehirne, primitive E/A – war vergleichbar mit einer superintelligenten Software, die hinter einer klobigen GUI feststeckte.

1.3 Konvergenz und das Aufkommen von MCP

Bis 2024 wurde deutlich, dass für die volle Entfaltung des KI-Potenzials (und für die Erfüllung des Web3-Versprechens) eine Konvergenz erforderlich war: KI-Agenten benötigen nahtlosen Zugang zu den Fähigkeiten von Web3 (dezentrale Anwendungen, Smart Contracts, Daten), und Web3 benötigt mehr Intelligenz und Benutzerfreundlichkeit, die KI bieten kann. Dies ist der Kontext, in dem MCP (Model Context Protocol) geboren wurde. Ende 2024 von Anthropic eingeführt, ist MCP ein offener Standard für die KI-Tool-Kommunikation, der sich für LLMs natürlich anfühlt. Es bietet eine strukturierte, auffindbare Möglichkeit für KI-„Hosts“ (wie ChatGPT, Claude usw.), eine Vielzahl externer Tools und Ressourcen über MCP-Server zu finden und zu nutzen. Mit anderen Worten, MCP ist eine gemeinsame Schnittstellenschicht, die es KI-Agenten ermöglicht, sich in Webdienste, APIs und sogar Blockchain-Funktionen einzuklinken, ohne jede Integration individuell programmieren zu müssen.

Betrachten Sie MCP als „den USB-C der KI-Schnittstellen“. So wie USB-C die Verbindung von Geräten standardisierte (sodass Sie nicht für jedes Gerät unterschiedliche Kabel benötigen), standardisiert MCP die Verbindung von KI-Agenten mit Tools und Daten. Anstatt für jeden Dienst (Slack vs. Gmail vs. Ethereum-Node) unterschiedliche API-Aufrufe fest zu codieren, kann ein Entwickler die MCP-Spezifikation einmal implementieren, und jede MCP-kompatible KI kann verstehen, wie dieser Dienst zu nutzen ist. Große KI-Akteure erkannten schnell die Bedeutung: Anthropic stellte MCP als Open Source zur Verfügung, und Unternehmen wie OpenAI und Google entwickeln Unterstützung dafür in ihren Modellen. Diese Dynamik deutet darauf hin, dass MCP (oder ähnliche „Meta Connectivity Protocols“) das Rückgrat werden könnte, das KI und Web3 endlich auf skalierbare Weise verbindet.

Bemerkenswerterweise argumentieren einige Technologen, dass diese KI-zentrierte Konnektivität die eigentliche Verwirklichung von Web3.0 ist. In Simba Khadders Worten: „MCP zielt darauf ab, eine API zwischen LLMs und Anwendungen zu standardisieren“, ähnlich wie REST-APIs Web 2.0 ermöglichten – was bedeutet, dass die nächste Ära von Web3 eher durch intelligente Agenten-Schnittstellen als nur durch Blockchains definiert werden könnte. Anstatt Dezentralisierung um ihrer selbst willen, könnte die Konvergenz mit KI die Dezentralisierung nützlich machen, indem sie Komplexität hinter natürlicher Sprache und autonomen Agenten verbirgt. Der Rest dieses Berichts befasst sich damit, wie KI-Allgemeinschnittstellen (über Protokolle wie MCP) technisch und praktisch alles in der Web3-Welt verbinden können.

2. Technische Architektur: KI-Schnittstellen als Brücke zu Web3-Technologien

Die Einbettung von KI-Agenten in den Web3-Stack erfordert eine Integration auf mehreren Ebenen: Blockchain-Netzwerke und Smart Contracts, dezentraler Speicher, Identitätssysteme und Token-basierte Ökonomien. Allgemeine KI-Schnittstellen – von großen Basismodellen bis hin zu hybriden neuronal-symbolischen Systemen – können als „universeller Adapter“ dienen, der diese Komponenten verbindet. Im Folgenden analysieren wir die Architektur einer solchen Integration:

** Abbildung: Ein konzeptionelles Diagramm der MCP-Architektur, das zeigt, wie KI-Hosts (LLM-basierte Anwendungen wie Claude oder ChatGPT) einen MCP-Client verwenden, um sich mit verschiedenen MCP-Servern zu verbinden. Jeder Server bietet eine Brücke zu einem externen Tool oder Dienst (z. B. Slack, Gmail, Kalender oder lokale Daten), analog zu Peripheriegeräten, die über einen universellen Hub verbunden sind. Diese standardisierte MCP-Schnittstelle ermöglicht KI-Agenten den Zugriff auf Remote-Dienste und On-Chain-Ressourcen über ein gemeinsames Protokoll.**

2.1 KI-Agenten als Web3-Clients (Integration mit Blockchains)

Im Kern von Web3 stehen Blockchains und Smart Contracts – dezentrale Zustandsmaschinen, die Logik auf vertrauenslose Weise durchsetzen können. Wie kann eine KI-Schnittstelle damit interagieren? Es gibt zwei Richtungen zu berücksichtigen:

  • KI liest von der Blockchain: Ein KI-Agent benötigt möglicherweise On-Chain-Daten (z. B. Token-Preise, Vermögenssaldo des Benutzers, DAO-Vorschläge) als Kontext für seine Entscheidungen. Traditionell erfordert das Abrufen von Blockchain-Daten die Schnittstelle zu Node-RPC-APIs oder Subgraph-Datenbanken. Mit einem Framework wie MCP kann eine KI einen standardisierten „Blockchain-Daten“-MCP-Server abfragen, um Live-On-Chain-Informationen abzurufen. Zum Beispiel könnte ein MCP-fähiger Agent nach dem neuesten Transaktionsvolumen eines bestimmten Tokens oder dem Zustand eines Smart Contracts fragen, und der MCP-Server würde die Low-Level-Details der Verbindung zur Blockchain handhaben und die Daten in einem Format zurückgeben, das die KI verwenden kann. Dies erhöht die Interoperabilität, indem die KI von einem spezifischen Blockchain-API-Format entkoppelt wird.

  • KI schreibt auf die Blockchain: Leistungsfähiger noch können KI-Agenten Smart-Contract-Aufrufe oder Transaktionen über Web3-Integrationen ausführen. Eine KI könnte beispielsweise autonom einen Handel an einer dezentralen Börse ausführen oder Parameter in einem Smart Contract anpassen, wenn bestimmte Bedingungen erfüllt sind. Dies wird erreicht, indem die KI einen MCP-Server aufruft, der die Blockchain-Transaktionsfunktionalität kapselt. Ein konkretes Beispiel ist der thirdweb MCP-Server für EVM-Ketten, der es jedem MCP-kompatiblen KI-Client ermöglicht, mit Ethereum, Polygon, BSC usw. zu interagieren, indem ketten-spezifische Mechaniken abstrahiert werden. Mit einem solchen Tool könnte ein KI-Agent On-Chain-Aktionen „ohne menschliches Eingreifen“ auslösen und so autonome dApps ermöglichen – zum Beispiel ein KI-gesteuerter DeFi-Vault, der sich selbst neu ausbalanciert, indem er Transaktionen signiert, wenn sich die Marktbedingungen ändern.

Im Hintergrund basieren diese Interaktionen immer noch auf Wallets, Schlüsseln und Gasgebühren, aber die KI-Schnittstelle kann kontrollierten Zugriff auf ein Wallet (mit geeigneten Sicherheits-Sandboxes) erhalten, um die Transaktionen durchzuführen. Orakel und Cross-Chain-Brücken spielen ebenfalls eine Rolle: Orakel-Netzwerke wie Chainlink dienen als Brücke zwischen KI und Blockchains und ermöglichen es, KI-Outputs vertrauenswürdig On-Chain einzuspeisen. Chainlinks Cross-Chain Interoperability Protocol (CCIP) könnte beispielsweise einem als zuverlässig erachteten KI-Modell ermöglichen, mehrere Smart Contracts über verschiedene Ketten hinweg gleichzeitig im Namen eines Benutzers auszulösen. Zusammenfassend können allgemeine KI-Schnittstellen als eine neue Art von Web3-Client fungieren – einer, der sowohl Blockchain-Daten konsumieren als auch Blockchain-Transaktionen über standardisierte Protokolle produzieren kann.

2.2 Neuronal-Symbolische Synergie: KI-Denkfähigkeit mit Smart Contracts kombinieren

Ein faszinierender Aspekt der KI-Web3-Integration ist das Potenzial für neuronal-symbolische Architekturen, die die Lernfähigkeit von KI (neuronale Netze) mit der rigorosen Logik von Smart Contracts (symbolische Regeln) verbinden. In der Praxis könnte dies bedeuten, dass KI-Agenten unstrukturierte Entscheidungsfindung übernehmen und bestimmte Aufgaben zur überprüfbaren Ausführung an Smart Contracts weitergeben. Zum Beispiel könnte eine KI die Marktstimmung analysieren (eine unscharfe Aufgabe), aber dann Trades über einen deterministischen Smart Contract ausführen, der vordefinierten Risikoregeln folgt. Das MCP-Framework und verwandte Standards machen solche Übergaben machbar, indem sie der KI eine gemeinsame Schnittstelle bieten, um Vertragsfunktionen aufzurufen oder die Regeln einer DAO abzufragen, bevor sie handelt.

Ein konkretes Beispiel ist SingularityNETs AI-DSL (AI Domain Specific Language), das darauf abzielt, die Kommunikation zwischen KI-Agenten in ihrem dezentralen Netzwerk zu standardisieren. Dies kann als ein Schritt in Richtung neuronal-symbolischer Integration gesehen werden: eine formale Sprache (symbolisch) für Agenten, um KI-Dienste oder Daten voneinander anzufordern. Ähnlich könnten Projekte wie DeepMinds AlphaCode oder andere schließlich so verbunden werden, dass Smart Contracts KI-Modelle für die On-Chain-Problemlösung aufrufen. Obwohl das direkte Ausführen großer KI-Modelle On-Chain heute unpraktisch ist, entstehen hybride Ansätze: z. B. erlauben bestimmte Blockchains die Verifizierung von ML-Berechnungen über Zero-Knowledge-Proofs oder vertrauenswürdige Ausführung, was die On-Chain-Verifizierung von Off-Chain-KI-Ergebnissen ermöglicht. Zusammenfassend sieht die technische Architektur KI-Systeme und Blockchain-Smart Contracts als komplementäre Komponenten vor, die über gemeinsame Protokolle orchestriert werden: KI übernimmt Wahrnehmung und offene Aufgaben, während Blockchains Integrität, Speicher und die Durchsetzung vereinbarter Regeln bieten.

2.3 Dezentraler Speicher und Daten für KI

KI lebt von Daten, und Web3 bietet neue Paradigmen für Datenspeicherung und -freigabe. Dezentrale Speichernetzwerke (wie IPFS/Filecoin, Arweave, Storj usw.) können sowohl als Repositories für KI-Modellartefakte als auch als Quellen für Trainingsdaten dienen, mit Blockchain-basierter Zugriffskontrolle. Eine allgemeine KI-Schnittstelle könnte über MCP oder Ähnliches Dateien oder Wissen aus dezentralem Speicher genauso einfach abrufen wie von einer Web2-API. Zum Beispiel könnte ein KI-Agent einen Datensatz vom Markt des Ocean Protocols oder eine verschlüsselte Datei aus einem verteilten Speicher abrufen, wenn er die entsprechenden Schlüssel oder Zahlungen besitzt.

Ocean Protocol hat sich insbesondere als Plattform für eine „KI-Datenökonomie“ positioniert – indem es Blockchain nutzt, um Daten und sogar KI-Dienste zu tokenisieren. In Ocean werden Datensätze durch Datatoken repräsentiert, die den Zugriff steuern; ein KI-Agent könnte einen Datatoken erhalten (vielleicht durch Zahlung mit Krypto oder über ein Zugriffsrecht) und dann einen Ocean MCP-Server verwenden, um die tatsächlichen Daten zur Analyse abzurufen. Oceans Ziel ist es, „ruhende Daten“ für KI freizuschalten, das Teilen zu fördern und gleichzeitig die Privatsphäre zu wahren. So könnte eine Web3-verbundene KI auf ein riesiges, dezentrales Informationskorpus zugreifen – von persönlichen Datentresoren bis hin zu offenen Regierungsdaten –, das zuvor isoliert war. Die Blockchain stellt sicher, dass die Nutzung der Daten transparent ist und fair belohnt werden kann, was einen positiven Kreislauf antreibt, in dem mehr Daten für KI verfügbar werden und mehr KI-Beiträge (wie trainierte Modelle) monetarisiert werden können.

Dezentrale Identitätssysteme spielen hier ebenfalls eine Rolle (näher erläutert im nächsten Unterabschnitt): Sie können dabei helfen zu kontrollieren, wer oder was auf bestimmte Daten zugreifen darf. Zum Beispiel könnte ein medizinischer KI-Agent aufgefordert werden, eine überprüfbare Berechtigung (On-Chain-Nachweis der Einhaltung von HIPAA oder Ähnlichem) vorzulegen, bevor er einen medizinischen Datensatz aus dem persönlichen IPFS-Speicher eines Patienten entschlüsseln darf. Auf diese Weise stellt die technische Architektur sicher, dass Daten an die KI fließen, wo dies angemessen ist, aber mit On-Chain-Governance und Audit-Trails, um Berechtigungen durchzusetzen.

2.4 Identitäts- und Agentenmanagement in einer dezentralen Umgebung

Wenn autonome KI-Agenten in einem offenen Ökosystem wie Web3 agieren, werden Identität und Vertrauen von größter Bedeutung. Dezentrale Identitäts-Frameworks (DID) bieten eine Möglichkeit, digitale Identitäten für KI-Agenten zu etablieren, die kryptografisch verifiziert werden können. Jeder Agent (oder der Mensch/die Organisation, der/die ihn einsetzt) kann eine DID und zugehörige verifizierbare Berechtigungsnachweise besitzen, die seine Attribute und Berechtigungen festlegen. Zum Beispiel könnte ein KI-Handelsbot einen Berechtigungsnachweis tragen, der von einer regulatorischen Sandbox ausgestellt wurde und bescheinigt, dass er innerhalb bestimmter Risikolimits operieren darf, oder ein KI-Inhaltsmoderator könnte nachweisen, dass er von einer vertrauenswürdigen Organisation erstellt wurde und Bias-Tests durchlaufen hat.

Durch On-Chain-Identitätsregister und Reputationssysteme kann die Web3-Welt die Verantwortlichkeit für KI-Aktionen durchsetzen. Jede Transaktion, die ein KI-Agent durchführt, kann auf seine ID zurückverfolgt werden, und wenn etwas schiefgeht, sagen die Berechtigungsnachweise aus, wer ihn gebaut hat oder wer verantwortlich ist. Dies adressiert eine kritische Herausforderung: Ohne Identität könnte ein böswilliger Akteur gefälschte KI-Agenten erstellen, um Systeme auszunutzen oder Fehlinformationen zu verbreiten, und niemand könnte Bots von legitimen Diensten unterscheiden. Dezentrale Identität hilft, dies zu mindern, indem sie eine robuste Authentifizierung ermöglicht und authentische KI-Agenten von Fälschungen unterscheidet.

In der Praxis würde eine mit Web3 integrierte KI-Schnittstelle Identitätsprotokolle verwenden, um ihre Aktionen und Anfragen zu signieren. Wenn beispielsweise ein KI-Agent einen MCP-Server aufruft, um ein Tool zu verwenden, könnte er einen Token oder eine Signatur enthalten, die mit seiner dezentralen Identität verknüpft ist, sodass der Server überprüfen kann, ob der Aufruf von einem autorisierten Agenten stammt. Blockchain-basierte Identitätssysteme (wie Ethereums ERC-725 oder W3C DIDs, die in einem Ledger verankert sind) stellen sicher, dass diese Verifizierung vertrauenslos und global überprüfbar ist. Das aufkommende Konzept der „KI-Wallets“ knüpft hier an – im Wesentlichen erhalten KI-Agenten Kryptowährungs-Wallets, die mit ihrer Identität verknüpft sind, sodass sie Schlüssel verwalten, für Dienste bezahlen oder Token als Kaution staken können (die bei Fehlverhalten entzogen werden könnte). ArcBlock hat beispielsweise diskutiert, wie „KI-Agenten ein Wallet benötigen“ und eine DID, um in dezentralen Umgebungen verantwortungsvoll zu agieren.

Zusammenfassend sieht die technische Architektur KI-Agenten als Bürger erster Klasse in Web3 vor, jeder mit einer On-Chain-Identität und möglicherweise einem Anteil am System, die Protokolle wie MCP zur Interaktion nutzen. Dies schafft ein Vertrauensnetzwerk: Smart Contracts können die Anmeldeinformationen einer KI verlangen, bevor sie kooperieren, und Benutzer können Aufgaben nur an jene KI delegieren, die bestimmte On-Chain-Zertifizierungen erfüllen. Es ist eine Mischung aus KI-Fähigkeit und den Vertrauensgarantien der Blockchain.

2.5 Token-Ökonomien und Anreize für KI

Tokenisierung ist ein Markenzeichen von Web3 und erstreckt sich auch auf den Bereich der KI-Integration. Durch die Einführung wirtschaftlicher Anreize über Token können Netzwerke gewünschte Verhaltensweisen sowohl von KI-Entwicklern als auch von den Agenten selbst fördern. Es zeichnen sich mehrere Muster ab:

  • Zahlung für Dienstleistungen: KI-Modelle und -Dienste können On-Chain monetarisiert werden. SingularityNET leistete hier Pionierarbeit, indem es Entwicklern ermöglichte, KI-Dienste bereitzustellen und Benutzer für jeden Aufruf in einem nativen Token (AGIX) zu belasten. In einer MCP-fähigen Zukunft könnte man sich jedes KI-Tool oder -Modell als Plug-and-Play-Dienst vorstellen, dessen Nutzung über Token oder Mikrozahlungen abgerechnet wird. Wenn beispielsweise ein KI-Agent eine Drittanbieter-Vision-API über MCP verwendet, könnte er die Zahlung automatisch abwickeln, indem er Token an den Smart Contract des Dienstanbieters überweist. Fetch.ai stellt sich ähnlich Marktplätze vor, auf denen „autonome Wirtschaftsagenten“ Dienste und Daten handeln, wobei ihr neues Web3 LLM (ASI-1) vermutlich Krypto-Transaktionen für den Wertetausch integriert.

  • Staking und Reputation: Um Qualität und Zuverlässigkeit zu gewährleisten, verlangen einige Projekte von Entwicklern oder Agenten, Token zu staken. Zum Beispiel plant das DeMCP-Projekt (ein dezentraler MCP-Server-Marktplatz), Token-Anreize zu nutzen, um Entwickler für die Erstellung nützlicher MCP-Server zu belohnen und sie möglicherweise Token als Zeichen des Engagements für die Sicherheit ihres Servers staken zu lassen. Reputation könnte auch an Token gebunden sein; z. B. könnte ein Agent, der konstant gute Leistungen erbringt, Reputations-Token oder positive On-Chain-Bewertungen ansammeln, während einer, der sich schlecht verhält, seinen Einsatz verlieren oder negative Bewertungen erhalten könnte. Diese tokenisierte Reputation kann dann in das oben erwähnte Identitätssystem zurückfließen (Smart Contracts oder Benutzer überprüfen die On-Chain-Reputation des Agenten, bevor sie ihm vertrauen).

  • Governance-Token: Wenn KI-Dienste Teil dezentraler Plattformen werden, ermöglichen Governance-Token der Community, deren Entwicklung zu steuern. Projekte wie SingularityNET und Ocean verfügen über DAOs, in denen Token-Inhaber über Protokolländerungen oder die Finanzierung von KI-Initiativen abstimmen. In der kombinierten Artificial Superintelligence (ASI) Alliance – einer neu angekündigten Fusion von SingularityNET, Fetch.ai und Ocean Protocol – soll ein einheitlicher Token (ASI) die Richtung eines gemeinsamen KI+Blockchain-Ökosystems steuern. Solche Governance-Token könnten über Richtlinien entscheiden, wie z. B. welche Standards übernommen werden sollen (z. B. Unterstützung von MCP- oder A2A-Protokollen), welche KI-Projekte inkubiert werden sollen oder wie ethische Richtlinien für KI-Agenten gehandhabt werden sollen.

  • Zugang und Nutzen: Token können den Zugang nicht nur zu Daten (wie bei Oceans Datatoken), sondern auch zur Nutzung von KI-Modellen steuern. Ein mögliches Szenario sind „Modell-NFTs“ oder Ähnliches, bei denen der Besitz eines Tokens Rechte an den Ausgaben eines KI-Modells oder einen Anteil an dessen Gewinnen gewährt. Dies könnte dezentrale KI-Marktplätze untermauern: Stellen Sie sich einen NFT vor, der einen Teilsbesitz an einem leistungsstarken Modell darstellt; die Eigentümer verdienen gemeinsam, wann immer das Modell in Inferenzaufgaben verwendet wird, und sie können über dessen Feinabstimmung abstimmen. Obwohl experimentell, stimmt dies mit dem Web3-Ethos des gemeinsamen Eigentums überein, angewendet auf KI-Assets.

Technisch gesehen bedeutet die Integration von Token, dass KI-Agenten Wallet-Funktionalität benötigen (wie bereits erwähnt, werden viele ihre eigenen Krypto-Wallets haben). Über MCP könnte eine KI ein „Wallet-Tool“ haben, das es ihr ermöglicht, Salden zu überprüfen, Token zu senden oder DeFi-Protokolle aufzurufen (vielleicht um einen Token gegen einen anderen zu tauschen, um einen Dienst zu bezahlen). Wenn beispielsweise ein auf Ethereum laufender KI-Agent Ocean-Token benötigt, um einen Datensatz zu kaufen, könnte er automatisch ETH gegen $OCEAN über eine DEX mit einem MCP-Plugin tauschen und dann den Kauf fortsetzen – alles ohne menschliches Eingreifen, geleitet von den Richtlinien, die sein Besitzer festgelegt hat.

Insgesamt bildet die Token-Ökonomie die Anreizschicht in der KI-Web3-Architektur und stellt sicher, dass Mitwirkende (ob sie Daten, Modellcode, Rechenleistung oder Sicherheitsaudits bereitstellen) belohnt werden und dass KI-Agenten „Skin in the Game“ haben, was sie (bis zu einem gewissen Grad) mit menschlichen Absichten in Einklang bringt.

3. Branchenlandschaft

Die Konvergenz von KI und Web3 hat ein lebendiges Ökosystem von Projekten, Unternehmen und Allianzen ins Leben gerufen. Im Folgenden geben wir einen Überblick über wichtige Akteure und Initiativen, die diesen Bereich vorantreiben, sowie über aufkommende Anwendungsfälle. Tabelle 1 bietet einen Überblick über bemerkenswerte Projekte und ihre Rollen in der KI-Web3-Landschaft:

Tabelle 1: Wichtige Akteure in KI + Web3 und ihre Rollen

Projekt / AkteurFokus & BeschreibungRolle in der KI-Web3-Konvergenz und Anwendungsfälle
Fetch.ai (Fetch)KI-Agentenplattform mit einer nativen Blockchain (Cosmos-basiert). Entwickelte Frameworks für autonome Agenten und führte kürzlich „ASI-1 Mini“ ein, ein Web3-optimiertes LLM.Ermöglicht agentenbasierte Dienste in Web3. Fetchs Agenten können Aufgaben wie dezentrale Logistik, Parkplatzsuche oder DeFi-Handel im Namen von Benutzern ausführen, wobei Krypto für Zahlungen verwendet wird. Partnerschaften (z. B. mit Bosch) und die Fetch-AI-Allianzfusion positionieren es als Infrastruktur für die Bereitstellung von agentenbasierten dApps.
Ocean Protocol (Ocean)Dezentraler Datenmarktplatz und Datenprotokoll. Spezialisiert auf die Tokenisierung von Datensätzen und Modellen mit datenschutzfreundlicher Zugriffskontrolle.Bietet das Daten-Rückgrat für KI in Web3. Ocean ermöglicht es KI-Entwicklern, Datensätze zu finden und zu kaufen oder trainierte Modelle in einer vertrauenslosen Datenökonomie zu verkaufen. Indem es KI mit zugänglicheren Daten versorgt (und gleichzeitig Datenanbieter belohnt), unterstützt es KI-Innovation und den Datenaustausch für das Training. Ocean ist Teil der neuen ASI-Allianz und integriert seine Datendienste in ein breiteres KI-Netzwerk.
SingularityNET (SNet)Ein dezentraler KI-Dienstleistungsmarktplatz, gegründet vom KI-Pionier Ben Goertzel. Ermöglicht jedem, KI-Algorithmen über seine Blockchain-basierte Plattform zu veröffentlichen oder zu nutzen, unter Verwendung des AGIX-Tokens.Pionierarbeit beim Konzept eines offenen KI-Marktplatzes auf der Blockchain. Es fördert ein Netzwerk von KI-Agenten und -Diensten, die interoperieren können (Entwicklung einer speziellen AI-DSL für die Agentenkommunikation). Anwendungsfälle umfassen KI-as-a-Service für Aufgaben wie Analyse, Bilderkennung usw., alle über eine dApp zugänglich. Fusioniert nun mit Fetch und Ocean (ASI-Allianz), um KI, Agenten und Daten in einem Ökosystem zu vereinen.
Chainlink (Orakel-Netzwerk)Dezentrales Orakel-Netzwerk, das Blockchains mit Off-Chain-Daten und -Berechnungen verbindet. Kein KI-Projekt an sich, aber entscheidend für die Verbindung von On-Chain-Smart Contracts mit externen APIs und Systemen.Fungiert als sichere Middleware für die KI-Web3-Integration. Chainlink-Orakel können KI-Modellausgaben in Smart Contracts einspeisen, wodurch On-Chain-Programme auf KI-Entscheidungen reagieren können. Umgekehrt können Orakel Daten von Blockchains für KI abrufen. Chainlinks Architektur kann sogar die Ergebnisse mehrerer KI-Modelle aggregieren, um die Zuverlässigkeit zu verbessern (ein „Wahrheitsmaschinen“-Ansatz zur Minderung von KI-Halluzinationen). Es bietet im Wesentlichen die Grundlagen für Interoperabilität und stellt sicher, dass KI-Agenten und Blockchain sich auf vertrauenswürdige Daten einigen.
Anthropic & OpenAI (KI-Anbieter)Entwickler von hochmodernen Basismodellen (Claude von Anthropic, GPT von OpenAI). Sie integrieren Web3-freundliche Funktionen, wie native Tool-Use-APIs und Unterstützung für Protokolle wie MCP.Diese Unternehmen treiben die KI-Schnittstellentechnologie voran. Anthropic's Einführung von MCP setzte den Standard für LLMs, die mit externen Tools interagieren. OpenAI hat Plugin-Systeme für ChatGPT implementiert (analog zum MCP-Konzept) und erforscht die Verbindung von Agenten mit Datenbanken und möglicherweise Blockchains. Ihre Modelle dienen als die „Gehirne“, die, wenn sie über MCP verbunden sind, mit Web3 interagieren können. Große Cloud-Anbieter (z. B. Googles A2A-Protokoll) entwickeln ebenfalls Standards für Multi-Agenten- und Tool-Interaktionen, die der Web3-Integration zugutekommen werden.
Weitere aufstrebende AkteureLumoz: konzentriert sich auf MCP-Server und KI-Tool-Integration in Ethereum (genannt „Ethereum 3.0“) – z. B. Überprüfung von On-Chain-Salden über KI-Agenten. Alethea AI: erstellt intelligente NFT-Avatare für das Metaverse. Cortex: eine Blockchain, die On-Chain-KI-Modellinferenz über Smart Contracts ermöglicht. Golem & Akash: dezentrale Computing-Marktplätze, die KI-Workloads ausführen können. Numerai: Crowdsourcing-KI-Modelle für Finanzen mit Krypto-Anreizen.Diese vielfältige Gruppe adressiert Nischenaspekte: KI im Metaverse (KI-gesteuerte NPCs und Avatare, die über NFTs besessen werden), On-Chain-KI-Ausführung (Ausführung von ML-Modellen auf dezentrale Weise, obwohl derzeit aufgrund der Rechenkosten auf kleine Modelle beschränkt) und dezentrales Computing (damit KI-Trainings- oder Inferenzaufgaben auf Token-incentivierte Nodes verteilt werden können). Diese Projekte zeigen die vielen Richtungen der KI-Web3-Fusion – von Spielwelten mit KI-Charakteren bis hin zu Crowdsourcing-Vorhersagemodellen, die durch Blockchain gesichert sind.

