跳到主要内容

27 篇博文 含有标签“AI”

人工智能和机器学习应用

查看所有标签

BASS 2025:绘制区块链应用的未来,从太空到华尔街

· 阅读需 8 分钟
Dora Noda
Software Engineer

区块链应用斯坦福峰会(BASS)在区块链科学大会(SBC)当周拉开帷幕,汇聚了创新者、研究者和构建者,共同探索生态系统的前沿。组织者 Gil、Kung 和 Stephen 热情迎接与会者,强调本次活动聚焦于创业精神和落地应用,这一精神源自与 SBC 的紧密合作。得到 Blockchain Builders、斯坦福密码学与区块链校友会等组织的支持,全天深入探讨了天体区块链、以太坊的未来、机构级 DeFi 以及 AI 与加密的交叉新领域。

Dalia Maliki:用 Space Computer 构建轨道信任根

Dalia Maliki 是加州大学圣塔芭芭拉分校的教授,也是 Space Computer 的顾问,她以一个真正超凡的案例开启演讲:在轨道上构建安全计算平台。

What is Space Computer? 简而言之,Space Computer 是一个“轨道信任根”,为在卫星上运行安全且保密的计算提供平台。其核心价值在于空间本身的独特安全保证。Maliki 解释道:“一旦一个盒子安全发射并部署到太空,没人能后来入侵它。此时它是纯粹、完美的防篡改。” 这种环境防泄漏、通信难以干扰,并提供可验证的地理位置,赋予强大的去中心化属性。

Architecture and Use Cases 系统采用两层架构:

  • Layer 1(Celestial):权威信任根运行在轨道卫星网络上,针对有限且间歇的通信进行优化。
  • Layer 2(Terrestrial):在地面运行标准的扩容方案,如 rollup 和状态通道,最终性和安全性锚定在 Celestial Layer 1。

早期用例包括运行高度安全的区块链验证者以及捕获宇宙辐射的真随机数生成器。但 Maliki 强调平台的潜力在于不可预见的创新。“构建平台最酷的地方在于,你搭建了平台,其他人会来构建你从未想象的用例。”

她以 1950 年代的 Project Corona 为例——当时从间谍卫星投下胶卷桶,由飞机在空中接收——鼓励大家放眼宏大。“相比之下,我们今天在 Space Computer 上的工作已经是奢侈,我们对未来充满期待。”

Tomasz Stanczak:以太坊路线图——扩容、隐私与 AI

Tomasz Stanczak,Ethereum 基金会执行董事,全面回顾了以太坊不断演进的路线图,重点聚焦在扩容、提升隐私以及与 AI 的融合。

Short‑Term Focus: Supporting L2s 以太坊的近期重点是巩固其作为 L2 构建最佳平台的角色。即将推出的两次硬分叉 Fusaka 与 Glumpsterdom 均围绕此目标展开。Stanczak 表示:“我们要更有力地表明,L2 在创新、扩展以太坊,并且协议构建者会承诺 Layer 1 以最佳方式支持 L2。”

Long‑Term Vision: Lean Ethereum and Real‑Time Proving 展望更远的未来,“Lean Ethereum”旨在实现大规模扩容和安全硬化。关键组成是 ZK‑EVM 路线图,目标是实现 99% 区块在 10 秒以内的实时证明,可由单独的质押者完成。结合数据可用性提升,L2 有望理论上达到 “1000 万 TPS”。长期计划还包括通过基于哈希的签名和 ZK‑EVM 实现后量子密码学。

Privacy and the AI Intersection 隐私是另一重要支柱。以太坊基金会成立了 Privacy and Scaling Explorations(PSC)团队,负责协调工作、支持工具链并探索协议层隐私集成。Stanczak 认为这对以太坊与 AI 的交互至关重要,可实现审查抵抗的金融市场、隐私保护的 AI 以及开源的代理系统。他强调,以太坊将金融、艺术、机器人和 AI 等多学科相连的文化,是应对未来十年挑战与机遇的关键。

Sreeram Kannan:用 EigenCloud 构建宏大 Crypto 应用的信任框架

Sreeram Kannan,Eigen Labs 创始人,挑战听众超越当前 Crypto 应用的边界,提出理解 Crypto 核心价值的框架,并介绍 EigenCloud 作为实现该愿景的平台。

Crypto's Core Thesis: A Verifiability Layer “Crypto 本质上是构建在其之上的信任或可验证层,能够支撑极具潜力的应用。”Kannan 解释道,并提出 “TAM vs. Trust” 框架,说明 Crypto 应用的可寻址市场(TAM)会随其承载的信任指数呈指数增长。比特币的市场随其相较法币的可信度提升而扩大;借贷平台的市场随其对借款人偿付能力的保证可信度提升而扩大。

EigenCloud: Unleashing Programmability Kannan 认为,构建更宏大应用(如去中心化 Uber 或可信 AI 平台)的主要瓶颈不是性能,而是可编程性。为此,EigenCloud 引入全新架构,将应用逻辑与代币逻辑分离。

“我们把代币逻辑保留在以太坊链上,”他提议,“但把应用逻辑搬到链外。你可以在任意容器中编写核心逻辑……在 CPU、GPU 或其他设备上执行……然后将这些结果可验证地带回链上。”

这种方式将 Crypto 的规模从 “笔记本或服务器级” 扩展到 “云级”,让开发者能够构建早期 Crypto 设想中真正颠覆性的应用。

圆桌讨论:区块链架构深度剖析

本场圆桌邀请了 MegaETH 的 LeiyangRealo 的 AdiSolana 基金会的 Solomon,共同