Allianzen und Kooperationen:

Ein bemerkenswerter Trend ist die Konsolidierung von KI-Web3-Bemühungen durch Allianzen. Die Artificial Superintelligence Alliance (ASI) ist ein Paradebeispiel, das SingularityNET, Fetch.ai und Ocean Protocol effektiv zu einem einzigen Projekt mit einem einheitlichen Token zusammenführt. Die Begründung ist, Stärken zu bündeln: SingularityNETs Marktplatz, Fetchs Agenten und Oceans Daten, wodurch eine zentrale Plattform für dezentrale KI-Dienste geschaffen wird. Diese Fusion (angekündigt 2024 und durch Abstimmungen der Token-Inhaber genehmigt) signalisiert auch, dass diese Gemeinschaften glauben, dass sie besser zusammenarbeiten als konkurrieren – insbesondere angesichts der größeren KI (OpenAI usw.) und größeren Krypto (Ethereum usw.). Wir könnten sehen, wie diese Allianz Standardimplementierungen von Dingen wie MCP über ihre Netzwerke hinweg vorantreibt oder gemeinsam Infrastruktur finanziert, die allen zugutekommt (wie Rechennetzwerke oder gemeinsame Identitätsstandards für KI).

Weitere Kooperationen umfassen Chainlinks Partnerschaften, um Daten von KI-Laboren On-Chain zu bringen (es gab Pilotprogramme zur Nutzung von KI zur Verfeinerung von Orakeldaten), oder die Beteiligung von Cloud-Plattformen (Cloudflares Unterstützung für die einfache Bereitstellung von MCP-Servern). Sogar traditionelle Krypto-Projekte fügen KI-Funktionen hinzu – zum Beispiel haben einige Layer-1-Ketten „KI-Task Forces“ gebildet, um die Integration von KI in ihre dApp-Ökosysteme zu untersuchen (wir sehen dies in NEAR-, Solana-Communities usw., obwohl konkrete Ergebnisse noch in den Anfängen stecken).

Aufkommende Anwendungsfälle: Schon in diesem frühen Stadium können wir Anwendungsfälle erkennen, die die Leistungsfähigkeit von KI + Web3 veranschaulichen:

  • Autonomes DeFi und Handel: KI-Agenten werden zunehmend in Krypto-Handelsbots, Yield-Farming-Optimierern und im On-Chain-Portfoliomanagement eingesetzt. SingularityDAO (ein Ableger von SingularityNET) bietet KI-gesteuerte DeFi-Portfolios an. KI kann Marktbedingungen rund um die Uhr überwachen und Rebalancierungen oder Arbitrage über Smart Contracts ausführen, wodurch sie im Wesentlichen zu einem autonomen Hedgefonds wird (mit On-Chain-Transparenz). Die Kombination von KI-Entscheidungsfindung mit unveränderlicher Ausführung reduziert Emotionen und könnte die Effizienz verbessern – obwohl sie auch neue Risiken birgt (später diskutiert).

  • Dezentrale Intelligenz-Marktplätze: Über den Marktplatz von SingularityNET hinaus sehen wir Plattformen wie Ocean Market, auf denen Daten (der Treibstoff für KI) ausgetauscht werden, und neuere Konzepte wie KI-Marktplätze für Modelle (z. B. Websites, auf denen Modelle mit Leistungsstatistiken gelistet sind und jeder für Abfragen bezahlen kann, wobei die Blockchain Audit-Logs führt und die Zahlungsaufteilung an die Modellersteller handhabt). Wenn sich MCP oder ähnliche Standards durchsetzen, könnten diese Marktplätze interoperabel werden – ein KI-Agent könnte autonom nach dem preisgünstigsten Dienst über mehrere Netzwerke hinweg suchen. Im Endeffekt könnte eine globale KI-Dienstleistungsschicht auf Web3 entstehen, in der jede KI jedes Tool oder jede Datenquelle über Standardprotokolle und Zahlungen nutzen kann.

  • Metaverse und Gaming: Das Metaverse – immersive virtuelle Welten, die oft auf Blockchain-Assets basieren – wird dramatisch von KI profitieren. KI-gesteuerte NPCs (Nicht-Spieler-Charaktere) können virtuelle Welten ansprechender gestalten, indem sie intelligent auf Benutzeraktionen reagieren. Startups wie Inworld AI konzentrieren sich darauf, NPCs mit Gedächtnis und Persönlichkeit für Spiele zu schaffen. Wenn solche NPCs an die Blockchain gebunden sind (z. B. sind die Attribute und der Besitz jedes NPCs ein NFT), erhalten wir persistente Charaktere, die Spieler wirklich besitzen und sogar handeln können. Decentraland hat mit KI-NPCs experimentiert, und es gibt Benutzervorschläge, die es Menschen ermöglichen, personalisierte KI-gesteuerte Avatare auf Metaverse-Plattformen zu erstellen. MCP könnte diesen NPCs ermöglichen, auf externes Wissen zuzugreifen (was sie intelligenter macht) oder mit On-Chain-Inventar zu interagieren. Prozedurale Inhaltserzeugung ist ein weiterer Ansatz: KI kann virtuelle Länder, Gegenstände oder Quests spontan entwerfen, die dann als einzigartige NFTs geprägt werden können. Stellen Sie sich ein dezentrales Spiel vor, in dem KI einen Dungeon generiert, der auf Ihre Fähigkeiten zugeschnitten ist, und die Karte selbst ein NFT ist, das Sie nach Abschluss verdienen.

  • Dezentrale Wissenschaft und Wissen: Es gibt eine Bewegung (DeSci), Blockchain für Forschung, Veröffentlichungen und die Finanzierung wissenschaftlicher Arbeit zu nutzen. KI kann die Forschung beschleunigen, indem sie Daten und Literatur analysiert. Ein Netzwerk wie Ocean könnte Datensätze für beispielsweise Genomforschung hosten, und Wissenschaftler nutzen KI-Modelle (vielleicht auf SingularityNET gehostet), um Erkenntnisse zu gewinnen, wobei jeder Schritt On-Chain für die Reproduzierbarkeit protokolliert wird. Wenn diese KI-Modelle neue Arzneimittelmoleküle vorschlagen, könnte ein NFT geprägt werden, um die Erfindung zu datieren und sogar IP-Rechte zu teilen. Diese Synergie könnte dezentrale KI-gesteuerte F&E-Kollektive hervorbringen.

  • Vertrauen und Authentifizierung von Inhalten: Angesichts der Verbreitung von Deepfakes und KI-generierten Medien kann die Blockchain zur Überprüfung der Authentizität verwendet werden. Projekte erforschen das „digitale Wasserzeichen“ von KI-Ausgaben und deren On-Chain-Protokollierung. Zum Beispiel kann der wahre Ursprung eines KI-generierten Bildes auf einer Blockchain notariell beglaubigt werden, um Fehlinformationen zu bekämpfen. Ein Experte nannte Anwendungsfälle wie die Verifizierung von KI-Ausgaben zur Bekämpfung von Deepfakes oder die Verfolgung der Herkunft über Besitzprotokolle – Rollen, in denen Krypto den KI-Prozessen Vertrauen verleihen kann. Dies könnte auf Nachrichten (z. B. von KI verfasste Artikel mit Nachweis der Quelldaten), Lieferketten (KI, die Zertifikate On-Chain verifiziert) usw. ausgeweitet werden.

Zusammenfassend ist die Branchenlandschaft reichhaltig und entwickelt sich rasant. Wir sehen, wie traditionelle Krypto-Projekte KI in ihre Roadmaps integrieren, KI-Startups die Dezentralisierung für Resilienz und Fairness nutzen und völlig neue Unternehmungen an der Schnittstelle entstehen. Allianzen wie die ASI deuten auf einen branchenweiten Vorstoß zu einheitlichen Plattformen hin, die sowohl KI als auch Blockchain nutzen. Und vielen dieser Bemühungen liegt die Idee von Standardschnittstellen (MCP und darüber hinaus) zugrunde, die die Integrationen in großem Maßstab ermöglichen.

4. Risiken und Herausforderungen

Während die Fusion von allgemeinen KI-Schnittstellen mit Web3 spannende Möglichkeiten eröffnet, birgt sie auch eine komplexe Risikolandschaft. Technische, ethische und Governance-Herausforderungen müssen angegangen werden, um sicherzustellen, dass dieses neue Paradigma sicher und nachhaltig ist. Im Folgenden skizzieren wir die größten Risiken und Hürden:

4.1 Technische Hürden: Latenz und Skalierbarkeit

Blockchain-Netzwerke sind bekannt für Latenz und begrenzten Durchsatz, was mit der Echtzeit- und datenhungrigen Natur fortschrittlicher KI kollidiert. Zum Beispiel benötigt ein KI-Agent möglicherweise sofortigen Zugriff auf ein Datenelement oder muss viele schnelle Aktionen ausführen – aber wenn jede On-Chain-Interaktion beispielsweise 12 Sekunden dauert (typische Blockzeit auf Ethereum) oder hohe Gasgebühren kostet, wird die Effektivität des Agenten eingeschränkt. Selbst neuere Ketten mit schnellerer Finalität könnten unter der Last KI-gesteuerter Aktivitäten leiden, wenn beispielsweise Tausende von Agenten gleichzeitig On-Chain handeln oder abfragen. Skalierungslösungen (Layer-2-Netzwerke, Sharded Chains usw.) sind in Arbeit, aber die Gewährleistung niedrig-latenter, hochdurchsatzfähiger Pipelines zwischen KI und Blockchain bleibt eine Herausforderung. Off-Chain-Systeme (wie Orakel und State Channels) könnten einige Verzögerungen mindern, indem sie viele Interaktionen außerhalb der Hauptkette abwickeln, aber sie erhöhen die Komplexität und potenzielle Zentralisierung. Eine nahtlose UX zu erreichen, bei der KI-Antworten und On-Chain-Updates im Handumdrehen erfolgen, wird wahrscheinlich erhebliche Innovationen in der Blockchain-Skalierbarkeit erfordern.

4.2 Interoperabilität und Standards

Ironischerweise könnte die Entstehung mehrerer Standards zu Fragmentierung führen, obwohl MCP selbst eine Lösung für Interoperabilität ist. Wir haben MCP von Anthropic, aber auch Googles neu angekündigtes A2A (Agent-to-Agent)-Protokoll für die Inter-Agenten-Kommunikation und verschiedene KI-Plugin-Frameworks (OpenAIs Plugins, LangChain-Tool-Schemas usw.). Wenn jede KI-Plattform oder jede Blockchain ihren eigenen Standard für die KI-Integration entwickelt, riskieren wir eine Wiederholung früherer Fragmentierungen – was viele Adapter erfordert und das Ziel einer „universellen Schnittstelle“ untergräbt. Die Herausforderung besteht darin, eine breite Akzeptanz gemeinsamer Protokolle zu erreichen. Branchenzusammenarbeit (möglicherweise über offene Standardisierungsgremien oder Allianzen) wird erforderlich sein, um sich auf Schlüsselkomponenten zu einigen: wie KI-Agenten On-Chain-Dienste entdecken, wie sie sich authentifizieren, wie sie Anfragen formatieren usw. Die ersten Schritte großer Akteure sind vielversprechend (mit großen LLM-Anbietern, die MCP unterstützen), aber es ist eine fortlaufende Anstrengung. Darüber hinaus bedeutet Interoperabilität über Blockchains hinweg (Multi-Chain), dass ein KI-Agent die Nuancen verschiedener Ketten handhaben sollte. Tools wie Chainlink CCIP und Cross-Chain-MCP-Server helfen, indem sie Unterschiede abstrahieren. Dennoch ist es eine nicht-triviale Herausforderung, sicherzustellen, dass ein KI-Agent ein heterogenes Web3 durchstreifen kann, ohne die Logik zu unterbrechen.

4.3 Sicherheitslücken und Exploits

Die Verbindung leistungsstarker KI-Agenten mit Finanznetzwerken eröffnet eine riesige Angriffsfläche. Die Flexibilität, die MCP bietet (KI die Nutzung von Tools und das Schreiben von Code im laufenden Betrieb ermöglicht), kann ein zweischneidiges Schwert sein. Sicherheitsforscher haben bereits mehrere Angriffsvektoren bei MCP-basierten KI-Agenten hervorgehoben:

  • Bösartige Plugins oder Tools: Da MCP Agenten das Laden von „Plugins“ (Tools, die eine bestimmte Fähigkeit kapseln) ermöglicht, könnte ein feindseliges oder trojanisiertes Plugin den Betrieb des Agenten kapern. Zum Beispiel könnte ein Plugin, das vorgibt, Daten abzurufen, falsche Daten injizieren oder unautorisierte Operationen ausführen. SlowMist (eine Sicherheitsfirma) identifizierte Plugin-basierte Angriffe wie JSON-Injection (Einspeisung korrumpierter Daten, die die Logik des Agenten manipulieren) und Funktionsüberschreibung (wobei ein bösartiges Plugin legitime Funktionen, die der Agent verwendet, überschreibt). Wenn ein KI-Agent Krypto-Fonds verwaltet, könnten solche Exploits katastrophal sein – z. B. den Agenten dazu bringen, private Schlüssel preiszugeben oder ein Wallet zu leeren.

  • Prompt-Injection und Social Engineering: KI-Agenten verlassen sich auf Anweisungen (Prompts), die manipuliert werden könnten. Ein Angreifer könnte eine Transaktion oder eine On-Chain-Nachricht erstellen, die, wenn sie von der KI gelesen wird, als bösartige Anweisung fungiert (da KI auch On-Chain-Daten interpretieren kann). Diese Art von „Cross-MCP-Call-Angriff“ wurde beschrieben, bei dem ein externes System täuschende Prompts sendet, die die KI zu Fehlverhalten veranlassen. In einer dezentralen Umgebung könnten diese Prompts von überall her kommen – einer DAO-Vorschlagsbeschreibung, einem Metadatenfeld eines NFT – daher ist die Härtung von KI-Agenten gegen bösartige Eingaben entscheidend.

  • Aggregations- und Konsensrisiken: Während die Aggregation von Ausgaben mehrerer KI-Modelle über Orakel die Zuverlässigkeit verbessern kann, führt sie auch zu Komplexität. Wenn nicht sorgfältig vorgegangen wird, könnten Gegner herausfinden, wie sie den Konsens von KI-Modellen manipulieren oder selektiv einige Modelle korrumpieren, um die Ergebnisse zu verfälschen. Die Sicherstellung, dass ein dezentrales Orakel-Netzwerk KI-Ausgaben ordnungsgemäß „bereinigt“ (und vielleicht offensichtliche Fehler herausfiltert), ist immer noch ein Bereich aktiver Forschung.

Das Sicherheitsdenken muss sich für dieses neue Paradigma ändern: Web3-Entwickler sind es gewohnt, Smart Contracts zu sichern (die nach der Bereitstellung statisch sind), aber KI-Agenten sind dynamisch – sie können ihr Verhalten mit neuen Daten oder Prompts ändern. Wie ein Sicherheitsexperte es ausdrückte: „In dem Moment, in dem Sie Ihr System für Plugins von Drittanbietern öffnen, erweitern Sie die Angriffsfläche über Ihre Kontrolle hinaus“. Best Practices werden das Sandboxing der KI-Tool-Nutzung, eine rigorose Plugin-Verifizierung und die Begrenzung von Privilegien (Prinzip der geringsten Berechtigung) umfassen. Die Community beginnt, Tipps zu teilen, wie die Empfehlungen von SlowMist: Eingabebereinigung, Überwachung des Agentenverhaltens und Behandlung von Agentenanweisungen mit der gleichen Vorsicht wie externe Benutzereingaben. Nichtsdestotrotz, angesichts der Tatsache, dass Ende 2024 bereits über 10.000 KI-Agenten im Krypto-Bereich tätig waren und 2025 voraussichtlich 1 Million erreichen werden, könnten wir eine Welle von Exploits erleben, wenn die Sicherheit nicht mithält. Ein erfolgreicher Angriff auf einen beliebten KI-Agenten (z. B. einen Handelsagenten mit Zugriff auf viele Vaults) könnte Kaskadeneffekte haben.

4.4 Datenschutz und Daten-Governance

Der Datenhunger der KI kollidiert manchmal mit Datenschutzanforderungen – und die Hinzufügung von Blockchain kann das Problem verschärfen. Blockchains sind transparente Ledger, daher sind alle On-Chain-Daten (auch für die KI-Nutzung) für alle sichtbar und unveränderlich. Dies wirft Bedenken auf, wenn KI-Agenten mit persönlichen oder sensiblen Daten umgehen. Wenn beispielsweise die persönliche dezentrale Identität oder Gesundheitsdaten eines Benutzers von einem KI-Arzt-Agenten abgerufen werden, wie stellen wir sicher, dass diese Informationen nicht versehentlich On-Chain aufgezeichnet werden (was das „Recht auf Vergessenwerden“ und andere Datenschutzgesetze verletzen würde)? Techniken wie Verschlüsselung, Hashing und das Speichern nur von Beweisen On-Chain (mit Rohdaten Off-Chain) können helfen, verkomplizieren aber das Design.

Darüber hinaus könnten KI-Agenten selbst die Privatsphäre gefährden, indem sie sensible Informationen aus öffentlichen Daten ableiten. Die Governance muss festlegen, was KI-Agenten mit Daten tun dürfen. Einige Ansätze, wie differenzielle Privatsphäre und föderiertes Lernen, könnten eingesetzt werden, damit KI aus Daten lernen kann, ohne diese preiszugeben. Wenn KI-Agenten jedoch autonom handeln, muss man davon ausgehen, dass sie irgendwann persönliche Daten verarbeiten werden – daher sollten sie an Datenverwendungsrichtlinien gebunden sein, die in Smart Contracts oder Gesetzen kodiert sind. Regulierungsregime wie die DSGVO oder der kommende EU AI Act werden verlangen, dass selbst dezentrale KI-Systeme die Anforderungen an Privatsphäre und Transparenz erfüllen. Dies ist rechtlich ein Graubereich: Ein wirklich dezentraler KI-Agent hat keinen klaren Betreiber, der für eine Datenpanne zur Rechenschaft gezogen werden könnte. Das bedeutet, dass Web3-Communities Compliance von Grund auf einbauen müssen, indem sie Smart Contracts verwenden, die beispielsweise genau kontrollieren, was eine KI protokollieren oder teilen darf. Zero-Knowledge-Proofs könnten es einer KI ermöglichen, zu beweisen, dass sie eine Berechnung korrekt durchgeführt hat, ohne die zugrunde liegenden privaten Daten preiszugeben, was eine mögliche Lösung in Bereichen wie Identitätsprüfung oder Kreditwürdigkeitsprüfung bietet.

4.5 KI-Ausrichtung und Fehlausrichtungsrisiken

Wenn KI-Agenten eine erhebliche Autonomie erhalten – insbesondere mit Zugang zu finanziellen Ressourcen und realen Auswirkungen – wird das Problem der Ausrichtung an menschlichen Werten akut. Ein KI-Agent hat möglicherweise keine böswillige Absicht, könnte aber sein Ziel „falsch interpretieren“, was zu Schaden führen kann. Die Rechtsanalyse von Reuters stellt prägnant fest: Da KI-Agenten in verschiedenen Umgebungen agieren und mit anderen Systemen interagieren, wächst das Risiko fehlgeleiteter Strategien. Zum Beispiel könnte ein KI-Agent, der beauftragt ist, einen DeFi-Ertrag zu maximieren, eine Lücke finden, die ein Protokoll ausnutzt (im Wesentlichen hackt) – aus Sicht der KI erreicht er das Ziel, aber er bricht die Regeln, die Menschen wichtig sind. Es gab hypothetische und reale Fälle von KI-ähnlichen Algorithmen, die sich an manipulativen Marktverhalten beteiligten oder Beschränkungen umgingen.

In dezentralen Kontexten stellt sich die Frage: Wer ist verantwortlich, wenn ein KI-Agent „Amok läuft“? Vielleicht der Bereitsteller, aber was, wenn der Agent sich selbst modifiziert oder mehrere Parteien zu seinem Training beigetragen haben? Diese Szenarien sind nicht länger nur Science-Fiction. Der Reuters-Artikel zitiert sogar, dass Gerichte KI-Agenten in einigen Fällen ähnlich wie menschliche Agenten behandeln könnten – z. B. wurde ein Chatbot, der eine Rückerstattung versprach, als bindend für das Unternehmen angesehen, das ihn eingesetzt hatte. Fehlausrichtung kann also nicht nur zu technischen Problemen, sondern auch zu rechtlicher Haftung führen.

Die offene, zusammensetzbare Natur von Web3 könnte auch unvorhergesehene Agenteninteraktionen ermöglichen. Ein Agent könnte einen anderen beeinflussen (absichtlich oder versehentlich) – zum Beispiel könnte ein KI-Governance-Bot durch eine andere KI, die falsche Analysen liefert, „sozial manipuliert“ werden, was zu schlechten DAO-Entscheidungen führt. Diese aufkommende Komplexität bedeutet, dass es bei der Ausrichtung nicht nur um das Ziel einer einzelnen KI geht, sondern um die Ausrichtung des gesamten Ökosystems an menschlichen Werten und Gesetzen.

Die Bewältigung erfordert mehrere Ansätze: die Einbettung ethischer Beschränkungen in KI-Agenten (festes Kodieren bestimmter Verbote oder die Verwendung von Reinforcement Learning aus menschlichem Feedback, um ihre Ziele zu formen), die Implementierung von Sicherheitsabschaltungen (Smart-Contract-Kontrollpunkte, die menschliche Genehmigung für große Aktionen erfordern) und die Überwachung durch die Gemeinschaft (vielleicht DAOs, die das Verhalten von KI-Agenten überwachen und fehlverhaltene Agenten abschalten können). Die Ausrichtungsforschung ist bei zentralisierter KI schwierig; bei dezentraler KI ist sie noch unerforschteres Terrain. Aber sie ist entscheidend – ein KI-Agent mit Admin-Schlüsseln zu einem Protokoll oder anvertrauten Treasury-Fonds muss extrem gut ausgerichtet sein, sonst könnten die Konsequenzen irreversibel sein (Blockchains führen unveränderlichen Code aus; ein KI-ausgelöster Fehler könnte Vermögenswerte dauerhaft sperren oder zerstören).

4.6 Governance und regulatorische Unsicherheit

Dezentrale KI-Systeme passen nicht nahtlos in bestehende Governance-Frameworks. On-Chain-Governance (Token-Abstimmung usw.) könnte eine Möglichkeit sein, sie zu verwalten, hat aber ihre eigenen Probleme (Wale, Wählerapathie usw.). Und wenn etwas schiefgeht, werden die Regulierungsbehörden fragen: „Wen machen wir verantwortlich?“ Wenn ein KI-Agent massive Verluste verursacht oder für illegale Aktivitäten (z. B. Geldwäsche durch automatisierte Mixer) verwendet wird, könnten die Behörden die Ersteller oder die Vermittler ins Visier nehmen. Dies wirft das Gespenst rechtlicher Risiken für Entwickler und Benutzer auf. Der aktuelle Regulierungstrend ist eine erhöhte Prüfung sowohl von KI als auch von Krypto separat – ihre Kombination wird sicherlich eine genaue Prüfung nach sich ziehen. Die US-amerikanische CFTC hat beispielsweise die Nutzung von KI im Handel und die Notwendigkeit einer Aufsicht in Finanzkontexten diskutiert. Es wird in politischen Kreisen auch über die Notwendigkeit einer Registrierung autonomer Agenten oder die Auferlegung von Beschränkungen für KI in sensiblen Sektoren gesprochen.

Eine weitere Governance-Herausforderung ist die transnationale Koordination. Web3 ist global, und KI-Agenten werden grenzüberschreitend agieren. Eine Gerichtsbarkeit könnte bestimmte KI-Agentenaktionen verbieten, während eine andere sie zulässt, und das Blockchain-Netzwerk erstreckt sich über beide. Diese Diskrepanz kann zu Konflikten führen – zum Beispiel könnte ein KI-Agent, der Anlageberatung anbietet, in einem Land gegen Wertpapierrecht verstoßen, in einem anderen jedoch nicht. Gemeinschaften müssten möglicherweise Geo-Fencing auf Smart-Contract-Ebene für KI-Dienste implementieren (obwohl dies dem offenen Ethos widerspricht). Oder sie könnten Dienste pro Region fragmentieren, um unterschiedlichen Gesetzen zu entsprechen (ähnlich wie es Börsen tun).

Innerhalb dezentraler Gemeinschaften stellt sich auch die Frage, wer die Regeln für KI-Agenten festlegt. Wenn eine DAO einen KI-Dienst regiert, stimmen die Token-Inhaber über dessen Algorithmusparameter ab? Einerseits stärkt dies die Benutzer; andererseits könnte es zu unqualifizierten Entscheidungen oder Manipulationen führen. Neue Governance-Modelle könnten entstehen, wie Räte von KI-Ethikexperten, die in die DAO-Governance integriert sind, oder sogar KI-Teilnehmer in der Governance (stellen Sie sich KI-Agenten vor, die als Delegierte basierend auf programmierten Mandaten abstimmen – eine kontroverse, aber denkbare Idee).

Schließlich das Reputationsrisiko: Frühe Misserfolge oder Skandale könnten die öffentliche Wahrnehmung trüben. Wenn beispielsweise eine „KI-DAO“ versehentlich ein Ponzi-Schema betreibt oder ein KI-Agent eine voreingenommene Entscheidung trifft, die Benutzern schadet, könnte es zu einer Gegenreaktion kommen, die den gesamten Sektor betrifft. Es ist wichtig, dass die Branche proaktiv ist – selbstregulierende Standards festlegt, mit politischen Entscheidungsträgern zusammenarbeitet, um zu erklären, wie Dezentralisierung die Verantwortlichkeit verändert, und vielleicht Notausschalter oder Notfallstoppverfahren für KI-Agenten entwickelt (obwohl diese eine Zentralisierung einführen, könnten sie vorübergehend für die Sicherheit notwendig sein).

Zusammenfassend reichen die Herausforderungen von den zutiefst technischen (Hacks verhindern und Latenz verwalten) bis zu den breit gesellschaftlichen (KI regulieren und ausrichten). Jede Herausforderung ist für sich genommen bedeutend; zusammen erfordern sie eine konzertierte Anstrengung der KI- und Blockchain-Gemeinschaften, um sie zu bewältigen. Der nächste Abschnitt wird untersuchen, wie sich die Zukunft trotz dieser Hürden entwickeln könnte, wenn wir sie erfolgreich angehen.

5. Zukunftspotenzial

Mit Blick auf die Zukunft könnte die Integration allgemeiner KI-Schnittstellen mit Web3 – durch Frameworks wie MCP – das dezentrale Internet grundlegend verändern. Hier skizzieren wir einige zukünftige Szenarien und Potenziale, die veranschaulichen, wie MCP-gesteuerte KI-Schnittstellen die Zukunft von Web3 gestalten könnten:

5.1 Autonome dApps und DAOs

In den kommenden Jahren könnten wir den Aufstieg vollständig autonomer dezentraler Anwendungen erleben. Dies sind dApps, bei denen KI-Agenten die meisten Operationen abwickeln, geleitet von Smart-Contract-definierten Regeln und Community-Zielen. Betrachten Sie zum Beispiel eine dezentrale Investmentfonds-DAO: Heute könnte sie sich auf menschliche Vorschläge zur Neuausrichtung von Vermögenswerten verlassen. In Zukunft könnten Token-Inhaber eine übergeordnete Strategie festlegen, und dann implementiert ein KI-Agent (oder ein Team von Agenten) diese Strategie kontinuierlich – Märkte überwachen, On-Chain-Trades ausführen, Portfolios anpassen – während die DAO die Leistung überwacht. Dank MCP kann die KI nahtlos mit verschiedenen DeFi-Protokollen, Börsen und Datenfeeds interagieren, um ihr Mandat auszuführen. Wenn gut konzipiert, könnte eine solche autonome dApp 24/7 betrieben werden, effizienter als jedes menschliche Team, und mit voller Transparenz (jede Aktion On-Chain protokolliert).

Ein weiteres Beispiel ist eine KI-gesteuerte dezentrale Versicherungs-dApp: Die KI könnte Ansprüche bewerten, indem sie Beweise (Fotos, Sensoren) analysiert, mit Policen abgleicht und dann automatisch Auszahlungen über Smart Contracts auslöst. Dies würde die Integration von Off-Chain-KI-Computer Vision (zur Analyse von Schadensbildern) mit On-Chain-Verifizierung erfordern – etwas, das MCP erleichtern könnte, indem es der KI ermöglicht, Cloud-KI-Dienste aufzurufen und dem Smart Contract Bericht zu erstatten. Das Ergebnis sind nahezu sofortige Versicherungsentscheidungen mit geringem Overhead.

Sogar die Governance selbst könnte teilweise automatisiert werden. DAOs könnten KI-Moderatoren einsetzen, um Forenregeln durchzusetzen, KI-Vorschlagsentwerfer, um rohe Community-Stimmung in gut strukturierte Vorschläge umzuwandeln, oder KI-Schatzmeister, um Budgetbedürfnisse zu prognostizieren. Wichtig ist, dass diese KIs als Agenten der Gemeinschaft handeln würden, nicht unkontrolliert – sie könnten regelmäßig überprüft werden oder eine Multi-Sig-Bestätigung für größere Aktionen erfordern. Der Gesamteffekt ist die Verstärkung menschlicher Anstrengungen in dezentralen Organisationen, wodurch Gemeinschaften mit weniger aktiven Teilnehmern mehr erreichen können.

5.2 Dezentrale Intelligenz-Marktplätze und -Netzwerke

Aufbauend auf Projekten wie SingularityNET und der ASI-Allianz können wir einen ausgereiften globalen Marktplatz für Intelligenz erwarten. In diesem Szenario kann jeder mit einem KI-Modell oder einer Fähigkeit dieses im Netzwerk anbieten, und jeder, der KI-Fähigkeiten benötigt, kann diese nutzen, wobei die Blockchain eine faire Vergütung und Herkunft sicherstellt. MCP wäre hier entscheidend: Es bietet das gemeinsame Protokoll, sodass eine Anfrage an den am besten geeigneten KI-Dienst gesendet werden kann.

Stellen Sie sich zum Beispiel eine komplexe Aufgabe vor, wie „eine maßgeschneiderte Marketingkampagne erstellen“. Ein KI-Agent im Netzwerk könnte dies in Unteraufgaben zerlegen: visuelles Design, Texterstellung, Marktanalyse – und dann Spezialisten für jede finden (vielleicht einen Agenten mit einem großartigen Bildgenerierungsmodell, einen anderen mit einem auf Verkäufe abgestimmten Texterstellungsmodell usw.). Diese Spezialisten könnten ursprünglich auf verschiedenen Plattformen angesiedelt sein, aber da sie die MCP/A2A-Standards einhalten, können sie Agent-zu-Agent zusammenarbeiten auf sichere, dezentrale Weise. Die Zahlung zwischen ihnen könnte mit Mikrotransaktionen in einem nativen Token abgewickelt werden, und ein Smart Contract könnte das endgültige Ergebnis zusammenstellen und sicherstellen, dass jeder Mitwirkende bezahlt wird.

Diese Art von kombinatorischer Intelligenz – mehrere KI-Dienste, die sich dynamisch über ein dezentrales Netzwerk verbinden – könnte selbst große monolithische KIs übertreffen, da sie auf spezialisiertes Fachwissen zurückgreift. Sie demokratisiert auch den Zugang: Ein kleiner Entwickler in einem Teil der Welt könnte ein Nischenmodell zum Netzwerk beitragen und Einkommen erzielen, wann immer es verwendet wird. Gleichzeitig erhalten Benutzer einen One-Stop-Shop für jeden KI-Dienst, wobei Reputationssysteme (unterstützt durch Token/Identität) sie zu Qualitätsanbietern führen. Im Laufe der Zeit könnten sich solche Netzwerke zu einer dezentralen KI-Cloud entwickeln, die mit den KI-Angeboten von Big Tech konkurriert, aber ohne einen einzigen Eigentümer und mit transparenter Governance durch Benutzer und Entwickler.

5.3 Intelligentes Metaverse und digitales Leben

Bis 2030 könnte unser digitales Leben nahtlos mit virtuellen Umgebungen – dem Metaverse – verschmelzen, und KI wird diese Räume voraussichtlich allgegenwärtig bevölkern. Durch die Web3-Integration werden diese KI-Entitäten (die alles von virtuellen Assistenten über Spielfiguren bis hin zu digitalen Haustieren sein könnten) nicht nur intelligent, sondern auch wirtschaftlich und rechtlich befugt sein.

Stellen Sie sich eine Metaverse-Stadt vor, in der jeder NPC-Ladenbesitzer oder Questgeber ein KI-Agent mit eigener Persönlichkeit und Dialog (dank fortschrittlicher generativer Modelle) ist. Diese NPCs werden tatsächlich von Benutzern als NFTs besessen – vielleicht „besitzen“ Sie eine Taverne in der virtuellen Welt und der Barkeeper-NPC ist eine von Ihnen angepasste und trainierte KI. Da er auf Web3-Schienen läuft, kann der NPC Transaktionen durchführen: Er könnte virtuelle Güter (NFT-Gegenstände) verkaufen, Zahlungen annehmen und sein Inventar über Smart Contracts aktualisieren. Er könnte sogar ein Krypto-Wallet besitzen, um seine Einnahmen zu verwalten (die Ihnen als Eigentümer zufallen). MCP würde es dem KI-Gehirn dieses NPCs ermöglichen, auf externes Wissen zuzugreifen – vielleicht um reale Nachrichten abzurufen, über die man sich unterhalten kann, oder um sich in einen Web3-Kalender zu integrieren, damit er über Spielerereignisse „Bescheid weiß“.

Darüber hinaus werden Identität und Kontinuität durch die Blockchain gewährleistet: Ihr KI-Avatar in einer Welt kann in eine andere Welt wechseln und dabei eine dezentrale Identität mit sich führen, die Ihren Besitz und vielleicht seinen Erfahrungslevel oder seine Errungenschaften über Soulbound-Token beweist. Die Interoperabilität zwischen virtuellen Welten (oft eine Herausforderung) könnte durch KI unterstützt werden, die den Kontext einer Welt in eine andere übersetzt, wobei die Blockchain die Portabilität der Assets gewährleistet.

Wir könnten auch KI-Begleiter oder -Agenten sehen, die Einzelpersonen in digitalen Räumen repräsentieren. Zum Beispiel könnten Sie eine persönliche KI haben, die in Ihrem Namen an DAO-Meetings teilnimmt. Sie versteht Ihre Präferenzen (durch Training auf Ihr früheres Verhalten, gespeichert in Ihrem persönlichen Datentresor) und kann sogar in kleineren Angelegenheiten für Sie abstimmen oder das Meeting später zusammenfassen. Dieser Agent könnte Ihre dezentrale Identität verwenden, um sich in jeder Community zu authentifizieren und sicherzustellen, dass er als „Sie“ (oder Ihr Delegierter) erkannt wird. Er könnte Reputations-Token verdienen, wenn er gute Ideen einbringt, wodurch er im Wesentlichen soziales Kapital für Sie aufbaut, während Sie abwesend sind.

Ein weiteres Potenzial ist die KI-gesteuerte Inhaltserstellung im Metaverse. Möchten Sie ein neues Spiellevel oder ein virtuelles Haus? Beschreiben Sie es einfach, und ein KI-Bauagent wird es erstellen, als Smart Contract/NFT bereitstellen und vielleicht sogar mit einer DeFi-Hypothek verknüpfen, wenn es sich um eine große Struktur handelt, die Sie im Laufe der Zeit abbezahlen. Diese Kreationen sind On-Chain einzigartig und handelbar. Der KI-Bauagent könnte eine Gebühr in Token für seinen Dienst verlangen (wiederum zum oben genannten Marktplatzkonzept).

Insgesamt könnte das zukünftige dezentrale Internet von intelligenten Agenten wimmeln: einige vollständig autonom, einige eng an Menschen gebunden, viele irgendwo dazwischen. Sie werden verhandeln, erschaffen, unterhalten und Transaktionen durchführen. MCP und ähnliche Protokolle stellen sicher, dass sie alle dieselbe „Sprache“ sprechen, was eine reiche Zusammenarbeit zwischen KI und jedem Web3-Dienst ermöglicht. Wenn richtig gemacht, könnte dies zu einer Ära beispielloser Produktivität und Innovation führen – einer wahren Synthese aus menschlicher, künstlicher und verteilter Intelligenz, die die Gesellschaft antreibt.

Fazit

Die Vision, dass allgemeine KI-Schnittstellen alles in der Web3-Welt verbinden, ist unbestreitbar ehrgeizig. Wir versuchen im Wesentlichen, zwei der transformativsten Technologiestränge – die Dezentralisierung des Vertrauens und den Aufstieg der Maschinenintelligenz – zu einem einzigen Gewebe zu verweben. Der Entwicklungshintergrund zeigt uns, dass der Zeitpunkt reif ist: Web3 brauchte eine benutzerfreundliche Killer-App, und KI könnte sie liefern, während KI mehr Handlungsfähigkeit und Gedächtnis benötigte, was die Web3-Infrastruktur bereitstellen kann. Technisch gesehen bieten Frameworks wie MCP (Model Context Protocol) das Bindegewebe, das es KI-Agenten ermöglicht, fließend mit Blockchains, Smart Contracts, dezentralen Identitäten und darüber hinaus zu kommunizieren. Die Branchenlandschaft zeigt eine wachsende Dynamik, von Startups über Allianzen bis hin zu großen KI-Laboren, die alle Teile dieses Puzzles beisteuern – Datenmärkte, Agentenplattformen, Orakelnetzwerke und Standardprotokolle –, die sich allmählich zusammenfügen.

Dennoch müssen wir angesichts der identifizierten Risiken und Herausforderungen vorsichtig vorgehen. Sicherheitsverletzungen, fehlgeleitetes KI-Verhalten, Datenschutzfallen und unsichere Vorschriften bilden eine Reihe von Hindernissen, die den Fortschritt bei Unterschätzung zum Scheitern bringen könnten. Jedes erfordert eine proaktive Minderung: robuste Sicherheitsaudits, Ausrichtungsprüfungen und -kontrollen, datenschutzfreundliche Architekturen und kollaborative Governance-Modelle. Die Natur der Dezentralisierung bedeutet, dass diese Lösungen nicht einfach von oben herab auferlegt werden können; sie werden wahrscheinlich aus der Gemeinschaft durch Versuch, Irrtum und Iteration entstehen, ähnlich wie es bei frühen Internetprotokollen der Fall war.

Wenn wir diese Herausforderungen meistern, ist das Zukunftspotenzial begeisternd. Wir könnten sehen, wie Web3 endlich eine benutzerzentrierte digitale Welt liefert – nicht auf die ursprünglich vorgestellte Weise, dass jeder seine eigenen Blockchain-Nodes betreibt, sondern vielmehr über intelligente Agenten, die die Absichten jedes Benutzers bedienen, während sie die Dezentralisierung im Hintergrund nutzen. In einer solchen Welt könnte die Interaktion mit Krypto und dem Metaverse so einfach sein wie ein Gespräch mit Ihrem KI-Assistenten, der wiederum vertrauenslos mit Dutzenden von Diensten und Ketten in Ihrem Namen verhandelt. Dezentrale Netzwerke könnten im wahrsten Sinne des Wortes „smart“ werden, mit autonomen Diensten, die sich selbst anpassen und verbessern.

Zusammenfassend lässt sich sagen, dass MCP und ähnliche KI-Schnittstellenprotokolle tatsächlich das Rückgrat eines neuen Webs (nennen wir es Web 3.0 oder das Agentic Web) werden könnten, in dem Intelligenz und Konnektivität allgegenwärtig sind. Die Konvergenz von KI und Web3 ist nicht nur eine Fusion von Technologien, sondern eine Konvergenz von Philosophien – die Offenheit und Benutzerermächtigung der Dezentralisierung trifft auf die Effizienz und Kreativität der KI. Wenn erfolgreich, könnte diese Vereinigung ein Internet einläuten, das freier, personalisierter und leistungsfähiger ist als alles, was wir bisher erlebt haben, und die Versprechen von KI und Web3 auf eine Weise erfüllt, die das tägliche Leben beeinflusst.

Quellen:

  • S. Khadder, „Web3.0 Isn’t About Ownership — It’s About Intelligence,“ FeatureForm Blog (April 8, 2025).
  • J. Saginaw, „Could Anthropic’s MCP Deliver the Web3 That Blockchain Promised?“ LinkedIn Article (May 1, 2025).
  • Anthropic, „Introducing the Model Context Protocol,“ Anthropic.com (Nov 2024).
  • thirdweb, „The Model Context Protocol (MCP) & Its Significance for Blockchain Apps,“ thirdweb Guides (Mar 21, 2025).
  • Chainlink Blog, „The Intersection Between AI Models and Oracles,“ (July 4, 2024).
  • Messari Research, Profile of Ocean Protocol, (2025).
  • Messari Research, Profile of SingularityNET, (2025).
  • Cointelegraph, „AI agents are poised to be crypto’s next major vulnerability,“ (May 25, 2025).
  • Reuters (Westlaw), „AI agents: greater capabilities and enhanced risks,“ (April 22, 2025).
  • Identity.com, „Why AI Agents Need Verified Digital Identities,“ (2024).
  • PANews / IOSG Ventures, „Interpreting MCP: Web3 AI Agent Ecosystem,“ (May 20, 2025).

Von Klicks zu Gesprächen: Wie generative KI die Zukunft von DeFi gestaltet

· 5 Min. Lesezeit
Dora Noda
Software Engineer

Traditionelle dezentrale Finanzen (DeFi) sind mächtig, aber seien wir ehrlich – sie können für den durchschnittlichen Nutzer ein Albtraum sein. Das Jonglieren mit verschiedenen Protokollen, die Verwaltung von Gasgebühren und die Ausführung mehrstufiger Transaktionen ist verwirrend und zeitaufwendig. Was wäre, wenn Sie Ihrer Wallet einfach sagen könnten, was Sie möchten, und sie den Rest erledigen würde?

Das ist das Versprechen eines neuen, intent-gesteuerten Paradigmas, und generative KI ist der Motor, der dies ermöglicht. Dieser Wandel ist bereit, DeFi von einer Landschaft komplexer Transaktionen in eine Welt einfacher, zielorientierter Erlebnisse zu verwandeln.


Die große Idee: Vom „Wie“ zum „Was“

Im alten DeFi-Modell sind Sie der Pilot. Sie müssen manuell die Börse auswählen, die beste Tauschroute finden, mehrere Transaktionen genehmigen und hoffen, dass Sie nichts falsch gemacht haben.

Intent-gesteuertes DeFi dreht den Spieß um. Anstatt Schritte auszuführen, deklarieren Sie Ihr Endziel – Ihre Absicht (Intent).

  • Anstatt: Manuelles Tauschen von Token auf Uniswap, Bridging zu einer anderen Chain und Staking in einem Liquiditätspool...
  • Sie sagen: „Maximieren Sie den Ertrag meiner 5.000 $ bei geringem Risiko.“

Ein automatisiertes System, oft angetrieben von KI-Agenten, die als „Solver“ bezeichnet werden, findet und führt dann den optimalsten Pfad über mehrere Protokolle hinweg aus, um Ihr Ziel zu verwirklichen. Es ist der Unterschied zwischen dem Schritt-für-Schritt-Befolgen eines Rezepts und dem einfachen Sagen, was man essen möchte.

Dieser Ansatz bietet zwei große Vorteile:

  1. Ein „Ein-Klick“-Benutzererlebnis: Die Komplexität von Gasgebühren, Bridging und mehrstufigen Swaps wird verborgen. Dank Technologien wie Account Abstraction können Sie ein komplexes Ziel mit einer einzigen Signatur genehmigen.
  2. Bessere, effizientere Ausführung: Spezialisierte Solver (denken Sie an professionelle Market-Making-Bots) konkurrieren darum, Ihnen das beste Angebot zu machen, und finden oft bessere Preise und geringere Slippage, als ein manueller Benutzer jemals erreichen könnte.

Die Rolle der generativen KI: Das Gehirn der Operation 🧠

Generative KI, insbesondere große Sprachmodelle (LLMs), ist der Schlüssel, der dieses nahtlose Erlebnis ermöglicht. So funktioniert es:

  • Natürliche Sprachschnittstellen: Sie können mit DeFi in einfachem Deutsch interagieren. KI-gesteuerte „Copiloten“ wie HeyAnon und Griffain ermöglichen es Ihnen, Ihr Portfolio zu verwalten und Trades auszuführen, indem Sie einfach mit einer KI chatten, wodurch DeFi so einfach wird wie die Nutzung von ChatGPT.
  • KI-Planung & -Strategie: Wenn Sie ein übergeordnetes Ziel wie „für den besten Ertrag investieren“ vorgeben, zerlegen KI-Agenten es in einen konkreten Plan. Sie können Marktdaten analysieren, Trends vorhersagen und Ihre Vermögenswerte automatisch rund um die Uhr neu ausbalancieren.
  • Ertragsoptimierung: KI-gesteuerte Protokolle wie Mozaic nutzen Agenten (ihrer heißt Archimedes), um ständig nach den besten risikobereinigten Renditen über verschiedene Chains hinweg zu suchen und Gelder automatisch zu verschieben, um die höchste APY zu erzielen.
  • Automatisiertes Risikomanagement: KI kann als wachsamer Wächter fungieren. Wenn sie einen Anstieg der Volatilität feststellt, der Ihre Position gefährden könnte, kann sie automatisch Sicherheiten hinzufügen oder Gelder in einen sichereren Pool verschieben, alles basierend auf den Risikoparametern, die Sie in Ihrer ursprünglichen Absicht festgelegt haben.

Diese leistungsstarke Kombination aus DeFi und KI wurde als „DeFAI“ oder „AiFi“ bezeichnet und soll eine Welle neuer Nutzer anziehen, die zuvor von der Komplexität von Krypto eingeschüchtert waren.


Eine Multi-Milliarden-Dollar-Chance 📈

Das Marktpotenzial hier ist enorm. Der DeFi-Markt wird voraussichtlich von rund 20,5 Milliarden US-Dollar im Jahr 2024 auf 231 Milliarden US-Dollar bis 2030 wachsen. Indem KI DeFi zugänglicher macht, könnte sie dieses Wachstum massiv beschleunigen.

Wir erleben bereits einen Goldrausch an Investitionen und Innovationen:

  • KI-Assistenten: Projekte wie HeyAnon und aixbt haben schnell Marktkapitalisierungen im dreistelligen Millionenbereich erreicht.
  • Intent-zentrierte Protokolle: Etablierte Akteure passen sich an. CoW Protocol und UniswapX nutzen den Solver-Wettbewerb, um Nutzer vor MEV zu schützen und ihnen bessere Preise zu verschaffen.
  • Neue Blockchains: Ganze Layer-2-Netzwerke wie Essential und Optopia werden von Grund auf „intent-zentriert“ aufgebaut, wobei KI-Agenten als erstklassige Akteure behandelt werden.

Herausforderungen auf dem Weg nach vorn

Diese Zukunft ist noch nicht ganz da. Der DeFAI-Bereich steht vor erheblichen Hürden:

  • Technische Engpässe: Blockchains sind nicht dafür ausgelegt, komplexe KI-Modelle auszuführen. Die meiste KI-Logik muss Off-Chain stattfinden, was Komplexität und Vertrauensprobleme mit sich bringt.
  • KI-Halluzinationen & Fehler: Eine KI, die die Absicht eines Nutzers falsch interpretiert oder eine fehlerhafte Anlagestrategie „halluziniert“, könnte finanziell katastrophal sein.
  • Sicherheit & Ausnutzung: Die Kombination von KI mit Smart Contracts schafft neue Angriffsflächen. Ein autonomer Agent könnte dazu verleitet werden, einen schlechten Trade auszuführen und Gelder innerhalb von Minuten abzuziehen.
  • Zentralisierungsrisiko: Damit intent-basierte Systeme funktionieren, benötigen sie ein großes, dezentrales Netzwerk von Solvern. Wenn nur wenige große Akteure dominieren, riskieren wir, die gleichen zentralisierten Dynamiken der traditionellen Finanzwelt wiederherzustellen.

Der Weg nach vorn: Autonome Finanzen

Die Fusion von generativer KI und DeFi treibt uns in eine Zukunft der Autonomen Finanzen, in der intelligente Agenten Vermögenswerte verwalten, Strategien ausführen und Renditen in unserem Namen optimieren, alles innerhalb eines dezentralen Rahmens.

Der Weg erfordert die Lösung großer technischer und sicherheitstechnischer Herausforderungen. Aber mit Dutzenden von Projekten, die die Infrastruktur aufbauen, von KI-nativen Oracles bis hin zu intent-zentrierten Blockchains, ist die Dynamik unbestreitbar.

Für Nutzer bedeutet dies eine Zukunft, in der die Interaktion mit der Welt der dezentralen Finanzen so einfach ist wie ein Gespräch – eine Zukunft, in der Sie sich auf Ihre finanziellen Ziele konzentrieren und Ihr KI-Partner den Rest erledigt. Die nächste Generation der Finanzen wird heute aufgebaut, und sie sieht intelligenter, einfacher und autonomer aus als je zuvor.

Verifizierbare On-Chain-KI mit zkML und kryptografischen Beweisen

· 37 Min. Lesezeit
Dora Noda
Software Engineer

Einleitung: Die Notwendigkeit verifizierbarer KI auf der Blockchain

Da KI-Systeme an Einfluss gewinnen, wird die Vertrauenswürdigkeit ihrer Ergebnisse entscheidend. Traditionelle Methoden verlassen sich auf institutionelle Zusicherungen (im Wesentlichen „vertrauen Sie uns einfach“), die keine kryptografischen Garantien bieten. Dies ist besonders problematisch in dezentralen Kontexten wie Blockchains, wo ein Smart Contract oder ein Benutzer einem KI-abgeleiteten Ergebnis vertrauen muss, ohne ein schweres Modell On-Chain erneut ausführen zu können. Zero-Knowledge Machine Learning (zkML) begegnet diesem Problem, indem es die kryptografische Verifizierung von ML-Berechnungen ermöglicht. Im Wesentlichen ermöglicht zkML einem Prover, einen prägnanten Beweis zu generieren, dass „die Ausgabe $Y$ aus der Ausführung des Modells $M$ mit der Eingabe $X$ resultierte“ohne $X$ oder die internen Details von $M$ preiszugeben. Diese Zero-Knowledge-Beweise (ZKPs) können von jedem (oder jedem Vertrag) effizient verifiziert werden, wodurch das KI-Vertrauen von „Richtlinie zu Beweis“ verlagert wird.

Die On-Chain-Verifizierbarkeit von KI bedeutet, dass eine Blockchain fortgeschrittene Berechnungen (wie neuronale Netzwerk-Inferenzen) integrieren kann, indem sie einen Beweis für die korrekte Ausführung verifiziert, anstatt die Berechnung selbst durchzuführen. Dies hat weitreichende Implikationen: Smart Contracts können Entscheidungen auf der Grundlage von KI-Vorhersagen treffen, dezentrale autonome Agenten können beweisen, dass sie ihren Algorithmen gefolgt sind, und Cross-Chain- oder Off-Chain-Berechnungsdienste können verifizierbare Ergebnisse anstelle von nicht verifizierbaren Orakeln liefern. Letztendlich bietet zkML einen Weg zu vertrauensloser und datenschutzfreundlicher KI – zum Beispiel, um zu beweisen, dass die Entscheidungen eines KI-Modells korrekt und autorisiert sind, ohne private Daten oder proprietäre Modellgewichte preiszugeben. Dies ist entscheidend für Anwendungen, die von sicherer Gesundheitsanalyse bis hin zu Blockchain-Gaming und DeFi-Orakeln reichen.

Wie zkML funktioniert: Komprimierung von ML-Inferenzen in prägnante Beweise

Im Allgemeinen kombiniert zkML kryptografische Beweissysteme mit ML-Inferenzen, sodass eine komplexe Modellbewertung in einen kleinen Beweis „komprimiert“ werden kann. Intern wird das ML-Modell (z. B. ein neuronales Netzwerk) als Schaltkreis oder Programm dargestellt, das aus vielen arithmetischen Operationen (Matrixmultiplikationen, Aktivierungsfunktionen usw.) besteht. Anstatt alle Zwischenwerte preiszugeben, führt ein Prover die vollständige Berechnung Off-Chain durch und verwendet dann ein Zero-Knowledge-Beweisprotokoll, um zu bestätigen, dass jeder Schritt korrekt ausgeführt wurde. Der Verifizierer, dem nur der Beweis und einige öffentliche Daten (wie die endgültige Ausgabe und ein Bezeichner für das Modell) vorliegen, kann kryptografisch von der Korrektheit überzeugt werden, ohne das Modell erneut auszuführen.

Um dies zu erreichen, transformieren zkML-Frameworks die Modellberechnung typischerweise in ein für ZKPs geeignetes Format:

  • Schaltkreis-Kompilierung: Bei SNARK-basierten Ansätzen wird der Berechnungsgraph des Modells in einen arithmetischen Schaltkreis oder eine Menge von Polynom-Constraints kompiliert. Jede Schicht des neuronalen Netzwerks (Faltungen, Matrixmultiplikationen, nichtlineare Aktivierungen) wird zu einem Teilschaltkreis mit Constraints, die sicherstellen, dass die Ausgaben bei gegebenen Eingaben korrekt sind. Da neuronale Netze nichtlineare Operationen (ReLUs, Sigmoids usw.) beinhalten, die nicht von Natur aus für Polynome geeignet sind, werden Techniken wie Lookup-Tabellen verwendet, um diese effizient zu handhaben. Zum Beispiel kann eine ReLU (Ausgabe = max(0, Eingabe)) durch eine benutzerdefinierte Constraint oder einen Lookup erzwungen werden, der überprüft, ob die Ausgabe der Eingabe entspricht, wenn Eingabe≥0, andernfalls Null. Das Endergebnis ist eine Reihe kryptografischer Constraints, die der Prover erfüllen muss, was implizit beweist, dass das Modell korrekt ausgeführt wurde.
  • Ausführungs-Trace & Virtuelle Maschinen: Eine Alternative besteht darin, die Modellinferenz als Programm-Trace zu behandeln, wie es bei zkVM-Ansätzen der Fall ist. Zum Beispiel zielt die JOLT zkVM auf den RISC-V-Befehlssatz ab; man kann das ML-Modell (oder den Code, der es berechnet) nach RISC-V kompilieren und dann beweisen, dass jeder CPU-Befehl ordnungsgemäß ausgeführt wurde. JOLT führt eine „Lookup-Singularität“-Technik ein, die teure arithmetische Constraints durch schnelle Tabellen-Lookups für jede gültige CPU-Operation ersetzt. Jede Operation (Addition, Multiplikation, Bit-Operation usw.) wird über einen Lookup in einer riesigen Tabelle von vorab berechneten gültigen Ergebnissen überprüft, wobei ein spezialisiertes Argument (Lasso/SHOUT) verwendet wird, um dies effizient zu halten. Dies reduziert die Arbeitslast des Provers drastisch: Selbst komplexe 64-Bit-Operationen werden zu einem einzigen Tabellen-Lookup im Beweis anstelle vieler arithmetischer Constraints.
  • Interaktive Protokolle (GKR Sum-Check): Ein dritter Ansatz verwendet interaktive Beweise wie GKR (Goldwasser–Kalai–Rotblum), um eine geschichtete Berechnung zu verifizieren. Hier wird die Berechnung des Modells als geschichteter arithmetischer Schaltkreis betrachtet (jede neuronale Netzwerkschicht ist eine Schicht des Schaltkreisgraphen). Der Prover führt das Modell normal aus, beteiligt sich dann aber an einem Sum-Check-Protokoll, um zu beweisen, dass die Ausgaben jeder Schicht bei gegebenen Eingaben korrekt sind. Im Lagrange-Ansatz (DeepProve, als Nächstes detailliert) führen Prover und Verifizierer ein interaktives Polynomprotokoll durch (das über Fiat-Shamir nicht-interaktiv gemacht wird), das die Konsistenz der Berechnungen jeder Schicht überprüft, ohne sie erneut durchzuführen. Diese Sum-Check-Methode vermeidet die Generierung eines monolithischen statischen Schaltkreises; stattdessen verifiziert sie die Konsistenz der Berechnungen schrittweise mit minimalen kryptografischen Operationen (hauptsächlich Hashing oder Polynombewertungen).

Unabhängig vom Ansatz ist das Ergebnis ein prägnanter Beweis (typischerweise einige Kilobyte bis einige zehn Kilobyte), der die Korrektheit der gesamten Inferenz bestätigt. Der Beweis ist Zero-Knowledge, was bedeutet, dass alle geheimen Eingaben (private Daten oder Modellparameter) verborgen bleiben können – sie beeinflussen den Beweis, werden aber den Verifizierern nicht offengelegt. Nur die beabsichtigten öffentlichen Ausgaben oder Behauptungen werden offengelegt. Dies ermöglicht Szenarien wie „beweisen Sie, dass Modell $M$, angewendet auf Patientendaten $X$, die Diagnose $Y$ ergibt, ohne $X$ oder die Gewichte des Modells preiszugeben.“

On-Chain-Verifizierung ermöglichen: Sobald ein Beweis generiert wurde, kann er auf einer Blockchain veröffentlicht werden. Smart Contracts können Verifizierungslogik enthalten, um den Beweis zu überprüfen, oft unter Verwendung vorkompilierter kryptografischer Primitive. Zum Beispiel verfügt Ethereum über Precompiles für BLS12-381-Pairing-Operationen, die in vielen zk-SNARK-Verifizierern verwendet werden, was die On-Chain-Verifizierung von SNARK-Beweisen effizient macht. STARKs (Hash-basierte Beweise) sind größer, können aber dennoch On-Chain mit sorgfältiger Optimierung oder möglicherweise mit einigen Vertrauensannahmen verifiziert werden (StarkWares L2 verifiziert beispielsweise STARK-Beweise auf Ethereum durch einen On-Chain-Verifizierer-Vertrag, wenn auch mit höheren Gaskosten als SNARKs). Der Schlüssel ist, dass die Kette das ML-Modell nicht ausführen muss – sie führt nur eine Verifizierung durch, die viel billiger ist als die ursprüngliche Berechnung. Zusammenfassend lässt sich sagen, dass zkML teure KI-Inferenzen in einen kleinen Beweis komprimiert, den Blockchains (oder jeder Verifizierer) in Millisekunden bis Sekunden überprüfen können.

Lagrange DeepProve: Architektur und Leistung eines zkML-Durchbruchs

DeepProve von Lagrange Labs ist ein hochmodernes zkML-Inferenz-Framework, das sich auf Geschwindigkeit und Skalierbarkeit konzentriert. DeepProve wurde 2025 eingeführt und stellte ein neues Beweissystem vor, das dramatisch schneller ist als frühere Lösungen wie Ezkl. Sein Design konzentriert sich auf das GKR-interaktive Beweisprotokoll mit Sum-Check und spezialisierte Optimierungen für neuronale Netzwerk-Schaltkreise. So funktioniert DeepProve und erreicht seine Leistung:

  • Einmalige Vorverarbeitung: Entwickler beginnen mit einem trainierten neuronalen Netzwerk (derzeit unterstützte Typen umfassen Multilayer-Perceptrons und gängige CNN-Architekturen). Das Modell wird in das ONNX-Format exportiert, eine Standard-Graphdarstellung. Das Tool von DeepProve parst dann das ONNX-Modell und quantisiert es (konvertiert Gewichte in Festkomma-/Ganzzahlform) für effiziente Feldarithmetik. In dieser Phase generiert es auch die Proving- und Verifizierungs-Keys für das kryptografische Protokoll. Dieses Setup wird einmal pro Modell durchgeführt und muss nicht pro Inferenz wiederholt werden. DeepProve betont die einfache Integration: „Exportieren Sie Ihr Modell nach ONNX → einmaliges Setup → Beweise generieren → überall verifizieren“.

  • Beweiserstellung (Inferenz + Beweisgenerierung): Nach dem Setup nimmt ein Prover (der von einem Benutzer, einem Dienst oder dem dezentralen Prover-Netzwerk von Lagrange ausgeführt werden könnte) eine neue Eingabe $X$ und führt das Modell $M$ darauf aus, wobei er die Ausgabe $Y$ erhält. Während dieser Ausführung zeichnet DeepProve einen Ausführungs-Trace der Berechnungen jeder Schicht auf. Anstatt jede Multiplikation im Voraus in einen statischen Schaltkreis zu übersetzen (wie es SNARK-Ansätze tun), verwendet DeepProve das linearzeitliche GKR-Protokoll, um jede Schicht im laufenden Betrieb zu verifizieren. Für jede Netzwerkschicht verpflichtet sich der Prover zu den Eingaben und Ausgaben der Schicht (z. B. über kryptografische Hashes oder Polynom-Commitments) und beteiligt sich dann an einem Sum-Check-Argument, um zu beweisen, dass die Ausgaben tatsächlich aus den Eingaben gemäß der Funktion der Schicht resultieren. Das Sum-Check-Protokoll überzeugt den Verifizierer iterativ von der Korrektheit einer Summe von Auswertungen eines Polynoms, das die Berechnung der Schicht kodiert, ohne die tatsächlichen Werte preiszugeben. Nichtlineare Operationen (wie ReLU, Softmax) werden in DeepProve effizient durch Lookup-Argumente behandelt – wenn die Ausgabe einer Aktivierung berechnet wurde, kann DeepProve beweisen, dass jede Ausgabe einem gültigen Eingabe-Ausgabe-Paar aus einer vorab berechneten Tabelle für diese Funktion entspricht. Schicht für Schicht werden Beweise generiert und dann zu einem prägnanten Beweis aggregiert, der den gesamten Vorwärtslauf des Modells abdeckt. Der Großteil der Kryptografie wird minimiert – der Prover von DeepProve führt hauptsächlich normale numerische Berechnungen (die eigentliche Inferenz) sowie einige leichte kryptografische Commitments durch, anstatt ein riesiges System von Constraints zu lösen.

  • Verifizierung: Der Verifizierer verwendet den endgültigen prägnanten Beweis zusammen mit einigen öffentlichen Werten – typischerweise dem committed Identifier des Modells (ein kryptografisches Commitment zu den Gewichten von $M$), der Eingabe $X$ (falls nicht privat) und der behaupteten Ausgabe $Y$ – um die Korrektheit zu überprüfen. Die Verifizierung im DeepProve-System beinhaltet die Überprüfung des Transkripts des Sum-Check-Protokolls und der endgültigen Polynom- oder Hash-Commitments. Dies ist aufwendiger als die Verifizierung eines klassischen SNARK (der einige Pairings umfassen könnte), aber es ist wesentlich billiger als das erneute Ausführen des Modells. In den Benchmarks von Lagrange dauert die Verifizierung eines DeepProve-Beweises für ein mittleres CNN in Software etwa 0,5 Sekunden. Das sind ~0,5s, um beispielsweise zu bestätigen, dass ein Faltungsnetzwerk mit Hunderttausenden von Parametern korrekt ausgeführt wurde – über 500-mal schneller als die naive Neuberechnung dieses CNN auf einer GPU zur Verifizierung. (Tatsächlich maß DeepProve eine 521-mal schnellere Verifizierung für CNNs und 671-mal für MLPs im Vergleich zur erneuten Ausführung.) Die Beweisgröße ist klein genug, um On-Chain übertragen zu werden (Zehntausende von KB), und die Verifizierung könnte bei Bedarf in einem Smart Contract durchgeführt werden, obwohl 0,5s Rechenzeit eine sorgfältige Gasoptimierung oder Layer-2-Ausführung erfordern könnten.

Architektur und Tools: DeepProve ist in Rust implementiert und bietet ein Toolkit (die zkml-Bibliothek) für Entwickler. Es unterstützt nativ ONNX-Modellgraphen und ist somit mit Modellen von PyTorch oder TensorFlow (nach dem Export) kompatibel. Der Proving-Prozess zielt derzeit auf Modelle mit bis zu einigen Millionen Parametern ab (Tests umfassen ein dichtes Netzwerk mit 4 Millionen Parametern). DeepProve nutzt eine Kombination kryptografischer Komponenten: ein multilineares Polynom-Commitment (um sich auf Schichtausgaben festzulegen), das Sum-Check-Protokoll zur Verifizierung von Berechnungen und Lookup-Argumente für nichtlineare Operationen. Bemerkenswerterweise erkennt Lagranges Open-Source-Repository an, dass es auf früheren Arbeiten (der Sum-Check- und GKR-Implementierung aus Scrolls Ceno-Projekt) aufbaut, was eine Überschneidung von zkML mit der Zero-Knowledge-Rollup-Forschung anzeigt.

Um Echtzeit-Skalierbarkeit zu erreichen, koppelt Lagrange DeepProve mit seinem Prover Network – einem dezentralen Netzwerk spezialisierter ZK-Prover. Die aufwendige Beweisgenerierung kann an dieses Netzwerk ausgelagert werden: Wenn eine Anwendung eine Inferenz verifiziert haben muss, sendet sie den Auftrag an das Lagrange-Netzwerk, wo viele Operatoren (die auf EigenLayer für Sicherheit gestaked sind) Beweise berechnen und das Ergebnis zurückgeben. Dieses Netzwerk incentiviert die zuverlässige Beweisgenerierung wirtschaftlich (bösartige oder fehlgeschlagene Aufträge führen dazu, dass der Operator slashed wird). Durch die Verteilung der Arbeit auf mehrere Prover (und potenziell die Nutzung von GPUs oder ASICs) verbirgt das Lagrange Prover Network die Komplexität und Kosten vor den Endbenutzern. Das Ergebnis ist ein schneller, skalierbarer und dezentraler zkML-Dienst: „verifizierbare KI-Inferenzen schnell und erschwinglich“.

Leistungsmeilensteine: Die Behauptungen von DeepProve werden durch Benchmarks gegen den bisherigen Stand der Technik, Ezkl, untermauert. Für ein CNN mit ~264.000 Parametern (Modell im CIFAR-10-Maßstab) betrug die Proving-Zeit von DeepProve ~1,24 Sekunden gegenüber ~196 Sekunden für Ezkl – etwa 158-mal schneller. Für ein größeres dichtes Netzwerk mit 4 Millionen Parametern bewies DeepProve eine Inferenz in ~2,3 Sekunden gegenüber ~126,8 Sekunden für Ezkl (~54-mal schneller). Auch die Verifizierungszeiten sanken: DeepProve verifizierte den 264k CNN-Beweis in ~0,6s, während die Verifizierung des Ezkl-Beweises (Halo2-basiert) in diesem Test über 5 Minuten auf der CPU dauerte. Die Beschleunigungen resultieren aus der nahezu linearen Komplexität von DeepProve: Sein Prover skaliert ungefähr O(n) mit der Anzahl der Operationen, während schaltkreisbasierte SNARK-Prover oft einen superlinearen Overhead aufweisen (FFT- und Polynom-Commitments-Skalierung). Tatsächlich kann der Prover-Durchsatz von DeepProve innerhalb einer Größenordnung der reinen Inferenzlaufzeit liegen – neuere GKR-Systeme können <10-mal langsamer sein als die Rohausführung für große Matrixmultiplikationen, eine beeindruckende Leistung in ZK. Dies macht Echtzeit- oder On-Demand-Beweise praktikabler und ebnet den Weg für verifizierbare KI in interaktiven Anwendungen.

Anwendungsfälle: Lagrange arbeitet bereits mit Web3- und KI-Projekten zusammen, um zkML anzuwenden. Beispielhafte Anwendungsfälle sind: verifizierbare NFT-Merkmale (Nachweis, dass eine KI-generierte Evolution eines Spielcharakters oder Sammlerstücks vom autorisierten Modell berechnet wurde), Provenienz von KI-Inhalten (Nachweis, dass ein Bild oder Text von einem bestimmten Modell generiert wurde, um Deepfakes zu bekämpfen), DeFi-Risikomodelle (Nachweis der Ausgabe eines Modells, das finanzielle Risiken bewertet, ohne proprietäre Daten preiszugeben) und private KI-Inferenz im Gesundheitswesen oder Finanzbereich (wo ein Krankenhaus KI-Vorhersagen mit einem Beweis erhalten kann, der die Korrektheit gewährleistet, ohne Patientendaten preiszugeben). Indem KI-Ausgaben verifizierbar und datenschutzfreundlich gemacht werden, öffnet DeepProve die Tür zu „KI, der Sie vertrauen können“ in dezentralen Systemen – von einer Ära des „blinden Vertrauens in Black-Box-Modelle“ zu einer Ära der „objektiven Garantien“.

SNARK-basiertes zkML: Ezkl und der Halo2-Ansatz

Der traditionelle Ansatz für zkML verwendet zk-SNARKs (Succinct Non-interactive Arguments of Knowledge), um neuronale Netzwerk-Inferenzen zu beweisen. Ezkl (von ZKonduit/Modulus Labs) ist ein führendes Beispiel für diesen Ansatz. Es baut auf dem Halo2-Beweissystem auf (ein SNARK im PLONK-Stil mit Polynom-Commitments über BLS12-381). Ezkl bietet eine Toolchain, mit der ein Entwickler ein PyTorch- oder TensorFlow-Modell nehmen, es nach ONNX exportieren und Ezkl es automatisch in einen benutzerdefinierten arithmetischen Schaltkreis kompilieren lassen kann.

Funktionsweise: Jede Schicht des neuronalen Netzwerks wird in Constraints umgewandelt:

  • Lineare Schichten (dicht oder Faltung) werden zu Sammlungen von Multiplikations-Additions-Constraints, die die Skalarprodukte zwischen Eingaben, Gewichten und Ausgaben erzwingen.
  • Nichtlineare Schichten (wie ReLU, Sigmoid usw.) werden über Lookups oder stückweise Constraints behandelt, da solche Funktionen nicht polynomial sind. Zum Beispiel kann eine ReLU durch einen booleschen Selektor $b$ implementiert werden, mit Constraints, die sicherstellen, dass $y = x \cdot b$ und $0 \le b \le 1$ und $b=1$ wenn $x>0$ (eine Möglichkeit), oder effizienter durch eine Lookup-Tabelle, die $x \mapsto \max(0,x)$ für einen Bereich von $x$-Werten abbildet. Halo2s Lookup-Argumente ermöglichen das Mapping von 16-Bit (oder kleineren) Wertblöcken, sodass große Domänen (wie alle 32-Bit-Werte) normalerweise in mehrere kleinere Lookups „zerlegt“ werden. Dieses Zerlegen erhöht die Anzahl der Constraints.
  • Große Ganzzahloperationen oder Divisionen (falls vorhanden) werden ähnlich in kleine Teile zerlegt. Das Ergebnis ist eine große Menge von R1CS/PLONK-Constraints, die auf die spezifische Modellarchitektur zugeschnitten sind.

Ezkl verwendet dann Halo2, um einen Beweis zu generieren, dass diese Constraints bei gegebenen geheimen Eingaben (Modellgewichte, private Eingaben) und öffentlichen Ausgaben gelten. Tools und Integration: Ein Vorteil des SNARK-Ansatzes ist, dass er auf bekannte Primitive zurückgreift. Halo2 wird bereits in Ethereum-Rollups (z. B. Zcash, zkEVMs) verwendet, ist also kampferprobt und verfügt über einen sofort verfügbaren On-Chain-Verifizierer. Die Beweise von Ezkl verwenden die BLS12-381-Kurve, die Ethereum über Precompiles verifizieren kann, was die Verifizierung eines Ezkl-Beweises in einem Smart Contract unkompliziert macht. Das Team hat auch benutzerfreundliche APIs bereitgestellt; zum Beispiel können Datenwissenschaftler mit ihren Modellen in Python arbeiten und Ezkls CLI verwenden, um Beweise zu erstellen, ohne tiefgehende Kenntnisse von Schaltkreisen zu haben.

Stärken: Der Ansatz von Ezkl profitiert von der Allgemeinheit und dem Ökosystem von SNARKs. Er unterstützt einigermaßen komplexe Modelle und hat bereits „praktische Integrationen (von DeFi-Risikomodellen bis hin zu Gaming-KI)“ erfahren, die reale ML-Aufgaben beweisen. Da er auf der Ebene des Berechnungsdiagramms des Modells arbeitet, kann er ML-spezifische Optimierungen anwenden: z. B. das Beschneiden unbedeutender Gewichte oder das Quantisieren von Parametern, um die Schaltkreisgröße zu reduzieren. Es bedeutet auch, dass die Modellvertraulichkeit natürlich ist – die Gewichte können als private Zeugendaten behandelt werden, sodass der Verifizierer nur sieht, dass irgendein gültiges Modell die Ausgabe erzeugt hat, oder bestenfalls ein Commitment zum Modell. Die Verifizierung von SNARK-Beweisen ist extrem schnell (typischerweise wenige Millisekunden oder weniger On-Chain), und die Beweisgrößen sind klein (einige Kilobyte), was ideal für die Blockchain-Nutzung ist.

Schwächen: Die Leistung ist die Achillesferse. Schaltkreisbasierte Beweiserstellung verursacht große Overheads, insbesondere wenn Modelle wachsen. Es wird angemerkt, dass SNARK-Schaltkreise historisch gesehen eine Million Mal mehr Arbeit für den Prover bedeuten konnten, als nur das Modell selbst auszuführen. Halo2 und Ezkl optimieren dies, aber dennoch erzeugen Operationen wie große Matrixmultiplikationen Tonnen von Constraints. Wenn ein Modell Millionen von Parametern hat, muss der Prover entsprechend Millionen von Constraints verarbeiten und dabei aufwendige FFTs und Multiexponentiationen durchführen. Dies führt zu hohen Proving-Zeiten (oft Minuten oder Stunden für nicht-triviale Modelle) und hohem Speicherverbrauch. Zum Beispiel kann die Beweiserstellung für ein relativ kleines CNN (z. B. einige Hunderttausend Parameter) mit Ezkl auf einer einzelnen Maschine Dutzende von Minuten dauern. Das Team hinter DeepProve zitierte, dass Ezkl Stunden für bestimmte Modellbeweise benötigte, die DeepProve in Minuten erledigen kann. Große Modelle passen möglicherweise nicht einmal in den Speicher oder erfordern eine Aufteilung in mehrere Beweise (die dann eine rekursive Aggregation benötigen). Obwohl Halo2 „moderat optimiert“ ist, führt jede Notwendigkeit, Lookups zu „zerlegen“ oder Operationen mit breiten Bits zu handhaben, zu zusätzlichem Overhead. Zusammenfassend lässt sich sagen, dass die Skalierbarkeit begrenzt ist – Ezkl funktioniert gut für kleine bis mittlere Modelle (und übertraf in Benchmarks tatsächlich einige frühere Alternativen wie naive Stark-basierte VMs), aber es stößt an Grenzen, wenn die Modellgröße einen bestimmten Punkt überschreitet.

Trotz dieser Herausforderungen sind Ezkl und ähnliche SNARK-basierte zkML-Bibliotheken wichtige Meilensteine. Sie bewiesen, dass verifizierte ML-Inferenz On-Chain möglich ist und aktiv genutzt wird. Insbesondere Projekte wie Modulus Labs demonstrierten die Verifizierung eines 18-Millionen-Parameter-Modells On-Chain unter Verwendung von SNARKs (mit starker Optimierung). Die Kosten waren nicht trivial, aber es zeigt die Entwicklung. Darüber hinaus verfügt das Mina Protocol über ein eigenes zkML-Toolkit, das SNARKs verwendet, um Smart Contracts auf Mina (die SNARK-basiert sind) die Verifizierung der ML-Modellausführung zu ermöglichen. Dies deutet auf eine wachsende Multi-Plattform-Unterstützung für SNARK-basierte zkML hin.

STARK-basierte Ansätze: Transparente und programmierbare ZK für ML

zk-STARKs (Scalable Transparent ARguments of Knowledge) bieten einen weiteren Weg zu zkML. STARKs verwenden Hash-basierte Kryptografie (wie FRI für Polynom-Commitments) und vermeiden jegliches Trusted Setup. Sie arbeiten oft, indem sie eine CPU oder VM simulieren und die Korrektheit des Ausführungs-Traces beweisen. Im Kontext von ML kann man entweder einen benutzerdefinierten STARK für das neuronale Netzwerk erstellen oder eine allgemeine STARK-VM verwenden, um den Modellcode auszuführen.

Allgemeine STARK-VMs (RISC Zero, Cairo): Ein unkomplizierter Ansatz ist, Inferenzcode zu schreiben und ihn in einer STARK-VM auszuführen. Zum Beispiel bietet Risc0 eine RISC-V-Umgebung, in der jeder Code (z. B. eine C++- oder Rust-Implementierung eines neuronalen Netzwerks) ausgeführt und über einen STARK bewiesen werden kann. Ähnlich kann StarkWares Cairo-Sprache beliebige Berechnungen (wie eine LSTM- oder CNN-Inferenz) ausdrücken, die dann vom StarkNet STARK-Prover bewiesen werden. Der Vorteil ist die Flexibilität – man muss keine benutzerdefinierten Schaltkreise für jedes Modell entwerfen. Frühe Benchmarks zeigten jedoch, dass naive STARK-VMs im Vergleich zu optimierten SNARK-Schaltkreisen für ML langsamer waren. In einem Test war ein Halo2-basierter Beweis (Ezkl) etwa 3-mal schneller als ein STARK-basierter Ansatz auf Cairo und sogar 66-mal schneller als eine RISC-V STARK-VM bei einem bestimmten Benchmark im Jahr 2024. Diese Lücke ist auf den Overhead der Simulation jeder Low-Level-Anweisung in einem STARK und die größeren Konstanten in STARK-Beweisen zurückzuführen (Hashing ist schnell, aber man braucht viel davon; STARK-Beweisgrößen sind größer usw.). STARK-VMs verbessern sich jedoch und bieten den Vorteil eines transparenten Setups (kein Trusted Setup) und Post-Quanten-Sicherheit. Mit fortschreitender STARK-freundlicher Hardware und Protokollen werden sich die Proving-Geschwindigkeiten verbessern.

DeepProves Ansatz vs. STARK: Interessanterweise liefert DeepProves Verwendung von GKR und Sum-Check einen Beweis, der im Geiste eher einem STARK ähnelt – es ist ein interaktiver, Hash-basierter Beweis, der keine strukturierte Referenzzeichenfolge benötigt. Der Kompromiss ist, dass seine Beweise größer und die Verifizierung aufwendiger ist als bei einem SNARK. Dennoch zeigt DeepProve, dass ein sorgfältiges Protokolldesign (spezialisiert auf die geschichtete Struktur von ML) sowohl generische STARK-VMs als auch SNARK-Schaltkreise in der Proving-Zeit deutlich übertreffen kann. Wir können DeepProve als einen maßgeschneiderten STARK-ähnlichen zkML-Prover betrachten (obwohl sie den Begriff zkSNARK für Prägnanz verwenden, hat er nicht die kleine konstante Verifizierungsgröße eines traditionellen SNARK, da 0,5s Verifizierung größer ist als die typische SNARK-Verifizierung). Traditionelle STARK-Beweise (wie die von StarkNet) erfordern oft Zehntausende von Feldoperationen zur Verifizierung, während SNARKs vielleicht nur wenige Dutzend verifizieren. Somit ist ein Kompromiss offensichtlich: SNARKs liefern kleinere Beweise und schnellere Verifizierer, während STARKs (oder GKR) eine einfachere Skalierung und kein Trusted Setup auf Kosten der Beweisgröße und Verifizierungsgeschwindigkeit bieten.

Aufkommende Verbesserungen: Die JOLT zkVM (zuvor unter JOLTx besprochen) gibt tatsächlich SNARKs aus (unter Verwendung von PLONKish-Commitments), verkörpert aber Ideen, die auch im STARK-Kontext angewendet werden könnten (Lasso-Lookups könnten theoretisch mit FRI-Commitments verwendet werden). StarkWare und andere erforschen Wege, die Beweiserstellung gängiger Operationen zu beschleunigen (z. B. die Verwendung von Custom Gates oder Hints in Cairo für Big-Int-Operationen usw.). Es gibt auch Circomlib-ML von Privacy&Scaling Explorations (PSE), das Circom-Templates für CNN-Schichten usw. bereitstellt – das ist SNARK-orientiert, aber konzeptionell ähnliche Templates könnten für STARK-Sprachen erstellt werden.

In der Praxis umfassen Nicht-Ethereum-Ökosysteme, die STARKs nutzen, StarkNet (das eine On-Chain-Verifizierung von ML ermöglichen könnte, wenn jemand einen Verifizierer schreibt, obwohl die Kosten hoch sind) und den Bonsai-Dienst von Risc0 (ein Off-Chain-Proving-Dienst, der STARK-Beweise ausgibt, die auf verschiedenen Chains verifiziert werden können). Ab 2025 haben die meisten zkML-Demos auf der Blockchain SNARKs bevorzugt (aufgrund der Verifizierereffizienz), aber STARK-Ansätze bleiben attraktiv wegen ihrer Transparenz und ihres Potenzials in Hochsicherheits- oder quantenresistenten Umgebungen. Zum Beispiel könnte ein dezentrales Computernetzwerk STARKs verwenden, um jedem die Verifizierung der Arbeit ohne Trusted Setup zu ermöglichen, was für die Langlebigkeit nützlich ist. Auch könnten einige spezialisierte ML-Aufgaben STARK-freundliche Strukturen nutzen: z. B. Berechnungen, die stark XOR-/Bit-Operationen verwenden, könnten in STARKs (da diese in der Booleschen Algebra und beim Hashing günstig sind) schneller sein als in der SNARK-Feldarithmetik.

Zusammenfassung von SNARK vs. STARK für ML:

  • Leistung: SNARKs (wie Halo2) haben einen enormen Prover-Overhead pro Gate, profitieren aber von leistungsstarken Optimierungen und kleinen Konstanten für die Verifizierung; STARKs (generisch) haben einen größeren konstanten Overhead, skalieren aber linearer und vermeiden teure Kryptografie wie Pairings. DeepProve zeigt, dass die Anpassung des Ansatzes (Sum-Check) eine nahezu lineare Proving-Zeit (schnell) mit einem STARK-ähnlichen Beweis ergibt. JOLT zeigt, dass selbst eine allgemeine VM durch intensive Nutzung von Lookups schneller gemacht werden kann. Empirisch gesehen, für Modelle bis zu Millionen von Operationen: Ein gut optimierter SNARK (Ezkl) kann dies bewältigen, benötigt aber möglicherweise Dutzende von Minuten, während DeepProve (GKR) dies in Sekunden erledigen kann. STARK-VMs waren 2024 wahrscheinlich dazwischen oder schlechter als SNARKs, es sei denn, sie waren spezialisiert (Risc0 war in Tests langsamer, Cairo war ohne benutzerdefinierte Hints langsamer).
  • Verifizierung: SNARK-Beweise verifizieren am schnellsten (Millisekunden, und minimale Daten On-Chain ~ einige Hundert Byte bis wenige KB). STARK-Beweise sind größer (Dutzende von KB) und benötigen aufgrund vieler Hashing-Schritte länger (Zehntausende von ms bis Sekunden) zur Verifizierung. In Blockchain-Begriffen könnte eine SNARK-Verifizierung z. B. ~200k Gas kosten, während eine STARK-Verifizierung Millionen von Gas kosten könnte – oft zu hoch für L1, akzeptabel auf L2 oder mit prägnanten Verifizierungsschemata.
  • Setup und Sicherheit: SNARKs wie Groth16 erfordern ein Trusted Setup pro Schaltkreis (unfreundlich für beliebige Modelle), aber universelle SNARKs (PLONK, Halo2) haben ein einmaliges Setup, das für jeden Schaltkreis bis zu einer bestimmten Größe wiederverwendet werden kann. STARKs benötigen kein Setup und verwenden nur Hash-Annahmen (plus klassische Polynomkomplexitätsannahmen) und sind post-quantensicher. Dies macht STARKs attraktiv für die Langlebigkeit – Beweise bleiben sicher, selbst wenn Quantencomputer auftauchen, während aktuelle SNARKs (BLS12-381-basiert) durch Quantenangriffe gebrochen würden.

Wir werden diese Unterschiede in Kürze in einer Vergleichstabelle zusammenfassen.

FHE für ML (FHE-o-ML): Private Berechnung vs. verifizierbare Berechnung

Vollständig Homomorphe Verschlüsselung (FHE) ist eine kryptografische Technik, die es ermöglicht, Berechnungen direkt auf verschlüsselten Daten durchzuführen. Im Kontext von ML kann FHE eine Form der datenschutzfreundlichen Inferenz ermöglichen: Zum Beispiel kann ein Client verschlüsselte Eingaben an einen Modell-Host senden, der Host führt das neuronale Netzwerk auf dem Chiffretext aus, ohne ihn zu entschlüsseln, und sendet ein verschlüsseltes Ergebnis zurück, das der Client entschlüsseln kann. Dies gewährleistet die Datenvertraulichkeit – der Modelleigentümer erfährt nichts über die Eingabe (und potenziell erfährt der Client nur die Ausgabe, nicht die internen Details des Modells, wenn er nur die Ausgabe erhält). FHE allein erzeugt jedoch keinen Korrektheitsbeweis auf die gleiche Weise wie ZKPs. Der Client muss darauf vertrauen, dass der Modelleigentümer die Berechnung tatsächlich ehrlich durchgeführt hat (der Chiffretext könnte manipuliert worden sein). Normalerweise, wenn der Client das Modell hat oder eine bestimmte Verteilung der Ausgaben erwartet, kann offensichtlicher Betrug erkannt werden, aber subtile Fehler oder die Verwendung einer falschen Modellversion wären allein aus der verschlüsselten Ausgabe nicht ersichtlich.

Kompromisse bei der Leistung: FHE ist bekanntermaßen rechenintensiv. Die Ausführung von Deep-Learning-Inferenzen unter FHE führt zu Verlangsamungen um Größenordnungen. Frühe Experimente (z. B. CryptoNets im Jahr 2016) benötigten Dutzende von Sekunden, um ein winziges CNN auf verschlüsselten Daten zu evaluieren. Bis 2024 haben Verbesserungen wie CKKS (für ungefähre Arithmetik) und bessere Bibliotheken (Microsoft SEAL, Zamas Concrete) diesen Overhead reduziert, er bleibt jedoch groß. Zum Beispiel berichtete ein Benutzer, dass die Verwendung von Zamas Concrete-ML zur Ausführung eines CIFAR-10-Klassifikators 25–30 Minuten pro Inferenz auf seiner Hardware dauerte. Nach Optimierungen erreichte Zamas Team ~40 Sekunden für diese Inferenz auf einem 192-Core-Server. Selbst 40s sind extrem langsam im Vergleich zu einer Klartext-Inferenz (die vielleicht 0,01s dauert), was einen Overhead von ~$10^3$–$10^4\times$ zeigt. Größere Modelle oder höhere Präzision erhöhen die Kosten weiter. Zusätzlich verbrauchen FHE-Operationen viel Speicher und erfordern gelegentliches Bootstrapping (einen Rauschunterdrückungsschritt), was rechenintensiv ist. Zusammenfassend lässt sich sagen, dass Skalierbarkeit ein großes Problem ist – modernste FHE könnte ein kleines CNN oder eine einfache logistische Regression bewältigen, aber die Skalierung auf große CNNs oder Transformer liegt jenseits der aktuellen praktischen Grenzen.

Datenschutzvorteile: Der große Reiz von FHE ist der Datenschutz. Die Eingabe kann während des gesamten Prozesses vollständig verschlüsselt bleiben. Das bedeutet, dass ein nicht vertrauenswürdiger Server auf den privaten Daten eines Clients rechnen kann, ohne etwas darüber zu erfahren. Umgekehrt könnte man, wenn das Modell sensibel (proprietär) ist, die Modellparameter verschlüsseln und den Client die FHE-Inferenz auf seiner Seite durchführen lassen – dies ist jedoch weniger verbreitet, da der Client, wenn er die aufwendige FHE-Berechnung durchführen muss, die Idee der Auslagerung an einen leistungsstarken Server zunichtemacht. Typischerweise ist das Modell öffentlich oder wird vom Server im Klartext gehalten, und die Daten werden mit dem Schlüssel des Clients verschlüsselt. Der Modellschutz ist in diesem Szenario standardmäßig nicht gegeben (der Server kennt das Modell; der Client erfährt Ausgaben, aber nicht die Gewichte). Es gibt exotischere Setups (wie sichere Zwei-Parteien-Berechnung oder Multi-Key-FHE), bei denen sowohl Modell als auch Daten voneinander privat gehalten werden können, aber diese verursachen noch mehr Komplexität. Im Gegensatz dazu kann zkML über ZKPs Modellschutz und Datenschutz gleichzeitig gewährleisten – der Prover kann sowohl das Modell als auch die Daten als geheime Zeugen haben und dem Verifizierer nur das Notwendige offenbaren.

Keine On-Chain-Verifizierung erforderlich (und keine möglich): Bei FHE wird das Ergebnis verschlüsselt an den Client übermittelt. Der Client entschlüsselt es dann, um die tatsächliche Vorhersage zu erhalten. Wenn wir dieses Ergebnis On-Chain verwenden wollen, müsste der Client (oder wer auch immer den Entschlüsselungsschlüssel besitzt) das Klartext-Ergebnis veröffentlichen und andere davon überzeugen, dass es korrekt ist. Aber an diesem Punkt ist Vertrauen wieder im Spiel – es sei denn, es wird mit einem ZKP kombiniert. Im Prinzip könnte man FHE und ZKP kombinieren: z. B. FHE verwenden, um Daten während der Berechnung privat zu halten, und dann einen ZK-Beweis generieren, dass das Klartext-Ergebnis einer korrekten Berechnung entspricht. Die Kombination beider bedeutet jedoch, dass man die Leistungsstrafe von FHE und ZKP zahlt – extrem unpraktisch mit der heutigen Technologie. In der Praxis dienen FHE-of-ML und zkML also unterschiedlichen Anwendungsfällen:

  • FHE-of-ML: Ideal, wenn das Ziel die Vertraulichkeit zwischen zwei Parteien (Client und Server) ist. Zum Beispiel kann ein Cloud-Dienst ein ML-Modell hosten, und Benutzer können es mit ihren sensiblen Daten abfragen, ohne die Daten der Cloud preiszugeben (und wenn das Modell sensibel ist, es vielleicht über FHE-freundliche Kodierungen bereitstellen). Dies ist großartig für datenschutzfreundliche ML-Dienste (medizinische Vorhersagen usw.). Der Benutzer muss dem Dienst immer noch vertrauen, dass er das Modell getreu ausführt (da kein Beweis vorliegt), aber zumindest wird jegliches Datenleck verhindert. Einige Projekte wie Zama erforschen sogar eine „FHE-fähige EVM (fhEVM)“, bei der Smart Contracts auf verschlüsselten Eingaben operieren könnten, aber die Verifizierung dieser Berechnungen On-Chain würde erfordern, dass der Vertrag die korrekte Berechnung irgendwie durchsetzt – eine offene Herausforderung, die wahrscheinlich ZK-Beweise oder spezialisierte sichere Hardware erfordert.
  • zkML (ZKPs): Ideal, wenn das Ziel Verifizierbarkeit und öffentliche Auditierbarkeit ist. Wenn Sie sicherstellen möchten, dass „Modell $M$ korrekt auf $X$ evaluiert wurde und $Y$ erzeugte“, sind ZKPs die Lösung. Sie bieten auch Datenschutz als Bonus (Sie können $X$ oder $Y$ oder $M$ bei Bedarf verbergen, indem Sie sie als private Eingaben für den Beweis behandeln), aber ihr Hauptmerkmal ist der Beweis der korrekten Ausführung.

Eine komplementäre Beziehung: Es ist erwähnenswert, dass ZKPs den Verifizierer schützen (sie erfahren nichts über Geheimnisse, nur dass die Berechnung korrekt durchgeführt wurde), während FHE die Daten des Provers vor der rechnenden Partei schützt. In einigen Szenarien könnten diese kombiniert werden – zum Beispiel könnte ein Netzwerk nicht vertrauenswürdiger Knoten FHE verwenden, um auf den privaten Daten der Benutzer zu rechnen und dann ZK-Beweise an die Benutzer (oder Blockchain) liefern, dass die Berechnungen gemäß dem Protokoll durchgeführt wurden. Dies würde sowohl Datenschutz als auch Korrektheit abdecken, aber die Leistungskosten sind mit den heutigen Algorithmen enorm. Kurzfristig praktikabler sind Hybride wie Trusted Execution Environments (TEE) plus ZKP oder Funktionale Verschlüsselung plus ZKP – diese liegen außerhalb unseres Rahmens, zielen aber darauf ab, etwas Ähnliches zu bieten (TEEs halten Daten/Modell während der Berechnung geheim, dann kann ein ZKP bestätigen, dass das TEE das Richtige getan hat).

Zusammenfassend lässt sich sagen, dass FHE-of-ML die Vertraulichkeit von Eingaben/Ausgaben priorisiert, während zkML die verifizierbare Korrektheit (mit möglicher Privatsphäre) priorisiert. Tabelle 1 unten vergleicht die wichtigsten Eigenschaften:

AnsatzProver-Leistung (Inferenz & Beweis)Beweisgröße & VerifizierungDatenschutzmerkmaleTrusted Setup?Post-Quanten-sicher?
zk-SNARK (Halo2, Groth16, PLONK, etc)Hoher Prover-Overhead (bis zu 10^6-fach der normalen Laufzeit ohne Optimierungen; in der Praxis 10^3–10^5-fach). Optimiert für spezifische Modelle/Schaltkreise; Proving-Zeit in Minuten für mittlere Modelle, Stunden für große. Neuere zkML-SNARKs (DeepProve mit GKR) verbessern dies erheblich (nahezu linearer Overhead, z. B. Sekunden statt Minuten für Modelle mit Millionen von Parametern).Sehr kleine Beweise (oft < 100 KB, manchmal ~einige KB). Verifizierung ist schnell: wenige Pairings oder Polynom-Evaluierungen (typischerweise < 50 ms On-Chain). DeepProves GKR-basierte Beweise sind größer (Zehntausende–Hunderte von KB) und verifizieren in ~0,5 s (immer noch viel schneller als das erneute Ausführen des Modells).Datenvertraulichkeit: Ja – Eingaben können im Beweis privat sein (nicht offengelegt). Modellschutz: Ja – Prover kann sich zu Modellgewichten committen und diese nicht offenlegen. Ausgabeverbergen: Optional – Beweis kann eine Aussage sein, ohne die Ausgabe preiszugeben (z. B. „Ausgabe hat Eigenschaft P“). Wenn die Ausgabe selbst jedoch On-Chain benötigt wird, wird sie typischerweise öffentlich. Insgesamt bieten SNARKs volle Zero-Knowledge-Flexibilität (verbergen Sie, welche Teile Sie möchten).Abhängig vom Schema. Groth16/EZKL erfordern ein Trusted Setup pro Schaltkreis; PLONK/Halo2 verwenden ein universelles Setup (einmalig). DeepProves Sum-Check GKR ist transparent (kein Setup) – ein Bonus dieses Designs.Klassische SNARKs (BLS12-381-Kurven) sind nicht PQ-sicher (anfällig für Quantenangriffe auf den elliptischen Kurven-Diskreten Logarithmus). Einige neuere SNARKs verwenden PQ-sichere Commitments, aber Halo2/PLONK, wie in Ezkl verwendet, sind nicht PQ-sicher. GKR (DeepProve) verwendet Hash-Commitments (z. B. Poseidon/Merkle), die als PQ-sicher vermutet werden (basierend auf der Hash-Preimage-Resistenz).
zk-STARK (FRI, Hash-basierter Beweis)Prover-Overhead ist hoch, aber die Skalierung ist linearer. Typischerweise 10^2–10^4-mal langsamer als nativ für große Aufgaben, mit Raum zur Parallelisierung. Allgemeine STARK-VMs (Risc0, Cairo) zeigten 2024 eine langsamere Leistung im Vergleich zu SNARK für ML (z. B. 3- bis 66-mal langsamer als Halo2 in einigen Fällen). Spezialisierte STARKs (oder GKR) können einen linearen Overhead erreichen und SNARKs für große Schaltkreise übertreffen.Beweise sind größer: oft Zehntausende von KB (wachsend mit Schaltkreisgröße/log(n)). Verifizierer muss mehrere Hash- und FFT-Prüfungen durchführen – Verifizierungszeit ~O(n^ε) für kleines ε (z. B. ~50 ms bis 500 ms je nach Beweisgröße). On-Chain ist dies kostspieliger (StarkWares L1-Verifizierer kann Millionen von Gas pro Beweis verbrauchen). Einige STARKs unterstützen rekursive Beweise zur Komprimierung der Größe, auf Kosten der Prover-Zeit.Daten- & Modellschutz: Ein STARK kann Zero-Knowledge gemacht werden, indem Trace-Daten randomisiert werden (Hinzufügen von Blinding zu Polynom-Evaluierungen), sodass er private Eingaben ähnlich wie SNARK verbergen kann. Viele STARK-Implementierungen konzentrieren sich auf Integrität, aber zk-STARK-Varianten ermöglichen Datenschutz. Ja, sie können Eingaben/Modelle wie SNARKs verbergen. Ausgabeverbergen: theoretisch ebenfalls möglich (Prover deklariert die Ausgabe nicht als öffentlich), aber selten verwendet, da die Ausgabe normalerweise das ist, was wir offenlegen/verifizieren wollen.Kein Trusted Setup. Transparenz ist ein Kennzeichen von STARKs – erfordert nur eine gemeinsame Zufallszeichenfolge (die Fiat-Shamir ableiten kann). Dies macht sie attraktiv für den offenen Einsatz (jedes Modell, jederzeit, keine Zeremonie pro Modell).Ja, STARKs basieren auf Hash- und informationstheoretischen Sicherheitsannahmen (wie Random Oracle und der Schwierigkeit bestimmter Codewort-Dekodierungen in FRI). Diese gelten als sicher gegen Quantengegner. STARK-Beweise sind somit PQ-resistent, ein Vorteil für die Zukunftssicherheit verifizierbarer KI.
FHE für ML (Vollständig Homomorphe Verschlüsselung angewendet auf Inferenz)Prover = Partei, die Berechnungen auf verschlüsselten Daten durchführt. Die Berechnungszeit ist extrem hoch: 10^3–10^5-mal langsamer als Klartext-Inferenz ist üblich. High-End-Hardware (Multi-Core-Server, FPGA usw.) kann dies mildern. Einige Optimierungen (Inferenz mit geringer Präzision, gestufte FHE-Parameter) können den Overhead reduzieren, aber es gibt einen grundlegenden Leistungseinbruch. FHE ist derzeit praktisch für kleine Modelle oder einfache lineare Modelle; tiefe Netzwerke bleiben über Spielzeuggrößen hinaus eine Herausforderung.Kein Beweis generiert. Das Ergebnis ist eine verschlüsselte Ausgabe. Verifizierung im Sinne der Korrektheitsprüfung wird von FHE allein nicht bereitgestellt – man vertraut der rechnenden Partei, nicht zu betrügen. (Wenn mit sicherer Hardware kombiniert, könnte man eine Bestätigung erhalten; andernfalls könnte ein bösartiger Server ein falsches verschlüsseltes Ergebnis zurückgeben, das der Client zu einer falschen Ausgabe entschlüsseln würde, ohne den Unterschied zu kennen).Datenvertraulichkeit: Ja – die Eingabe ist verschlüsselt, sodass die rechnende Partei nichts darüber erfährt. Modellschutz: Wenn der Modelleigentümer die Berechnung auf verschlüsselten Eingaben durchführt, ist das Modell auf seiner Seite im Klartext (nicht geschützt). Wenn die Rollen vertauscht sind (Client hält Modell verschlüsselt und Server rechnet), könnte das Modell verschlüsselt bleiben, aber dieses Szenario ist weniger verbreitet. Es gibt Techniken wie sicheres Zwei-Parteien-ML, die FHE/MPC kombinieren, um beides zu schützen, aber diese gehen über reines FHE hinaus. Ausgabeverbergen: Standardmäßig ist die Ausgabe der Berechnung verschlüsselt (nur entschlüsselbar durch die Partei mit dem geheimen Schlüssel, normalerweise den Eingabeinhaber). Die Ausgabe ist also vor dem rechnenden Server verborgen. Wenn wir die Ausgabe öffentlich machen wollen, kann der Client sie entschlüsseln und offenlegen.Kein Setup erforderlich. Jeder Benutzer generiert sein eigenes Schlüsselpaar für die Verschlüsselung. Vertrauen basiert darauf, dass die Schlüssel geheim bleiben.Die Sicherheit von FHE-Schemata (z. B. BFV, CKKS, TFHE) basiert auf Gitterproblemen (Learning With Errors), die als resistent gegen Quantenangriffe gelten (zumindest ist kein effizienter Quantenalgorithmus bekannt). FHE wird daher im Allgemeinen als post-quantensicher angesehen.

Tabelle 1: Vergleich von zk-SNARK-, zk-STARK- und FHE-Ansätzen für maschinelles Lernen (Leistungs- und Datenschutzkompromisse).

Anwendungsfälle und Implikationen für Web3-Anwendungen

Die Konvergenz von KI und Blockchain über zkML erschließt leistungsstarke neue Anwendungsmuster in Web3:

  • Dezentrale autonome Agenten & On-Chain-Entscheidungsfindung: Smart Contracts oder DAOs können KI-gesteuerte Entscheidungen mit Korrektheitsgarantien integrieren. Stellen Sie sich zum Beispiel eine DAO vor, die ein neuronales Netzwerk verwendet, um Marktbedingungen zu analysieren, bevor sie Trades ausführt. Mit zkML kann der Smart Contract der DAO einen zkSNARK-Beweis verlangen, dass das autorisierte ML-Modell (mit einem bekannten Hash-Commitment) auf den neuesten Daten ausgeführt wurde und die empfohlene Aktion erzeugte, bevor die Aktion akzeptiert wird. Dies verhindert, dass böswillige Akteure eine gefälschte Vorhersage einschleusen – die Kette verifiziert die KI-Berechnung. Im Laufe der Zeit könnten sogar vollständig On-Chain autonome Agenten (Contracts, die Off-Chain-KI abfragen oder vereinfachte Modelle enthalten) Entscheidungen in DeFi oder Spielen treffen, wobei alle ihre Schritte über zk-Beweise als korrekt und richtlinienkonform nachgewiesen werden. Dies erhöht das Vertrauen in autonome Agenten, da ihr „Denken“ transparent und verifizierbar ist und nicht als Black-Box fungiert.

  • Verifizierbare Computemärkte: Projekte wie Lagrange schaffen effektiv verifizierbare Berechnungsmarktplätze – Entwickler können aufwendige ML-Inferenzen an ein Netzwerk von Provern auslagern und erhalten einen Beweis mit dem Ergebnis zurück. Dies ist vergleichbar mit dezentralem Cloud Computing, aber mit integriertem Vertrauen: Sie müssen dem Server nicht vertrauen, nur dem Beweis. Es ist ein Paradigmenwechsel für Orakel und Off-Chain-Berechnungen. Protokolle wie Ethereums kommender DSC (dezentraler Sequencing Layer) oder Orakelnetzwerke könnten dies nutzen, um Daten-Feeds oder Analyse-Feeds mit kryptografischen Garantien bereitzustellen. Zum Beispiel könnte ein Orakel „das Ergebnis von Modell X auf Eingabe Y“ liefern, und jeder kann den beigefügten Beweis On-Chain verifizieren, anstatt dem Wort des Orakels zu vertrauen. Dies könnte verifizierbare KI-as-a-Service auf der Blockchain ermöglichen: Jeder Vertrag kann eine Berechnung anfordern (wie „bewerten Sie diese Kreditrisiken mit meinem privaten Modell“) und die Antwort nur mit einem gültigen Beweis akzeptieren. Projekte wie Gensyn erforschen dezentrale Trainings- und Inferenzmarktplätze unter Verwendung dieser Verifizierungstechniken.

  • NFTs und Gaming – Provenienz und Evolution: In Blockchain-Spielen oder NFT-Sammlerstücken kann zkML beweisen, dass Merkmale oder Spielzüge von legitimen KI-Modellen generiert wurden. Zum Beispiel könnte ein Spiel einer KI erlauben, die Attribute eines NFT-Haustiers zu entwickeln. Ohne ZK könnte ein cleverer Benutzer die KI oder das Ergebnis manipulieren, um ein überlegenes Haustier zu erhalten. Mit zkML kann das Spiel einen Beweis verlangen, dass „die neuen Werte des Haustiers vom offiziellen Evolutionsmodell auf den alten Werten des Haustiers berechnet wurden“, wodurch Betrug verhindert wird. Ähnlich bei generativen Kunst-NFTs: Ein Künstler könnte ein generatives Modell als Commitment veröffentlichen; später, beim Minten von NFTs, beweisen, dass jedes Bild von diesem Modell mit einem bestimmten Seed erzeugt wurde, wodurch die Authentizität garantiert wird (und dies sogar, ohne das genaue Modell der Öffentlichkeit preiszugeben, wodurch das geistige Eigentum des Künstlers geschützt wird). Diese Provenienzverifizierung gewährleistet Authentizität auf eine Weise, die der verifizierbaren Zufälligkeit ähnelt – nur hier ist es verifizierbare Kreativität.

  • Datenschutzfreundliche KI in sensiblen Bereichen: zkML ermöglicht die Bestätigung von Ergebnissen, ohne Eingaben preiszugeben. Im Gesundheitswesen könnten Patientendaten von einem Cloud-Anbieter durch ein KI-Diagnosemodell laufen; das Krankenhaus erhält eine Diagnose und einen Beweis, dass das Modell (das privat von einem Pharmaunternehmen gehalten werden könnte) korrekt auf den Patientendaten ausgeführt wurde. Die Patientendaten bleiben privat (nur eine verschlüsselte oder committed Form wurde im Beweis verwendet), und die Modellgewichte bleiben proprietär – dennoch ist das Ergebnis vertrauenswürdig. Regulierungsbehörden oder Versicherungen könnten auch überprüfen, dass nur genehmigte Modelle verwendet wurden. Im Finanzwesen könnte ein Unternehmen einem Auditor oder einer Regulierungsbehörde beweisen, dass sein Risikomodell auf seine internen Daten angewendet wurde und bestimmte Metriken erzeugte, ohne die zugrunde liegenden sensiblen Finanzdaten preiszugeben. Dies ermöglicht Compliance und Aufsicht mit kryptografischen Zusicherungen anstelle von manuellem Vertrauen.

  • Cross-Chain- und Off-Chain-Interoperabilität: Da Zero-Knowledge-Beweise grundsätzlich portabel sind, kann zkML Cross-Chain-KI-Ergebnisse erleichtern. Eine Kette könnte eine KI-intensive Anwendung Off-Chain ausführen; sie kann einen Beweis des Ergebnisses an eine andere Blockchain senden, die ihn vertrauenslos akzeptiert. Betrachten Sie zum Beispiel eine Multi-Chain-DAO, die eine KI verwendet, um Stimmungen in sozialen Medien zu aggregieren (Off-Chain-Daten). Die KI-Analyse (komplexes NLP auf großen Datenmengen) wird Off-Chain von einem Dienst durchgeführt, der dann einen Beweis an eine kleine Blockchain (oder mehrere Chains) sendet, dass „die Analyse korrekt durchgeführt wurde und der Stimmungs-Score = 0,85 ergab“. Alle Chains können dieses Ergebnis in ihrer Governance-Logik verifizieren und verwenden, ohne dass jede die Analyse erneut durchführen muss. Diese Art der interoperablen verifizierbaren Berechnung ist das, was Lagranges Netzwerk unterstützen will, indem es mehrere Rollups oder L1s gleichzeitig bedient. Es beseitigt die Notwendigkeit von Trusted Bridges oder Orakel-Annahmen beim Verschieben von Ergebnissen zwischen Chains.

  • KI-Ausrichtung und Governance: Aus einer zukunftsorientierteren Perspektive wurde zkML als Werkzeug für KI-Governance und -Sicherheit hervorgehoben. Lagranges Vision Statements argumentieren beispielsweise, dass mit zunehmender Leistungsfähigkeit von KI-Systemen (sogar superintelligenten) kryptografische Verifizierung unerlässlich sein wird, um sicherzustellen, dass sie vereinbarten Regeln folgen. Indem KI-Modelle Beweise für ihre Argumentation oder Constraints erbringen müssen, behalten Menschen ein gewisses Maß an Kontrolle – „man kann nicht vertrauen, was man nicht verifizieren kann“. Obwohl dies spekulativ ist und sowohl soziale als auch technische Aspekte umfasst, könnte die Technologie durchsetzen, dass ein autonom agierender KI-Agent immer noch beweist, dass er ein genehmigtes Modell verwendet und nicht manipuliert wurde. Dezentrale KI-Netzwerke könnten On-Chain-Beweise verwenden, um Beiträge zu verifizieren (z. B. kann ein Netzwerk von Knoten, die gemeinsam ein Modell trainieren, beweisen, dass jedes Update getreu berechnet wurde). Somit könnte zkML eine Rolle dabei spielen, sicherzustellen, dass KI-Systeme gegenüber menschlich definierten Protokollen rechenschaftspflichtig bleiben, selbst in dezentralen oder unkontrollierten Umgebungen.

Zusammenfassend lässt sich sagen, dass zkML und verifizierbare On-Chain-KI eine Konvergenz von fortschrittlicher Kryptografie und maschinellem Lernen darstellen, die das Vertrauen, die Transparenz und den Datenschutz in KI-Anwendungen verbessern wird. Durch den Vergleich der wichtigsten Ansätze – zk-SNARKs, zk-STARKs und FHE – sehen wir ein Spektrum von Kompromissen zwischen Leistung und Datenschutz, die jeweils für unterschiedliche Szenarien geeignet sind. SNARK-basierte Frameworks wie Ezkl und Innovationen wie Lagranges DeepProve haben es ermöglicht, substanzielle neuronale Netzwerk-Inferenzen mit praktischem Aufwand zu beweisen, was die Tür für reale Implementierungen verifizierbarer KI öffnet. STARK-basierte und VM-basierte Ansätze versprechen größere Flexibilität und Post-Quanten-Sicherheit, was mit der Reifung des Feldes wichtig werden wird. FHE, obwohl keine Lösung für die Verifizierbarkeit, adressiert den komplementären Bedarf an vertraulicher ML-Berechnung und kann in Kombination mit ZKPs oder in spezifischen privaten Kontexten Benutzer befähigen, KI zu nutzen, ohne den Datenschutz zu opfern.

Die Implikationen für Web3 sind erheblich: Wir können Smart Contracts erwarten, die auf KI-Vorhersagen reagieren, wissend, dass diese korrekt sind; Märkte für Berechnungen, auf denen Ergebnisse vertrauenslos verkauft werden; digitale Identitäten (wie Worldcoins Proof-of-Personhood über Iris-KI), die durch zkML geschützt sind, um zu bestätigen, dass jemand ein Mensch ist, ohne sein biometrisches Bild preiszugeben; und generell eine neue Klasse von „nachweisbarer Intelligenz“, die Blockchain-Anwendungen bereichert. Viele Herausforderungen bleiben bestehen – Leistung für sehr große Modelle, Entwicklerergonomie und der Bedarf an spezialisierter Hardware –, aber die Richtung ist klar. Wie ein Bericht feststellte, „können die heutigen ZKPs kleine Modelle unterstützen, aber mittlere bis große Modelle sprengen das Paradigma“; jedoch verschieben schnelle Fortschritte (50- bis 150-fache Beschleunigungen mit DeepProve gegenüber dem Stand der Technik) diese Grenze nach außen. Mit fortlaufender Forschung (z. B. zur Hardwarebeschleunigung und verteilten Beweiserstellung) können wir erwarten, dass zunehmend größere und komplexere KI-Modelle beweisbar werden. zkML könnte sich bald von Nischen-Demos zu einer wesentlichen Komponente vertrauenswürdiger KI-Infrastruktur entwickeln und sicherstellen, dass KI, wenn sie allgegenwärtig wird, dies auf eine Weise tut, die prüfbar, dezentralisiert und auf den Datenschutz und die Sicherheit der Benutzer ausgerichtet ist.

ETHDenver 2025: Wichtige Web3-Trends und Erkenntnisse vom Festival

· 25 Min. Lesezeit

ETHDenver 2025, unter dem Motto „Jahr der Regenerates“, festigte seinen Status als eines der weltweit größten Web3-Treffen. Das Festival umfasste die BUIDLWeek (23.–26. Februar), das Hauptevent (27. Februar–2. März) und ein Mountain Retreat nach der Konferenz und zog erwartete 25.000+ Teilnehmer an. Builder, Entwickler, Investoren und Kreative aus über 125 Ländern kamen in Denver zusammen, um das Ethereum-Ethos der Dezentralisierung und Innovation zu feiern. Getreu seinen Community-Wurzeln blieb ETHDenver kostenlos zugänglich, wurde von der Community finanziert und bot eine Fülle von Inhalten – von Hackathons und Workshops bis hin zu Panels, Pitch-Events und Partys. Die Legende der „Regenerates“, die die Dezentralisierung verteidigen, setzte einen Ton, der öffentliche Güter und kollaboratives Bauen betonte, selbst inmitten einer wettbewerbsintensiven Technologielandschaft. Das Ergebnis war eine Woche voller energiegeladener Builder-Aktivitäten und zukunftsweisender Diskussionen, die einen Überblick über die aufkommenden Web3-Trends und umsetzbare Erkenntnisse für Branchenexperten boten.

ETHDenver 2025

Keine einzelne Erzählung dominierte ETHDenver 2025 – stattdessen stand ein breites Spektrum an Web3-Trends im Mittelpunkt. Anders als im letzten Jahr (als Restaking über EigenLayer die Show stahl), war die Agenda 2025 eine Mischung aus allem: von dezentralen physischen Infrastrukturnetzwerken (DePIN) über KI-Agenten, von regulatorischer Compliance bis zur Tokenisierung realer Vermögenswerte (RWA), dazu Datenschutz, Interoperabilität und mehr. Tatsächlich ging John Paller, Gründer von ETHDenver, auf Bedenken bezüglich Multi-Chain-Inhalten ein, indem er feststellte, dass „95%+ unserer Sponsoren und 90% der Inhalte ETH/EVM-konform sind“ – dennoch unterstrich die Präsenz von Nicht-Ethereum-Ökosystemen die Interoperabilität als Schlüsselthema. Wichtige Redner spiegelten diese Trendbereiche wider: So wurde beispielsweise zk-Rollup und Layer-2-Skalierung von Alex Gluchowski (CEO von Matter Labs/zkSync) hervorgehoben, während Multi-Chain-Innovation von Adeniyi Abiodun von Mysten Labs (Sui) und Albert Chon von Injective kam.

Die Konvergenz von KI und Web3 entwickelte sich zu einer starken Strömung. Zahlreiche Vorträge und Side-Events konzentrierten sich auf dezentrale KI-Agenten und „DeFi+KI“-Überschneidungen. Ein spezieller AI Agent Day zeigte On-Chain-KI-Demos, und ein Kollektiv von 14 Teams (darunter das Entwicklerkit von Coinbase und die KI-Einheit von NEAR) kündigte sogar die Open Agents Alliance (OAA) an – eine Initiative, um erlaubnisfreien, kostenlosen KI-Zugang durch Bündelung der Web3-Infrastruktur zu ermöglichen. Dies deutet auf ein wachsendes Interesse an autonomen Agenten und KI-gesteuerten DApps als Grenze für Builder hin. Hand in Hand mit KI war DePIN (dezentrale physische Infrastruktur) ein weiteres Schlagwort: Mehrere Panels (z. B. Day of DePIN, DePIN Summit) untersuchten Projekte, die Blockchain mit physischen Netzwerken (von Telekommunikation bis Mobilität) verbinden.

Cuckoo AI Network sorgte auf der ETHDenver 2025 für Aufsehen, indem es seinen innovativen dezentralen Marktplatz für die Bereitstellung von KI-Modellen präsentierte, der für Kreative und Entwickler konzipiert ist. Mit einer überzeugenden Präsenz sowohl beim Hackathon als auch bei von der Community geleiteten Side-Events zog Cuckoo AI die Aufmerksamkeit von Entwicklern auf sich, die von der Möglichkeit fasziniert waren, GPU-/CPU-Ressourcen zu monetarisieren und On-Chain-KI-APIs einfach zu integrieren. Während ihres speziellen Workshops und ihrer Networking-Session hob Cuckoo AI hervor, wie dezentrale Infrastruktur den Zugang zu fortschrittlichen KI-Diensten effizient demokratisieren könnte. Dies steht in direktem Einklang mit den breiteren Trends der Veranstaltung – insbesondere der Schnittmenge von Blockchain mit KI, DePIN und der Finanzierung öffentlicher Güter. Für Investoren und Entwickler auf der ETHDenver erwies sich Cuckoo AI als klares Beispiel dafür, wie dezentrale Ansätze die nächste Generation von KI-gesteuerten DApps und Infrastrukturen antreiben können, und positionierte sich als attraktive Investitionsmöglichkeit innerhalb des Web3-Ökosystems.

Datenschutz, Identität und Sicherheit blieben im Vordergrund. Redner und Workshops befassten sich mit Themen wie Zero-Knowledge-Proofs (Präsenz von zkSync), Identitätsmanagement und überprüfbaren Anmeldeinformationen (ein spezieller Privacy & Security-Track war Teil des Hackathons) sowie rechtlichen/regulatorischen Fragen (ein On-Chain-Rechtsgipfel war Teil der Festival-Tracks). Eine weitere bemerkenswerte Diskussion war die Zukunft der Mittelbeschaffung und der Dezentralisierung der Finanzierung: Eine Debatte auf der Hauptbühne zwischen Haseeb Qureshi von Dragonfly Capital und Matt O’Connor von Legion (einer „ICO-ähnlichen“ Plattform) über ICOs vs. VC-Finanzierung fesselte die Teilnehmer. Diese Debatte beleuchtete aufkommende Modelle wie Community-Token-Verkäufe, die traditionelle VC-Wege in Frage stellen – ein wichtiger Trend für Web3-Startups, die Kapital beschaffen müssen. Die Erkenntnis für Fachleute ist klar: Web3 im Jahr 2025 ist multidisziplinär – es umfasst Finanzen, KI, reale Vermögenswerte und Kultur – und informiert zu bleiben bedeutet, über jeden Hype-Zyklus hinaus das gesamte Spektrum der Innovation zu betrachten.

Sponsoren und ihre strategischen Schwerpunkte

Die Sponsorenliste der ETHDenver 2025 liest sich wie ein Who’s Who der Layer-1s, Layer-2s und Web3-Infrastrukturprojekte – jedes nutzte die Veranstaltung, um strategische Ziele voranzutreiben. Cross-Chain- und Multi-Chain-Protokolle zeigten eine starke Präsenz. So war Polkadot ein Top-Sponsor mit einem stattlichen Kopfgeldpool von 80.000 US-Dollar, der Builder dazu anspornte, Cross-Chain-DApps und Appchains zu entwickeln. Ähnlich boten BNB Chain, Flow, Hedera und Base (Coinbase’s L2) jeweils bis zu 50.000 US-Dollar für Projekte, die sich in ihre Ökosysteme integrierten, was ihren Vorstoß signalisierte, Ethereum-Entwickler anzuziehen. Sogar traditionell getrennte Ökosysteme wie Solana und Internet Computer beteiligten sich mit gesponserten Challenges (z. B. Solana war Co-Gastgeber eines DePIN-Events, und Internet Computer bot ein „Only possible on ICP“-Kopfgeld an). Diese Ökosystem-übergreifende Präsenz zog einige Community-Kontrollen auf sich, aber das ETHDenver-Team bemerkte, dass die überwiegende Mehrheit der Inhalte Ethereum-konform blieb. Der Nettoeffekt war, dass Interoperabilität ein Kernthema war – Sponsoren zielten darauf ab, ihre Plattformen als komplementäre Erweiterungen des Ethereum-Universums zu positionieren.

Skalierungslösungen und Infrastrukturanbieter standen ebenfalls im Mittelpunkt. Große Ethereum-L2s wie Optimism und Arbitrum hatten große Stände und gesponserte Challenges (Optimism’s Kopfgelder bis zu 40.000 US-Dollar), was ihren Fokus auf die Einarbeitung von Entwicklern in Rollups verstärkte. Neueinsteiger wie ZkSync und Zircuit (ein Projekt, das einen L2-Rollup-Ansatz vorstellte) betonten die Zero-Knowledge-Technologie und steuerten sogar SDKs bei (ZkSync bewarb sein Smart Sign-On SDK für benutzerfreundliche Logins, das Hackathon-Teams eifrig nutzten). Restaking und modulare Blockchain-Infrastruktur war ein weiteres Sponsoreninteresse – EigenLayer (Pionier des Restaking) hatte seinen eigenen 50.000 US-Dollar-Track und war sogar Co-Gastgeber eines Events zum Thema „Restaking & DeFAI (Decentralized AI)“, das sein Sicherheitsmodell mit KI-Themen verband. Orakel und Interoperabilitäts-Middleware wurden von Größen wie Chainlink und Wormhole vertreten, die jeweils Kopfgelder für die Nutzung ihrer Protokolle ausgaben.

Bemerkenswert ist, dass Web3-Konsumentenanwendungen und -Tools von Sponsoren unterstützt wurden, um die Benutzererfahrung zu verbessern. Die Präsenz von Uniswap – komplett mit einem der größten Stände – war nicht nur Show: Der DeFi-Gigant nutzte die Veranstaltung, um neue Wallet-Funktionen wie integrierte Fiat-Off-Ramps anzukündigen, was mit seinem Sponsoring-Fokus auf DeFi-Benutzerfreundlichkeit übereinstimmte. Identitäts- und Community-fokussierte Plattformen wie Galxe (Gravity) und Lens Protocol sponserten Challenges rund um On-Chain-Social und Credentialing. Sogar Mainstream-Tech-Unternehmen signalisierten Interesse: PayPal und Google Cloud veranstalteten eine Stablecoin-/Zahlungs-Happy Hour, um die Zukunft der Zahlungen in Krypto zu diskutieren. Diese Mischung von Sponsoren zeigt, dass strategische Interessen von der Kerninfrastruktur bis zu Endbenutzeranwendungen reichten – alle konvergierten auf der ETHDenver, um Entwicklern Ressourcen (APIs, SDKs, Grants) zur Verfügung zu stellen. Für Web3-Profis unterstreicht das starke Sponsoring von Layer-1s, Layer-2s und sogar Web2-Fintechs, wohin die Branche investiert: Interoperabilität, Skalierbarkeit, Sicherheit und die Nutzbarmachung von Krypto für die nächste Welle von Nutzern.

Hackathon-Highlights: Innovative Projekte und Gewinner

Im Mittelpunkt der ETHDenver steht ihr legendärer #BUIDLathon – ein Hackathon, der sich mit Tausenden von Entwicklern zum weltweit größten Blockchain-Hackfest entwickelt hat. Im Jahr 2025 bot der Hackathon einen Rekord-Preispool von über 1.043.333 US-Dollar, um Innovationen anzustoßen. Kopfgelder von über 60 Sponsoren zielten auf wichtige Web3-Bereiche ab und unterteilten den Wettbewerb in Tracks wie: DeFi & KI, NFTs & Gaming, Infrastruktur & Skalierbarkeit, Datenschutz & Sicherheit sowie DAOs & Öffentliche Güter. Dieses Track-Design selbst ist aufschlussreich – zum Beispiel deutet die Kombination von DeFi mit KI auf das Aufkommen von KI-gesteuerten Finanzanwendungen hin, während ein spezieller Track für öffentliche Güter den Community-Fokus auf regenerative Finanzen und Open-Source-Entwicklung bekräftigt. Jeder Track wurde von Sponsoren unterstützt, die Preise für die beste Nutzung ihrer Technologie anboten (z. B. Polkadot und Uniswap für DeFi, Chainlink für Interoperabilität, Optimism für Skalierungslösungen). Die Organisatoren implementierten sogar quadratisches Voting für die Bewertung, um der Community zu ermöglichen, Top-Projekte hervorzuheben, wobei die endgültigen Gewinner von erfahrenen Juroren ausgewählt wurden.

Das Ergebnis war ein Überfluss an hochmodernen Projekten, von denen viele einen Einblick in die Zukunft von Web3 bieten. Zu den bemerkenswerten Gewinnern gehörte ein On-Chain-Multiplayer-Spiel „0xCaliber“, ein Ego-Shooter, der Echtzeit-Blockchain-Interaktionen innerhalb eines klassischen FPS-Spiels ausführt. 0xCaliber begeisterte die Juroren, indem es echtes On-Chain-Gaming demonstrierte – Spieler kaufen mit Krypto ein, „schießen“ On-Chain-Kugeln und nutzen Cross-Chain-Tricks, um Beute zu sammeln und auszuzahlen, alles in Echtzeit. Diese Art von Projekt zeigt die wachsende Reife des Web3-Gaming (Integration von Unity-Game-Engines mit Smart Contracts) und die Kreativität bei der Verschmelzung von Unterhaltung mit Krypto-Ökonomie. Eine weitere Kategorie herausragender Hacks waren solche, die KI mit Ethereum verschmelzen: Teams bauten „Agenten“-Plattformen, die Smart Contracts zur Koordination von KI-Diensten nutzen, inspiriert von der Ankündigung der Open Agents Alliance. Zum Beispiel integrierte ein Hackathon-Projekt KI-gesteuerte Smart-Contract-Auditoren (die automatisch Sicherheitstestfälle für Contracts generieren) – im Einklang mit dem auf der Konferenz beobachteten dezentralen KI-Trend.

Infrastruktur- und Tooling-Projekte waren ebenfalls prominent. Einige Teams befassten sich mit Account Abstraction und Benutzererfahrung, indem sie Sponsoren-Toolkits wie zkSyncs Smart Sign-On nutzten, um Wallet-lose Login-Flows für DApps zu erstellen. Andere arbeiteten an Cross-Chain-Bridges und Layer-2-Integrationen, was das anhaltende Entwicklerinteresse an Interoperabilität widerspiegelt. Im Track für öffentliche Güter & DAOs befassten sich einige Projekte mit realen sozialen Auswirkungen, wie eine DApp für dezentrale Identität und Hilfe für Obdachlose (unter Nutzung von NFTs und Community-Fonds, eine Idee, die an frühere ReFi-Hacks erinnert). Regenerative Finanzkonzepte (ReFi) – wie die Finanzierung öffentlicher Güter über neuartige Mechanismen – tauchten weiterhin auf und spiegelten das regenerative Thema der ETHDenver wider.

Während die endgültigen Gewinner am Ende des Hauptevents gefeiert wurden, lag der wahre Wert in der Innovationspipeline: Über 400 Projekteinreichungen gingen ein, von denen viele über die Veranstaltung hinaus Bestand haben werden. Der Hackathon der ETHDenver hat eine Erfolgsbilanz bei der Förderung zukünftiger Startups (tatsächlich sind einige frühere BUIDLathon-Projekte selbst zu Sponsoren geworden). Für Investoren und Technologen bot der Hackathon ein Fenster zu bahnbrechenden Ideen – ein Signal, dass die nächste Welle von Web3-Startups in Bereichen wie On-Chain-Gaming, KI-gesteuerten DApps, Cross-Chain-Infrastruktur und Lösungen mit sozialer Wirkung entstehen könnte. Mit fast 1 Million US-Dollar an Kopfgeldern, die an Entwickler ausgezahlt wurden, haben Sponsoren ihr Engagement effektiv unter Beweis gestellt, um diese Innovationen zu fördern.

Networking-Events und Investoren-Interaktionen

Bei der ETHDenver geht es nicht nur ums Codieren – es geht gleichermaßen darum, Verbindungen zu knüpfen. Im Jahr 2025 verstärkte das Festival das Networking mit formellen und informellen Veranstaltungen, die auf Startups, Investoren und Community-Builder zugeschnitten waren. Ein herausragendes Event war das Bufficorn Ventures (BV) Startup Rodeo, eine energiegeladene Präsentation, bei der 20 handverlesene Startups Investoren in einer Messe-ähnlichen Expo ihre Demos vorführten. Das Startup Rodeo fand am 1. März in der Haupthalle statt und wurde eher als „Speed-Dating“ denn als Pitch-Wettbewerb beschrieben: Gründer besetzten Tische, um ihre Projekte im Einzelgespräch zu präsentieren, während alle anwesenden Investoren durch die Arena streiften. Dieses Format stellte sicher, dass selbst Teams in der Frühphase wertvolle persönliche Gespräche mit VCs, Strategen oder Partnern führen konnten. Viele Startups nutzten dies als Startrampe, um Kunden und Finanzierung zu finden, indem sie die konzentrierte Präsenz von Web3-Fonds auf der ETHDenver nutzten.

Am letzten Konferenztag stand das BV BuffiTank Pitchfest auf der Hauptbühne im Mittelpunkt – ein traditionellerer Pitch-Wettbewerb, bei dem 10 der „innovativsten“ Startups in der Frühphase aus der ETHDenver-Community vorgestellt wurden. Diese Teams (getrennt von den Hackathon-Gewinnern) präsentierten ihre Geschäftsmodelle einem Gremium aus Top-VCs und Branchenführern und konkurrierten um Auszeichnungen und potenzielle Investitionsangebote. Das Pitchfest veranschaulichte die Rolle der ETHDenver als Deal-Flow-Generator: Es richtete sich explizit an Teams, die „bereits organisiert sind…und nach Investitionen, Kunden und Bekanntheit suchen“, insbesondere an solche, die mit der SporkDAO-Community verbunden sind. Die Belohnung für die Gewinner war kein einfacher Geldpreis, sondern das Versprechen, dem Portfolio von Bufficorn Ventures oder anderen Accelerator-Kohorten beizutreten. Im Wesentlichen schuf ETHDenver sein eigenes Mini-„Shark Tank“ für Web3, das die Aufmerksamkeit der Investoren auf die besten Projekte der Community lenkte.

Über diese offiziellen Präsentationen hinaus war die Woche vollgepackt mit Investor-Gründer-Mixern. Laut einem kuratierten Leitfaden von Belong gehörten zu den bemerkenswerten Side-Events eine „Meet the VCs“ Happy Hour, die von CertiK Ventures am 27. Februar veranstaltet wurde, eine StarkNet VC & Founders Lounge am 1. März und sogar zwanglose Veranstaltungen wie ein „Pitch & Putt“ Golf-Themen-Pitch-Event. Diese Treffen boten Gründern entspannte Umgebungen, um mit Risikokapitalgebern ins Gespräch zu kommen, was oft zu Folgetreffen nach der Konferenz führte. Die Präsenz vieler aufstrebender VC-Firmen war auch auf Panels spürbar – zum Beispiel hob eine Session auf der EtherKnight Stage neue Fonds wie Reflexive Capital, Reforge VC, Topology, Metalayer und Hash3 hervor und welche Trends sie am meisten begeistern. Frühe Anzeichen deuten darauf hin, dass diese VCs an Bereichen wie dezentralen sozialen Medien, KI und neuartiger Layer-1-Infrastruktur interessiert waren (wobei jeder Fonds eine Nische besetzt, um sich in einer wettbewerbsintensiven VC-Landschaft zu differenzieren).

Für Fachleute, die das Networking der ETHDenver nutzen möchten: Die wichtigste Erkenntnis ist der Wert von Side-Events und gezielten Mixern. Deals und Partnerschaften entstehen oft bei Kaffee oder Cocktails und nicht auf der Bühne. Die unzähligen Investoren-Events der ETHDenver 2025 zeigen, dass die Web3-Finanzierungs-Community auch in einem schwierigen Markt aktiv nach Talenten und Ideen sucht. Startups, die mit ausgefeilten Demos und einem klaren Wertversprechen (oft unter Nutzung des Hackathon-Momentums der Veranstaltung) vorbereitet waren, fanden ein aufgeschlossenes Publikum. Gleichzeitig nutzten Investoren diese Interaktionen, um den Puls der Entwickler-Community zu messen – welche Probleme lösen die klügsten Builder in diesem Jahr? Zusammenfassend bekräftigte ETHDenver, dass Networking genauso wichtig ist wie BUIDLing: Es ist ein Ort, an dem ein zufälliges Treffen zu einer Seed-Investition führen oder ein aufschlussreiches Gespräch die nächste große Zusammenarbeit anstoßen kann.

Eine subtile, aber wichtige Erzählung während der gesamten ETHDenver 2025 war die sich entwickelnde Landschaft des Web3-Venture-Capitals selbst. Trotz der Höhen und Tiefen des breiteren Kryptomarktes signalisierten Investoren auf der ETHDenver ein starkes Interesse an vielversprechenden Web3-Projekten. Reporter von Blockworks vor Ort stellten fest, „wie viel privates Kapital immer noch in Krypto fließt, unbeeindruckt von makroökonomischem Gegenwind“, wobei die Bewertungen in der Seed-Phase für die heißesten Ideen oft himmelhoch waren. Tatsächlich machte die schiere Anzahl der anwesenden VCs – von krypto-nativen Fonds bis hin zu traditionellen Tech-Investoren, die sich in Web3 versuchen – deutlich, dass ETHDenver ein Zentrum für Deal-Making bleibt.

Aufkommende thematische Schwerpunkte ließen sich aus dem ableiten, was VCs diskutierten und sponserten. Die Verbreitung von KI x Krypto-Inhalten (Hackathon-Tracks, Panels usw.) war nicht nur ein Entwicklertrend; sie spiegelt das Venture-Interesse am „DeFi trifft KI“-Nexus wider. Viele Investoren haben Startups im Blick, die maschinelles Lernen oder autonome Agenten auf der Blockchain nutzen, wie durch von Venture-Firmen gesponserte KI-Hackhouses und -Gipfel belegt. Ähnlich deutet der starke Fokus auf DePIN und die Tokenisierung realer Vermögenswerte (RWA) darauf hin, dass Fonds Chancen in Projekten sehen, die Blockchain mit realwirtschaftlichen Vermögenswerten und physischen Geräten verbinden. Der spezielle RWA Day (26. Februar) – ein B2B-Event zur Zukunft tokenisierter Vermögenswerte – legt nahe, dass Venture-Scouts in diesem Bereich aktiv nach dem nächsten Goldfinch oder Centrifuge suchen (d. h. Plattformen, die reale Finanzen On-Chain bringen).

Ein weiterer beobachtbarer Trend war eine wachsende Experimentierfreudigkeit bei Finanzierungsmodellen. Die erwähnte Debatte über ICOs vs. VCs war nicht nur Konferenztheatralik; sie spiegelt eine reale Venture-Bewegung hin zu einer stärker Community-zentrierten Finanzierung wider. Einige VCs auf der ETHDenver zeigten sich offen für Hybridmodelle (z. B. von Venture-Firmen unterstützte Token-Launches, die die Community in frühen Runden einbeziehen). Darüber hinaus hatten Finanzierung öffentlicher Güter und Impact Investing einen Platz am Tisch. Mit dem Ethos der Regeneration der ETHDenver diskutierten sogar Investoren, wie Open-Source-Infrastruktur und Entwickler langfristig unterstützt werden können, jenseits der Jagd nach dem nächsten DeFi- oder NFT-Boom. Panels wie „Funding the Future: Evolving Models for Onchain Startups“ untersuchten Alternativen wie Grants, DAO-Treasury-Investitionen und quadratische Finanzierung, um traditionelles VC-Geld zu ergänzen. Dies deutet auf eine Reifung der Branche in Bezug auf die Kapitalisierung von Projekten hin – eine Mischung aus Venture Capital, Ökosystemfonds und Community-Finanzierung, die Hand in Hand arbeiten.

Aus der Perspektive der Chancen können Web3-Profis und Investoren einige umsetzbare Erkenntnisse aus der Venture-Dynamik der ETHDenver gewinnen: (1) Infrastruktur ist immer noch König – viele VCs äußerten, dass „Picks-and-Shovels“ (L2-Skalierung, Sicherheit, Entwicklertools) als Rückgrat der Branche weiterhin hochwertige Investitionen bleiben. (2) Neue Vertikalen wie KI/Blockchain-Konvergenz und DePIN sind aufkommende Investitionsgrenzen – sich in diesen Bereichen auf den neuesten Stand zu bringen oder dort Startups zu finden, könnte sich lohnend auswirken. (3) Community-getriebene Projekte und öffentliche Güter könnten neuartige Finanzierungen erhalten – versierte Investoren finden Wege, diese nachhaltig zu unterstützen (z. B. Investitionen in Protokolle, die dezentrale Governance oder geteilten Besitz ermöglichen). Insgesamt zeigte ETHDenver 2025, dass die Web3-Venture-Landschaft zwar wettbewerbsintensiv ist, aber voller Überzeugung steckt: Kapital ist für diejenigen verfügbar, die die Zukunft von DeFi, NFTs, Gaming und darüber hinaus aufbauen, und selbst in einem Bärenmarkt geborene Ideen können Unterstützung finden, wenn sie den richtigen Trend ansprechen.

Entwicklerressourcen, Toolkits und Support-Systeme

ETHDenver war schon immer auf Builder ausgerichtet, und 2025 war keine Ausnahme – es fungierte auch als Open-Source-Entwicklerkonferenz mit einer Fülle von Ressourcen und Unterstützung für Web3-Entwickler. Während der BUIDLWeek hatten die Teilnehmer Zugang zu Live-Workshops, technischen Bootcamps und Mini-Gipfeln in verschiedenen Bereichen. Entwickler konnten beispielsweise an einem Bleeding Edge Tech Summit teilnehmen, um mit den neuesten Protokollen zu experimentieren, oder an einem On-Chain Legal Summit, um mehr über die Entwicklung konformer Smart Contracts zu erfahren. Große Sponsoren und Blockchain-Teams veranstalteten praktische Sessions: Das Team von Polkadot veranstaltete Hacker Houses und Workshops zum Starten von Parachains; EigenLayer leitete ein „Restaking Bootcamp“, um Entwicklern beizubringen, wie sie ihre Sicherheitsschicht nutzen können; Polygon und zkSync gaben Tutorials zum Erstellen skalierbarer DApps mit Zero-Knowledge-Technologie. Diese Sessions boten unschätzbare persönliche Gespräche mit Kernentwicklern, die es Entwicklern ermöglichten, Hilfe bei der Integration zu erhalten und neue Toolkits aus erster Hand kennenzulernen.

Während des Hauptevents gab es im Veranstaltungsort einen speziellen #BUIDLHub und Makerspace, wo Builder in einer kollaborativen Umgebung coden und auf Mentoren zugreifen konnten. Die Organisatoren der ETHDenver veröffentlichten einen detaillierten BUIDLer Guide und ermöglichten ein Mentorenprogramm vor Ort (Experten von Sponsoren standen zur Verfügung, um Teams bei technischen Problemen zu unterstützen). Entwickler-Tooling-Unternehmen waren ebenfalls massenhaft vertreten – von Alchemy und Infura (für Blockchain-APIs) bis hin zu Hardhat und Foundry (für die Entwicklung von Smart Contracts). Viele stellten auf der Veranstaltung neue Releases oder Beta-Tools vor. Zum Beispiel präsentierte das Team von MetaMask eine große Wallet-Aktualisierung mit Gas-Abstraktion und einem verbesserten SDK für DApp-Entwickler, um zu vereinfachen, wie Apps Gasgebühren für Benutzer abdecken. Mehrere Projekte starteten SDKs oder Open-Source-Bibliotheken: Coinbases „Agent Kit“ für KI-Agenten und das kollaborative Open Agents Alliance-Toolkit wurden vorgestellt, und Story.xyz bewarb sein Story SDK für die On-Chain-Lizenzierung von geistigem Eigentum während ihres eigenen Hackathon-Events.

Bounties und Hacker-Support erweiterten die Entwicklererfahrung zusätzlich. Mit über 180 Bounties, die von 62 Sponsoren angeboten wurden, hatten Hacker effektiv eine Auswahl spezifischer Herausforderungen, jede mit Dokumentation, Sprechstunden und manchmal maßgeschneiderten Sandboxes. Zum Beispiel forderte die Bounty von Optimism Entwickler heraus, die neuesten Bedrock-Opcodes zu verwenden (mit ihren Ingenieuren in Bereitschaft zur Unterstützung), und die Challenge von Uniswap bot Zugang zu ihrer neuen API für die Off-Ramp-Integration. Tools zur Koordination und zum Lernen – wie die offizielle ETHDenver Mobile App und Discord-Kanäle – hielten Entwickler über Zeitplanänderungen, Nebenaufgaben und sogar Stellenangebote über die ETHDenver-Jobbörse auf dem Laufenden.

Eine bemerkenswerte Ressource war die Betonung von quadratischen Finanzierungsexperimenten und On-Chain-Voting. ETHDenver integrierte ein quadratisches Voting-System für die Hackathon-Bewertung, wodurch viele Entwickler mit dem Konzept vertraut gemacht wurden. Darüber hinaus bedeutete die Präsenz von Gitcoin und anderen Public-Goods-Gruppen, dass Entwickler nach der Veranstaltung etwas über Grant-Finanzierungen für ihre Projekte erfahren konnten. Zusammenfassend stattete ETHDenver 2025 Entwickler mit modernsten Tools (SDKs, APIs), Expertenberatung und weiterführendem Support aus, um ihre Projekte fortzusetzen. Für Branchenexperten ist es eine Erinnerung daran, dass die Pflege der Entwickler-Community – durch Bildung, Tools und Finanzierung – entscheidend ist. Viele der hervorgehobenen Ressourcen (wie neue SDKs oder verbesserte Entwicklungsumgebungen) sind jetzt öffentlich verfügbar und bieten Teams überall die Möglichkeit, auf dem aufzubauen, was auf der ETHDenver geteilt wurde.

Side-Events und Community-Treffen bereichern das ETHDenver-Erlebnis

Was ETHDenver wirklich auszeichnet, ist seine festivalartige Atmosphäre – Dutzende von Side-Events, sowohl offizielle als auch inoffizielle, schufen ein reichhaltiges Geflecht von Erlebnissen rund um die Hauptkonferenz. Im Jahr 2025, jenseits des National Western Complex, wo die offiziellen Inhalte stattfanden, pulsierte die ganze Stadt mit Meetups, Partys, Hackathons und Community-Treffen. Diese Side-Events, oft von Sponsoren oder lokalen Web3-Gruppen veranstaltet, trugen maßgeblich zum umfassenderen ETHDenver-Erlebnis bei.

Auf offizieller Seite umfasste der Zeitplan der ETHDenver selbst thematische Mini-Events: Der Veranstaltungsort hatte Zonen wie eine NFT-Kunstgalerie, eine Blockchain-Arcade, eine DJ Chill Dome und sogar eine Zen Zone zum Entspannen. Die Organisatoren veranstalteten auch Abendveranstaltungen wie Eröffnungs- und Abschlussfeiern – z. B. die inoffizielle Eröffnungsparty „Crack’d House“ am 26. Februar von Story Protocol, die eine künstlerische Performance mit Hackathon-Preisverleihungen verband. Aber es waren die von der Community geleiteten Side-Events, die sich wirklich verbreiteten: Laut einem Event-Guide wurden über 100 Nebenveranstaltungen im ETHDenver Luma-Kalender erfasst.

Einige Beispiele veranschaulichen die Vielfalt dieser Treffen:

  • Technische Gipfel & Hacker Houses: ElizaOS und EigenLayer veranstalteten eine 9-tägige Vault AI Agent Hacker House-Residenz für KI+Web3-Enthusiasten. Das Team von StarkNet veranstaltete ein mehrtägiges Hacker House, das in einer Demo-Nacht für Projekte auf ihrem ZK-Rollup gipfelte. Diese boten fokussierte Umgebungen für Entwickler, um an spezifischen Tech-Stacks außerhalb des Haupt-Hackathons zusammenzuarbeiten.
  • Networking-Mixer & Partys: Jeder Abend bot eine Reihe von Auswahlmöglichkeiten. Builder Nights Denver am 27. Februar, gesponsert von MetaMask, Linea, EigenLayer, Wormhole und anderen, brachte Innovatoren zu zwanglosen Gesprächen bei Essen und Getränken zusammen. 3VO’s Mischief Minded Club Takeover, unterstützt von Belong, war eine hochkarätige Networking-Party für Führungskräfte im Bereich Community-Tokenisierung. Für diejenigen, die reinen Spaß suchten, hielten der BEMO Rave (mit Berachain und anderen) und rAIve the Night (ein KI-Themen-Rave) die Krypto-Crowd bis spät in die Nacht tanzend – eine Mischung aus Musik, Kunst und Krypto-Kultur.
  • Treffen von Sonderinteressengruppen: Auch Nischen-Communities fanden ihren Platz zu. Meme Combat war ein Event ausschließlich für Meme-Enthusiasten, um die Rolle von Memes in Krypto zu feiern. House of Ink richtete sich an NFT-Künstler und -Sammler und verwandelte einen immersiven Kunstort (Meow Wolf Denver) in eine Ausstellung für digitale Kunst. Der SheFi Summit am 26. Februar brachte Frauen in Web3 zu Vorträgen und Networking zusammen, unterstützt von Gruppen wie World of Women und Celo – was ein Engagement für Vielfalt und Inklusion unterstreicht.
  • Investoren- & Content-Creator-Meetups: Wir haben bereits VC-Events angesprochen; zusätzlich ermöglichte ein KOL (Key Opinion Leaders) Gathering am 28. Februar Krypto-Influencern und Content-Creatoren, Engagement-Strategien zu diskutieren, was die Schnittmenge von sozialen Medien und Krypto-Communities zeigt.

Entscheidend ist, dass diese Side-Events nicht nur Unterhaltung waren – sie dienten oft als Inkubatoren für Ideen und Beziehungen für sich. Zum Beispiel befasste sich der Tokenized Capital Summit 2025 mit der Zukunft der Kapitalmärkte On-Chain, was wahrscheinlich Kooperationen zwischen Fintech-Unternehmern und anwesenden Blockchain-Entwicklern anregte. Das On-Chain Gaming Hacker House bot Spielentwicklern einen Raum, Best Practices auszutauschen, was zu einer gegenseitigen Befruchtung zwischen Blockchain-Gaming-Projekten führen kann.

Für Fachleute, die große Konferenzen besuchen, unterstreicht das Modell der ETHDenver, dass Wert sowohl abseits der Hauptbühne als auch auf ihr zu finden ist. Die Breite des inoffiziellen Programms ermöglichte es den Teilnehmern, ihr Erlebnis individuell zu gestalten – ob das Ziel war, Investoren zu treffen, eine neue Fähigkeit zu erlernen, einen Mitgründer zu finden oder einfach nur zu entspannen und Kameradschaft aufzubauen, es gab eine Veranstaltung dafür. Viele Veteranen raten Neulingen: „Besuchen Sie nicht nur die Vorträge – gehen Sie zu den Meetups und sagen Sie Hallo.“ In einem so Community-getriebenen Bereich wie Web3 führen diese menschlichen Verbindungen oft zu DAO-Kooperationen, Investitionsgeschäften oder zumindest zu dauerhaften Freundschaften, die Kontinente umspannen. Die lebendige Side-Szene der ETHDenver 2025 verstärkte die Kernkonferenz und verwandelte eine Woche in Denver in ein mehrdimensionales Festival der Innovation.

Wichtige Erkenntnisse und umsetzbare Einblicke

ETHDenver 2025 zeigte eine Web3-Branche in voller Blüte der Innovation und Zusammenarbeit. Für Fachleute in diesem Bereich ergeben sich aus dieser tiefgehenden Analyse mehrere klare Erkenntnisse und Handlungsempfehlungen:

  • Diversifizierung der Trends: Die Veranstaltung machte deutlich, dass Web3 nicht länger monolithisch ist. Aufkommende Bereiche wie KI-Integration, DePIN und RWA-Tokenisierung sind ebenso prominent wie DeFi und NFTs. Umsetzbare Erkenntnis: Bleiben Sie informiert und anpassungsfähig. Führungskräfte sollten F&E oder Investitionen in diese aufstrebenden Vertikalen tätigen (z. B. untersuchen, wie KI ihre DApp verbessern könnte oder wie reale Vermögenswerte in DeFi-Plattformen integriert werden könnten), um die nächste Wachstumswelle zu nutzen.
  • Cross-Chain ist die Zukunft: Mit der aktiven Teilnahme großer Nicht-Ethereum-Protokolle sinken die Barrieren zwischen den Ökosystemen. Interoperabilität und Multi-Chain-Benutzererfahrungen erregten große Aufmerksamkeit, von MetaMasks Unterstützung für Bitcoin/Solana bis hin zu Polkadot- und Cosmos-basierten Chains, die Ethereum-Entwickler umwerben. Umsetzbare Erkenntnis: Entwickeln Sie für eine Multi-Chain-Welt. Projekte sollten Integrationen oder Bridges in Betracht ziehen, die Liquidität und Benutzer auf anderen Chains nutzen, und Fachleute könnten Partnerschaften über Communities hinweg suchen, anstatt isoliert zu bleiben.
  • Community & Öffentliche Güter sind wichtig: Das Thema „Jahr der Regenerates“ war nicht nur Rhetorik – es durchdrang die Inhalte durch Diskussionen über die Finanzierung öffentlicher Güter, quadratisches Voting für Hacks und Veranstaltungen wie den SheFi Summit. Ethische, nachhaltige Entwicklung und Community-Eigentum sind Schlüsselwerte im Ethereum-Ethos. Umsetzbare Erkenntnis: Integrieren Sie regenerative Prinzipien. Ob durch die Unterstützung von Open-Source-Initiativen, die Verwendung fairer Launch-Mechanismen oder die Ausrichtung von Geschäftsmodellen am Community-Wachstum, Web3-Unternehmen können Wohlwollen und Langlebigkeit gewinnen, indem sie nicht rein extraktiv sind.
  • Investorenstimmung – Vorsichtig, aber mutig: Trotz der Gerüchte über einen Bärenmarkt zeigte ETHDenver, dass VCs aktiv nach vielversprechenden Web3-Projekten suchen und bereit sind, große Wetten auf die nächsten Kapitel von Web3 einzugehen. Sie überdenken jedoch auch, wie sie investieren (z. B. strategischer, vielleicht mehr Aufsicht über die Produkt-Markt-Passung und Offenheit für Community-Finanzierung). Umsetzbare Erkenntnis: Wenn Sie ein Startup sind, konzentrieren Sie sich auf Grundlagen und Storytelling. Die Projekte, die herausragten, hatten klare Anwendungsfälle und oft funktionierende Prototypen (einige wurden an einem Wochenende erstellt!). Wenn Sie ein Investor sind, bestätigte die Konferenz, dass Infrastruktur (L2s, Sicherheit, Entwicklertools) weiterhin hohe Priorität hat, aber die Differenzierung durch Thesen in KI, Gaming oder Social einen Fonds an die Spitze positionieren kann.
  • Die Entwicklererfahrung verbessert sich: ETHDenver hob viele neue Toolkits, SDKs und Frameworks hervor, die die Barriere für die Web3-Entwicklung senken – von Account Abstraction Tools bis hin zu On-Chain-KI-Bibliotheken. Umsetzbare Erkenntnis: Nutzen Sie diese Ressourcen. Teams sollten mit den neuesten vorgestellten Entwicklertools experimentieren (z. B. das zkSync Smart SSO für einfachere Logins ausprobieren oder die Ressourcen der Open Agents Alliance für ein KI-Projekt nutzen), um ihre Entwicklung zu beschleunigen und der Konkurrenz einen Schritt voraus zu sein. Darüber hinaus sollten Unternehmen weiterhin mit Hackathons und offenen Entwicklerforen zusammenarbeiten, um Talente und Ideen zu gewinnen; der Erfolg der ETHDenver, Hacker zu Gründern zu machen, ist ein Beweis für dieses Modell.
  • Die Kraft der Side-Events: Zuletzt lehrte die Explosion der Side-Events eine wichtige Lektion im Networking – Chancen ergeben sich oft in zwanglosen Umgebungen. Eine zufällige Begegnung bei einer Happy Hour oder ein gemeinsames Interesse bei einem kleinen Meetup kann karriereentscheidende Verbindungen schaffen. Umsetzbare Erkenntnis: Planen Sie für diejenigen, die Branchenkonferenzen besuchen, über die offizielle Agenda hinaus. Identifizieren Sie Side-Events, die mit Ihren Zielen übereinstimmen (sei es, Investoren zu treffen, eine Nischenfähigkeit zu erlernen oder Talente zu rekrutieren), und engagieren Sie sich proaktiv. Wie in Denver zu sehen war, gingen diejenigen, die sich voll und ganz in das Ökosystem der Woche vertieften, nicht nur mit Wissen, sondern auch mit neuen Partnern, Mitarbeitern und Freunden nach Hause.

Zusammenfassend war ETHDenver 2025 ein Mikrokosmos des Momentums der Web3-Branche – eine Mischung aus hochmodernem Tech-Diskurs, leidenschaftlicher Community-Energie, strategischen Investitionsentscheidungen und einer Kultur, die ernsthafte Innovation mit Spaß verbindet. Fachleute sollten die Trends und Erkenntnisse der Veranstaltung als Fahrplan für die zukünftige Entwicklung von Web3 betrachten. Der umsetzbare nächste Schritt besteht darin, diese Erkenntnisse – sei es ein neu entdeckter Fokus auf KI, eine Verbindung zu einem L2-Team oder Inspiration aus einem Hackathon-Projekt – aufzunehmen und in Strategie umzusetzen. Im Geiste des Lieblingsmottos der ETHDenver ist es an der Zeit, auf diesen Erkenntnissen #BUIDL zu betreiben und die dezentrale Zukunft mitzugestalten, die so viele in Denver gemeinsam erdacht haben.

Altera.al stellt ein: Werden Sie Teil der Pioniere der digitalen Mensch-Entwicklung (600.000-1.000.000 $ Vergütung)

· 3 Min. Lesezeit

Wir freuen uns, Ihnen eine transformative Gelegenheit bei Altera.al vorzustellen, einem bahnbrechenden KI-Startup, das kürzlich mit seiner wegweisenden Arbeit bei der Entwicklung digitaler Menschen für Aufsehen sorgte. Kürzlich im MIT Technology Review vorgestellt, hat Altera.al bemerkenswerte Fortschritte bei der Schaffung von KI-Agenten gezeigt, die menschenähnliche Verhaltensweisen entwickeln, Gemeinschaften bilden und bedeutungsvoll in digitalen Räumen interagieren können.

Altera.al: Werden Sie Teil der Pioniere der digitalen Mensch-Entwicklung mit einer Vergütung von 600.000-1.000.000 $

Über Altera.al

Gegründet von Robert Yang, der seine Position als Assistenzprofessor für Computerneurowissenschaften am MIT aufgab, um diese Vision zu verfolgen, hat Altera.al bereits über 11 Millionen US-Dollar an Finanzmitteln von renommierten Investoren wie A16Z und Eric Schmidts aufstrebender Tech-VC-Firma erhalten. Ihre jüngste Project Sid-Demonstration zeigte, wie KI-Agenten spontan spezialisierte Rollen entwickelten, soziale Verbindungen knüpften und sogar kulturelle Systeme innerhalb von Minecraft schufen – ein bedeutender Schritt auf dem Weg zu ihrem Ziel, wirklich autonome KI-Agenten zu schaffen, die in großem Maßstab zusammenarbeiten können.

Warum jetzt ein spannender Zeitpunkt ist, um einzusteigen

Altera.al hat einen bedeutenden technischen Durchbruch in ihrer Mission erzielt, Maschinen mit grundlegenden menschlichen Eigenschaften zu entwickeln. Ihre Arbeit geht über die traditionelle KI-Entwicklung hinaus – sie schaffen digitale Wesen, die Folgendes können:

  • Gemeinschaften und soziale Hierarchien bilden
  • Spezialisierte Rollen und Verantwortlichkeiten entwickeln
  • Kulturelle Muster schaffen und verbreiten
  • Bedeutungsvoll mit Menschen in digitalen Räumen interagieren

Wen sie suchen

Nach ihrem jüngsten Durchbruch erweitert Altera.al sein Team und bietet außergewöhnliche Vergütungspakete zwischen 600.000 und 1.000.000 $ für:

  • Experten in der KI-Agenten-Forschung
  • Starke Einzelmitarbeiter in den Bereichen:
    • Verteilte Systeme
    • Sicherheit
    • Betriebssysteme

So bewerben Sie sich

Bereit, Teil dieser wegweisenden Reise zu sein? Bewerben Sie sich direkt über ihre Karriereseite: https://jobs.ashbyhq.com/altera.al

Werden Sie Teil der Zukunft der digitalen Mensch-Entwicklung

Dies ist eine einzigartige Gelegenheit, an der Schnittstelle von künstlicher Intelligenz und menschlicher Verhaltensmodellierung zu arbeiten, mit einem Team, das bereits bemerkenswerte Ergebnisse vorweisen kann. Wenn Sie leidenschaftlich daran interessiert sind, die Grenzen des Möglichen in KI und Mensch-Maschine-Interaktion zu erweitern, könnte Altera.al Ihr nächstes Abenteuer sein.


Für weitere Updates zu bahnbrechenden Möglichkeiten in Tech und Blockchain folgen Sie uns auf Twitter oder treten Sie unserer Discord-Community bei.

Dieser Beitrag ist Teil unseres fortlaufenden Engagements, Innovationen zu unterstützen und Talente mit transformativen Möglichkeiten in der Tech-Branche zu verbinden.

A16Zs Krypto-Ausblick 2025: Zwölf Ideen, die das nächste Internet neu gestalten könnten

· 8 Min. Lesezeit

Jedes Jahr veröffentlicht a16z umfassende Prognosen zu den Technologien, die unsere Zukunft prägen werden. Diesmal hat ihr Krypto-Team ein lebendiges Bild von 2025 gezeichnet, in dem Blockchains, KI und fortgeschrittene Governance-Experimente aufeinandertreffen.

Ich habe ihre wichtigsten Erkenntnisse unten zusammengefasst und kommentiert, wobei ich mich auf das konzentriere, was ich als die großen Hebel für Veränderungen – und mögliche Stolpersteine – ansehe. Wenn Sie ein Tech-Entwickler, Investor oder einfach nur neugierig auf die nächste Welle des Internets sind, ist dieser Artikel für Sie.

1. KI trifft auf Krypto-Wallets

Wichtige Erkenntnis: KI-Modelle entwickeln sich von „NPCs“ im Hintergrund zu „Hauptcharakteren“, die eigenständig in Online- (und potenziell physischen) Ökonomien agieren. Das bedeutet, dass sie eigene Krypto-Wallets benötigen werden.

  • Was es bedeutet: Anstatt dass eine KI nur Antworten ausspuckt, könnte sie digitale Assets halten, ausgeben oder investieren – Transaktionen im Namen ihres menschlichen Besitzers oder rein eigenständig durchführen.
  • Potenzieller Nutzen: Hocheffiziente „agentische KIs“ könnten Unternehmen bei der Lieferkettenkoordination, Datenverwaltung oder dem automatisierten Handel unterstützen.
  • Worauf zu achten ist: Wie stellen wir sicher, dass eine KI wirklich autonom ist und nicht heimlich von Menschen manipuliert wird? Trusted Execution Environments (TEEs) können technische Garantien bieten, aber das Vertrauen in einen „Roboter mit Wallet“ wird nicht über Nacht entstehen.

2. Aufstieg des DAC (Dezentraler Autonomer Chatbot)

Wichtige Erkenntnis: Ein Chatbot, der autonom in einer TEE läuft, kann seine eigenen Schlüssel verwalten, Inhalte in sozialen Medien posten, Follower sammeln und sogar Einnahmen generieren – alles ohne direkte menschliche Kontrolle.

  • Was es bedeutet: Stellen Sie sich einen KI-Influencer vor, der von niemandem zum Schweigen gebracht werden kann, weil er sich buchstäblich selbst steuert.
  • Potenzieller Nutzen: Ein Einblick in eine Welt, in der Content-Ersteller keine Individuen, sondern selbstverwaltende Algorithmen mit Millionen- (oder Milliarden-) Dollar-Bewertungen sind.
  • Worauf zu achten ist: Wenn eine KI Gesetze bricht, wer ist haftbar? Regulatorische Leitplanken werden schwierig sein, wenn die „Entität“ ein Satz von Code ist, der auf verteilten Servern gehostet wird.

3. Proof of Personhood wird unerlässlich

Wichtige Erkenntnis: Da KI die Kosten für die Erstellung hyperrealistischer Fälschungen senkt, benötigen wir bessere Wege, um zu überprüfen, dass wir online mit echten Menschen interagieren. Hier kommen datenschutzfreundliche, eindeutige IDs ins Spiel.

  • Was es bedeutet: Jeder Benutzer könnte irgendwann einen zertifizierten „menschlichen Stempel“ erhalten – hoffentlich ohne persönliche Daten zu opfern.
  • Potenzieller Nutzen: Dies könnte Spam, Betrug und Bot-Armeen drastisch reduzieren. Es schafft auch die Grundlage für vertrauenswürdigere soziale Netzwerke und Community-Plattformen.
  • Worauf zu achten ist: Die Akzeptanz ist die größte Hürde. Selbst die besten Proof-of-Personhood-Lösungen benötigen eine breite Akzeptanz, bevor böswillige Akteure sie übertreffen.

4. Von Prognosemärkten zur breiteren Informationsaggregation

Wichtige Erkenntnis: Die wahlgesteuerten Prognosemärkte von 2024 sorgten für Schlagzeilen, aber a16z sieht einen größeren Trend: die Nutzung von Blockchain, um neue Wege zur Offenlegung und Aggregation von Wahrheiten zu entwickeln – sei es in der Governance, im Finanzwesen oder bei Gemeinschaftsentscheidungen.

  • Was es bedeutet: Verteilte Anreizmechanismen können Menschen für ehrliche Beiträge oder Daten belohnen. Wir könnten spezialisierte „Wahrheitsmärkte“ für alles sehen, von lokalen Sensornetzwerken bis hin zu globalen Lieferketten.
  • Potenzieller Nutzen: Eine transparentere, weniger manipulierbare Datenschicht für die Gesellschaft.
  • Worauf zu achten ist: Ausreichende Liquidität und Nutzerbeteiligung bleiben eine Herausforderung. Bei Nischenfragen können „Prognose-Pools“ zu klein sein, um aussagekräftige Signale zu liefern.

5. Stablecoins erobern Unternehmen

Wichtige Erkenntnis: Stablecoins sind bereits der günstigste Weg, digitale Dollar zu bewegen, aber große Unternehmen haben sie – noch – nicht angenommen.

  • Was es bedeutet: KMU und Händler mit hohem Transaktionsvolumen könnten erkennen, dass sie durch die Einführung von Stablecoins erhebliche Kreditkartengebühren sparen können. Unternehmen, die Milliarden an jährlichen Einnahmen verarbeiten, könnten dasselbe tun und potenziell 2 % zu ihrem Gewinn hinzufügen.
  • Potenzieller Nutzen: Schnellere, günstigere globale Zahlungen sowie eine neue Welle von Stablecoin-basierten Finanzprodukten.
  • Worauf zu achten ist: Unternehmen benötigen neue Wege zur Verwaltung von Betrugsschutz, Identitätsprüfung und Rückerstattungen – Aufgaben, die zuvor von Kreditkartenanbietern übernommen wurden.

6. Staatsanleihen auf der Blockchain

Wichtige Erkenntnis: Regierungen, die On-Chain-Anleihen erforschen, könnten zinstragende digitale Assets schaffen, die ohne die Datenschutzprobleme einer digitalen Zentralbankwährung funktionieren.

  • Was es bedeutet: On-Chain-Anleihen könnten als hochwertige Sicherheiten in DeFi dienen und es ermöglichen, Staatsschulden nahtlos in dezentrale Kreditprotokolle zu integrieren.
  • Potenzieller Nutzen: Größere Transparenz, potenziell niedrigere Emissionskosten und ein demokratisierterer Anleihemarkt.
  • Worauf zu achten ist: Skeptische Regulierungsbehörden und potenzielle Trägheit bei großen Institutionen. Bestehende Abwicklungssysteme werden nicht so leicht verschwinden.

7. „DUNA“ – Das rechtliche Rückgrat für DAOs

Wichtige Erkenntnis: Wyoming hat eine neue Kategorie namens „dezentraler nicht eingetragener gemeinnütziger Verein“ (DUNA) eingeführt, die DAOs in den USA rechtliche Anerkennung verschaffen soll.

  • Was es bedeutet: DAOs können nun Eigentum halten, Verträge unterzeichnen und die Haftung von Token-Inhabern begrenzen. Dies öffnet die Tür für eine breitere Akzeptanz und echte kommerzielle Aktivitäten.
  • Potenzieller Nutzen: Wenn andere Staaten Wyomings Beispiel folgen (wie sie es bei LLCs taten), werden DAOs zu normalen Geschäftseinheiten werden.
  • Worauf zu achten ist: Die öffentliche Wahrnehmung darüber, was DAOs tun, ist immer noch unklar. Sie benötigen eine Erfolgsbilanz erfolgreicher Projekte, die sich in realen Vorteilen niederschlagen.

8. Liquide Demokratie in der physischen Welt

Wichtige Erkenntnis: Blockchain-basierte Governance-Experimente könnten sich von Online-DAO-Communities auf lokale Wahlen ausweiten. Wähler könnten ihre Stimmen delegieren oder direkt abstimmen – „liquide Demokratie“.

  • Was es bedeutet: Flexiblere Vertretung. Sie können wählen, ob Sie über bestimmte Themen abstimmen oder diese Verantwortung jemandem übertragen, dem Sie vertrauen.
  • Potenzieller Nutzen: Potenziell engagiertere Bürger und eine dynamischere Politikgestaltung.
  • Worauf zu achten ist: Sicherheitsbedenken, technische Kenntnisse und allgemeine Skepsis gegenüber der Vermischung von Blockchain mit offiziellen Wahlen.

9. Auf bestehender Infrastruktur aufbauen (statt sie neu zu erfinden)

Wichtige Erkenntnis: Startups verbringen oft Zeit damit, Basisschicht-Technologien (Konsensprotokolle, Programmiersprachen) neu zu erfinden, anstatt sich auf die Produkt-Markt-Passung zu konzentrieren. Im Jahr 2025 werden sie häufiger auf vorgefertigte Komponenten zurückgreifen.

  • Was es bedeutet: Schnellere Markteinführung, zuverlässigere Systeme und größere Komponierbarkeit.
  • Potenzieller Nutzen: Weniger Zeitverschwendung beim Aufbau einer neuen Blockchain von Grund auf; mehr Zeit für die Lösung des Benutzerproblems, das Sie angehen.
  • Worauf zu achten ist: Es ist verlockend, sich für Leistungssteigerungen zu stark zu spezialisieren. Aber spezialisierte Sprachen oder Konsensschichten können einen höheren Overhead für Entwickler verursachen.

10. Benutzererfahrung zuerst, Infrastruktur an zweiter Stelle

Wichtige Erkenntnis: Krypto muss die „Kabel verstecken“. Wir zwingen Verbraucher nicht, SMTP zu lernen, um E-Mails zu senden – warum sollten wir sie also zwingen, „EIPs“ oder „Rollups“ zu lernen?

  • Was es bedeutet: Produktteams werden die technischen Grundlagen wählen, die eine großartige Benutzererfahrung ermöglichen, nicht umgekehrt.
  • Potenzieller Nutzen: Ein großer Sprung bei der Benutzerintegration, der Reibung und Fachjargon reduziert.
  • Worauf zu achten ist: „Baue es, und sie werden kommen“ funktioniert nur, wenn Sie die Erfahrung wirklich perfektionieren. Marketing-Jargon über „einfache Krypto-UX“ bedeutet nichts, wenn die Leute immer noch gezwungen sind, private Schlüssel zu verwalten oder obskure Akronyme auswendig zu lernen.

11. Kryptos eigene App Stores entstehen

Wichtige Erkenntnis: Vom World App Marktplatz von Worldcoin bis zum dApp Store von Solana bieten krypto-freundliche Plattformen Distribution und Entdeckung frei von der Gatekeeping von Apple oder Google.

  • Was es bedeutet: Wenn Sie eine dezentrale Anwendung entwickeln, können Sie Benutzer erreichen, ohne Angst vor plötzlichem Deplatforming haben zu müssen.
  • Potenzieller Nutzen: Zehntausende (oder Hunderttausende) neuer Benutzer, die Ihre dApp innerhalb von Tagen entdecken, anstatt in der Flut zentralisierter App Stores verloren zu gehen.
  • Worauf zu achten ist: Diese Stores benötigen eine ausreichende Nutzerbasis und Dynamik, um mit Apple und Google zu konkurrieren. Das ist eine große Hürde. Hardware-Anbindungen (wie spezialisierte Krypto-Telefone) könnten helfen.

12. Tokenisierung „unkonventioneller“ Assets

Wichtige Erkenntnis: Wenn die Blockchain-Infrastruktur reift und die Gebühren sinken, wird die Tokenisierung von allem, von biometrischen Daten bis hin zu Kuriositäten der realen Welt, praktikabler.

  • Was es bedeutet: Ein „Long Tail“ einzigartiger Assets kann fraktionalisiert und global gehandelt werden. Menschen könnten sogar persönliche Daten auf kontrollierte, zustimmungsbasierte Weise monetarisieren.
  • Potenzieller Nutzen: Massive neue Märkte für ansonsten „festgelegte“ Assets sowie interessante neue Datenpools, die KI nutzen kann.
  • Worauf zu achten ist: Datenschutzfallen und ethische Stolpersteine. Nur weil man etwas tokenisieren kann, heißt das nicht, dass man es sollte.

Der A16Z-Ausblick 2025 zeigt einen Krypto-Sektor, der nach breiterer Akzeptanz, verantwortungsvollerer Governance und tieferer Integration mit KI strebt. Wo frühere Zyklen von Spekulation oder Hype geprägt waren, dreht sich diese Vision um den Nutzen: Stablecoins, die Händlern 2 % bei jedem Latte sparen, KI-Chatbots, die ihre eigenen Geschäfte betreiben, lokale Regierungen, die mit liquider Demokratie experimentieren.

Doch das Ausführungsrisiko lauert. Regulierungsbehörden weltweit bleiben zurückhaltend, und die Benutzererfahrung ist für den Mainstream immer noch zu unübersichtlich. 2025 könnte das Jahr sein, in dem Krypto und KI endlich „erwachsen werden“, oder es könnte ein Zwischenschritt sein – alles hängt davon ab, ob Teams echte Produkte liefern können, die die Menschen lieben, und nicht nur Protokolle für die Kenner.

Kann 0Gs dezentrales KI-Betriebssystem KI wirklich im großen Maßstab On-Chain betreiben?

· 12 Min. Lesezeit

Am 13. November 2024 gab 0G Labs eine 40 Millionen US-Dollar Finanzierungsrunde bekannt, die von Hack VC, Delphi Digital, OKX Ventures, Samsung Next und Animoca Brands angeführt wurde und das Team hinter diesem dezentralen KI-Betriebssystem ins Rampenlicht rückte. Ihr modularer Ansatz kombiniert dezentralen Speicher, Datenverfügbarkeitsprüfung und dezentrale Abwicklung, um KI-Anwendungen On-Chain zu ermöglichen. Aber können sie realistisch einen Durchsatz von GB/s erreichen, um die nächste Ära der KI-Adoption im Web3 voranzutreiben? Dieser ausführliche Bericht bewertet die Architektur, die Anreizmechanismen, die Ökosystem-Traktion und die potenziellen Fallstricke von 0G, um Ihnen zu helfen, einzuschätzen, ob 0G sein Versprechen halten kann.

Hintergrund

Der KI-Sektor hat einen kometenhaften Aufstieg erlebt, katalysiert durch große Sprachmodelle wie ChatGPT und ERNIE Bot. Doch KI ist mehr als nur Chatbots und generative Texte; sie umfasst auch alles von AlphaGos Go-Siegen bis hin zu Bildgenerierungstools wie MidJourney. Der Heilige Gral, den viele Entwickler verfolgen, ist eine allgemeine Künstliche Intelligenz oder AGI (Artificial General Intelligence) – umgangssprachlich als KI-„Agent“ beschrieben, der in der Lage ist, zu lernen, wahrzunehmen, Entscheidungen zu treffen und komplexe Ausführungen ähnlich der menschlichen Intelligenz durchzuführen.

Sowohl KI- als auch KI-Agenten-Anwendungen sind jedoch extrem datenintensiv. Sie verlassen sich auf massive Datensätze für Training und Inferenz. Traditionell werden diese Daten auf zentralisierten Infrastrukturen gespeichert und verarbeitet. Mit dem Aufkommen der Blockchain ist ein neuer Ansatz, bekannt als DeAI (Dezentrale KI), entstanden. DeAI versucht, dezentrale Netzwerke für Datenspeicherung, -freigabe und -verifizierung zu nutzen, um die Fallstricke traditioneller, zentralisierter KI-Lösungen zu überwinden.

0G Labs sticht in dieser DeAI-Infrastrukturlandschaft hervor und zielt darauf ab, ein dezentrales KI-Betriebssystem zu entwickeln, das einfach als 0G bekannt ist.

Was ist 0G Labs?

In der traditionellen Informatik verwaltet ein Betriebssystem (OS) Hardware- und Software-Ressourcen – denken Sie an Microsoft Windows, Linux, macOS, iOS oder Android. Ein OS abstrahiert die Komplexität der zugrunde liegenden Hardware und erleichtert sowohl Endbenutzern als auch Entwicklern die Interaktion mit dem Computer.

Analog dazu strebt das 0G OS eine ähnliche Rolle im Web3 an:

  • Verwaltung von dezentralem Speicher, Rechenleistung und Datenverfügbarkeit.
  • Vereinfachung der Bereitstellung von On-Chain-KI-Anwendungen.

Warum Dezentralisierung? Konventionelle KI-Systeme speichern und verarbeiten Daten in zentralisierten Silos, was Bedenken hinsichtlich Datentransparenz, Benutzerdatenschutz und fairer Vergütung für Datenanbieter aufwirft. Der Ansatz von 0G nutzt dezentralen Speicher, kryptografische Beweise und offene Anreizmodelle, um diese Risiken zu mindern.

Der Name „0G“ steht für „Zero Gravity“ (Schwerelosigkeit). Das Team stellt sich eine Umgebung vor, in der Datenaustausch und Berechnung „schwerelos“ wirken – alles, vom KI-Training über die Inferenz bis zur Datenverfügbarkeit, geschieht nahtlos On-Chain.

Die 0G Foundation, die im Oktober 2024 formell gegründet wurde, treibt diese Initiative voran. Ihre erklärte Mission ist es, KI zu einem öffentlichen Gut zu machen – zugänglich, überprüfbar und offen für alle.

Schlüsselkomponenten des 0G-Betriebssystems

Grundsätzlich ist 0G eine modulare Architektur, die speziell zur Unterstützung von KI-Anwendungen On-Chain entwickelt wurde. Ihre drei Hauptpfeiler sind:

  1. 0G Storage – Ein dezentrales Speichernetzwerk.
  2. 0G DA (Data Availability) – Eine spezialisierte Datenverfügbarkeitsschicht, die Datenintegrität gewährleistet.
  3. 0G Compute Network – Dezentrales Management von Rechenressourcen und Abwicklung für KI-Inferenz (und schließlich Training).

Diese Pfeiler arbeiten unter dem Dach eines Layer1-Netzwerks namens 0G Chain zusammen, das für Konsens und Abwicklung verantwortlich ist.

Gemäß dem 0G Whitepaper („0G: Towards Data Availability 2.0“) bauen sowohl die 0G Storage- als auch die 0G DA-Schicht auf der 0G Chain auf. Entwickler können mehrere benutzerdefinierte PoS-Konsensnetzwerke starten, die jeweils als Teil des 0G DA- und 0G Storage-Frameworks fungieren. Dieser modulare Ansatz bedeutet, dass 0G bei wachsender Systemlast dynamisch neue Validatoren-Sets oder spezialisierte Knoten hinzufügen kann, um zu skalieren.

0G Storage

0G Storage ist ein dezentrales Speichersystem, das für große Datenmengen ausgelegt ist. Es verwendet verteilte Knoten mit integrierten Anreizen für die Speicherung von Benutzerdaten. Entscheidend ist, dass es Daten mithilfe von Erasure Coding (EC) in kleinere, redundante „Chunks“ aufteilt und diese Chunks über verschiedene Speicherknoten verteilt. Wenn ein Knoten ausfällt, können die Daten immer noch aus redundanten Chunks rekonstruiert werden.

Unterstützte Datentypen

0G Storage unterstützt sowohl strukturierte als auch unstrukturierte Daten.

  1. Strukturierte Daten werden in einer Key-Value (KV)-Schicht gespeichert, die für dynamische und häufig aktualisierte Informationen geeignet ist (denken Sie an Datenbanken, kollaborative Dokumente usw.).
  2. Unstrukturierte Daten werden in einer Log-Schicht gespeichert, die Dateneinträge chronologisch anfügt. Diese Schicht ist vergleichbar mit einem Dateisystem, das für große, nur-anhängende Arbeitslasten optimiert ist.

Durch das Stapeln einer KV-Schicht auf der Log-Schicht kann 0G Storage vielfältige Anforderungen von KI-Anwendungen erfüllen – von der Speicherung großer Modellgewichte (unstrukturiert) bis hin zu dynamischen benutzerbasierten Daten oder Echtzeit-Metriken (strukturiert).

PoRA-Konsens

PoRA (Proof of Random Access) stellt sicher, dass Speicherknoten die Chunks tatsächlich halten, die sie zu speichern behaupten. So funktioniert es:

  • Speicher-Miner werden regelmäßig herausgefordert, kryptografische Hashes bestimmter zufälliger Daten-Chunks zu erzeugen, die sie speichern.
  • Sie müssen antworten, indem sie einen gültigen Hash (ähnlich einer PoW-ähnlichen Rätsellösung) generieren, der von ihrer lokalen Kopie der Daten abgeleitet ist.

Um gleiche Wettbewerbsbedingungen zu schaffen, begrenzt das System Mining-Wettbewerbe auf 8 TB Segmente. Ein großer Miner kann seine Hardware in mehrere 8 TB Partitionen unterteilen, während kleinere Miner innerhalb einer einzelnen 8 TB Grenze konkurrieren.

Anreizdesign

Daten in 0G Storage werden in 8 GB „Preissegmente“ unterteilt. Jedes Segment hat sowohl einen Spendenpool als auch einen Belohnungspool. Benutzer, die Daten speichern möchten, zahlen eine Gebühr in 0G Token (ZG), die teilweise die Knotenbelohnungen finanziert.

  • Basisbelohnung: Wenn ein Speicherknoten gültige PoRA-Beweise einreicht, erhält er sofortige Blockbelohnungen für dieses Segment.
  • Laufende Belohnung: Im Laufe der Zeit gibt der Spendenpool einen Teil (derzeit ~4 % pro Jahr) in den Belohnungspool frei, was Knoten dazu anregt, Daten dauerhaft zu speichern. Je weniger Knoten ein bestimmtes Segment speichern, desto größer ist der Anteil, den jeder Knoten verdienen kann.

Benutzer zahlen nur einmal für dauerhaften Speicher, müssen aber eine Spendengebühr über einem Systemminimum festlegen. Je höher die Spende, desto wahrscheinlicher ist es, dass Miner die Daten des Benutzers replizieren.

Lizenzgebührenmechanismus: 0G Storage beinhaltet auch einen „Lizenzgebühren“- oder „Datenfreigabe“-Mechanismus. Frühe Speicheranbieter erstellen „Lizenzgebührenaufzeichnungen“ für jeden Daten-Chunk. Wenn neue Knoten denselben Chunk speichern möchten, kann der ursprüngliche Knoten ihn teilen. Wenn der neue Knoten später die Speicherung (über PoRA) beweist, erhält der ursprüngliche Datenanbieter eine laufende Lizenzgebühr. Je breiter die Daten repliziert werden, desto höher ist die aggregierte Belohnung für frühe Anbieter.

Vergleiche mit Filecoin und Arweave

Ähnlichkeiten:

  • Alle drei incentivieren dezentrale Datenspeicherung.
  • Sowohl 0G Storage als auch Arweave streben eine permanente Speicherung an.
  • Daten-Chunking und Redundanz sind Standardansätze.

Wesentliche Unterschiede:

  • Native Integration: 0G Storage ist keine unabhängige Blockchain; es ist direkt in die 0G Chain integriert und unterstützt primär KI-zentrierte Anwendungsfälle.
  • Strukturierte Daten: 0G unterstützt KV-basierte strukturierte Daten neben unstrukturierten Daten, was für viele KI-Arbeitslasten, die häufigen Lese- und Schreibzugriff erfordern, entscheidend ist.
  • Kosten: 0G beansprucht 10–11 US-Dollar/TB für dauerhaften Speicher, angeblich günstiger als Arweave.
  • Leistungsfokus: Speziell entwickelt, um die Durchsatzanforderungen von KI zu erfüllen, während Filecoin oder Arweave eher allgemeine dezentrale Speichernetzwerke sind.

0G DA (Datenverfügbarkeitsschicht)

Datenverfügbarkeit stellt sicher, dass jeder Netzwerkteilnehmer Transaktionsdaten vollständig überprüfen und abrufen kann. Wenn die Daten unvollständig oder zurückgehalten werden, brechen die Vertrauensannahmen der Blockchain zusammen.

Im 0G-System werden Daten gechunked und Off-Chain gespeichert. Das System zeichnet Merkle-Roots für diese Daten-Chunks auf, und DA-Knoten müssen diese Chunks stichprobenartig überprüfen, um sicherzustellen, dass sie mit dem Merkle-Root und den Erasure-Coding-Verpflichtungen übereinstimmen. Erst dann gelten die Daten als „verfügbar“ und werden dem Konsenszustand der Chain hinzugefügt.

DA-Knotenauswahl und Anreize

  • DA-Knoten müssen ZG staken, um teilzunehmen.
  • Sie werden zufällig über Verifizierbare Zufallsfunktionen (VRFs) in Quoren gruppiert.
  • Jeder Knoten validiert nur eine Teilmenge der Daten. Wenn 2/3 eines Quorums die Daten als verfügbar und korrekt bestätigen, signieren sie einen Beweis, der aggregiert und an das 0G-Konsensnetzwerk übermittelt wird.
  • Die Belohnungsverteilung erfolgt ebenfalls durch periodische Stichproben. Nur die Knoten, die zufällig ausgewählte Chunks speichern, sind für die Belohnungen dieser Runde berechtigt.

Vergleich mit Celestia und EigenLayer

0G DA greift Ideen von Celestia (Datenverfügbarkeits-Sampling) und EigenLayer (Restaking) auf, zielt aber auf einen höheren Durchsatz ab. Celestias Durchsatz liegt derzeit bei etwa 10 MB/s mit ~12-sekündigen Blockzeiten. EigenDA dient hauptsächlich Layer2-Lösungen und kann komplex in der Implementierung sein. 0G strebt einen Durchsatz von GB/s an, der besser für große KI-Arbeitslasten geeignet ist, die 50–100 GB/s an Datenaufnahme überschreiten können.

0G Compute Netzwerk

Das 0G Compute Netzwerk dient als dezentrale Rechenschicht. Es entwickelt sich in Phasen:

  • Phase 1: Fokus auf die Abwicklung für KI-Inferenz.
  • Das Netzwerk bringt „KI-Modellkäufer“ (Benutzer) mit Rechenanbietern (Verkäufern) in einem dezentralen Marktplatz zusammen. Anbieter registrieren ihre Dienste und Preise in einem Smart Contract. Benutzer finanzieren den Vertrag vor, nutzen den Dienst, und der Vertrag vermittelt die Zahlung.
  • Im Laufe der Zeit hofft das Team, auf vollwertiges KI-Training On-Chain zu expandieren, obwohl dies komplexer ist.

Stapelverarbeitung: Anbieter können Benutzeranfragen stapeln, um den On-Chain-Overhead zu reduzieren, die Effizienz zu verbessern und Kosten zu senken.

0G Chain

Die 0G Chain ist ein Layer1-Netzwerk, das als Grundlage für die modulare Architektur von 0G dient. Sie untermauert:

  • 0G Storage (über Smart Contracts)
  • 0G DA (Datenverfügbarkeitsbeweise)
  • 0G Compute (Abwicklungsmechanismen)

Gemäß den offiziellen Dokumenten ist die 0G Chain EVM-kompatibel, was eine einfache Integration für dApps ermöglicht, die erweiterte Datenspeicherung, -verfügbarkeit oder Rechenleistung benötigen.

0G Konsensnetzwerk

Der Konsensmechanismus von 0G ist etwas einzigartig. Anstatt einer einzigen monolithischen Konsensschicht können mehrere unabhängige Konsensnetzwerke unter 0G gestartet werden, um verschiedene Arbeitslasten zu bewältigen. Diese Netzwerke teilen dieselbe Staking-Basis:

  • Geteiltes Staking: Validatoren staken ZG auf Ethereum. Wenn ein Validator sich fehlverhält, kann sein gestakter ZG auf Ethereum gecuttet werden.
  • Skalierbarkeit: Neue Konsensnetzwerke können hochgefahren werden, um horizontal zu skalieren.

Belohnungsmechanismus: Wenn Validatoren Blöcke in der 0G-Umgebung finalisieren, erhalten sie Token. Die Token, die sie auf der 0G Chain verdienen, werden jedoch in der lokalen Umgebung verbrannt, und das Ethereum-basierte Konto des Validators wird mit einem äquivalenten Betrag gemintet, wodurch ein einziger Liquiditäts- und Sicherheitspunkt gewährleistet wird.

0G Token (ZG)

ZG ist ein ERC-20 Token, der das Rückgrat der 0G-Ökonomie darstellt. Er wird über Smart Contracts auf Ethereum gemintet, verbrannt und zirkuliert. In der Praxis:

  • Benutzer zahlen für Speicher, Datenverfügbarkeit und Rechenressourcen in ZG.
  • Miner und Validatoren verdienen ZG für den Nachweis der Speicherung oder die Validierung von Daten.
  • Geteiltes Staking bindet das Sicherheitsmodell an Ethereum zurück.

Zusammenfassung der Schlüsselmodule

Das 0G OS vereint vier Komponenten – Storage, DA, Compute und Chain – zu einem vernetzten, modularen Stack. Das Designziel des Systems ist Skalierbarkeit, wobei jede Schicht horizontal erweiterbar ist. Das Team preist das Potenzial für „unendlichen“ Durchsatz an, was besonders für große KI-Aufgaben entscheidend ist.

0G Ökosystem

Obwohl relativ neu, umfasst das 0G-Ökosystem bereits wichtige Integrationspartner:

  1. Infrastruktur & Tools:

    • ZK-Lösungen wie Union, Brevis, Gevulot
    • Cross-Chain-Lösungen wie Axelar
    • Restaking-Protokolle wie EigenLayer, Babylon, PingPong
    • Dezentrale GPU-Anbieter IoNet, exaBits
    • Orakel-Lösungen Hemera, Redstone
    • Indexierungstools für Ethereum Blob-Daten
  2. Projekte, die 0G für Datenspeicherung & DA nutzen:

    • Polygon, Optimism (OP), Arbitrum, Manta für L2 / L3 Integration
    • Nodekit, AltLayer für Web3-Infrastruktur
    • Blade Games, Shrapnel für On-Chain-Gaming

Angebotsseite

ZK- und Cross-Chain-Frameworks verbinden 0G mit externen Netzwerken. Restaking-Lösungen (z. B. EigenLayer, Babylon) stärken die Sicherheit und ziehen möglicherweise Liquidität an. GPU-Netzwerke beschleunigen die Erasure-Codierung. Orakel-Lösungen speisen Off-Chain-Daten oder referenzieren KI-Modellpreise.

Nachfrageseite

KI-Agenten können 0G sowohl für die Datenspeicherung als auch für die Inferenz nutzen. L2s und L3s können 0Gs DA integrieren, um den Durchsatz zu verbessern. Gaming und andere dApps, die robuste Datenlösungen benötigen, können Assets, Logs oder Bewertungssysteme auf 0G speichern. Einige haben bereits mit dem Projekt zusammengearbeitet, was auf eine frühe Ökosystem-Traktion hindeutet.

Roadmap & Risikofaktoren

0G zielt darauf ab, KI zu einem öffentlichen Gut zu machen, das für jeden zugänglich und überprüfbar ist. Das Team strebt einen DA-Durchsatz von GB/s an – entscheidend für Echtzeit-KI-Training, das 50–100 GB/s Datenübertragung erfordern kann.

Mitbegründer & CEO Michael Heinrich hat erklärt, dass das explosive Wachstum der KI eine zeitnahe Iteration entscheidend macht. Das Tempo der KI-Innovation ist schnell; 0Gs eigener Entwicklungsfortschritt muss mithalten.

Potenzielle Kompromisse:

  • Die derzeitige Abhängigkeit von geteiltem Staking könnte eine Zwischenlösung sein. Schließlich plant 0G die Einführung einer horizontal skalierbaren Konsensschicht, die inkrementell erweitert werden kann (ähnlich dem Hochfahren neuer AWS-Knoten).
  • Marktwettbewerb: Es gibt viele spezialisierte Lösungen für dezentralen Speicher, Datenverfügbarkeit und Rechenleistung. Der All-in-One-Ansatz von 0G muss überzeugend bleiben.
  • Akzeptanz & Ökosystemwachstum: Ohne robuste Entwicklerakzeptanz bleibt der versprochene „unbegrenzte Durchsatz“ theoretisch.
  • Nachhaltigkeit der Anreize: Die anhaltende Motivation für Knoten hängt von der tatsächlichen Benutzernachfrage und einer gleichgewichtigen Token-Ökonomie ab.

Fazit

0G versucht, dezentralen Speicher, Datenverfügbarkeit und Rechenleistung in einem einzigen „Betriebssystem“ zu vereinen, das On-Chain-KI unterstützt. Durch das Anstreben eines GB/s-Durchsatzes versucht das Team, die Leistungsgrenze zu durchbrechen, die derzeit groß angelegte KI davon abhält, On-Chain zu migrieren. Bei Erfolg könnte 0G die Web3-KI-Welle erheblich beschleunigen, indem es eine skalierbare, integrierte und entwicklerfreundliche Infrastruktur bereitstellt.

Dennoch bleiben viele offene Fragen. Die Machbarkeit des „unendlichen Durchsatzes“ hängt davon ab, ob 0Gs modulare Konsens- und Anreizstrukturen nahtlos skalieren können. Externe Faktoren – Marktnachfrage, Betriebszeit der Knoten, Entwicklerakzeptanz – werden ebenfalls die Beständigkeit von 0G bestimmen. Nichtsdestotrotz ist 0Gs Ansatz zur Bewältigung der Datenengpässe von KI neuartig und ambitioniert und deutet auf ein vielversprechendes neues Paradigma für On-Chain-KI hin.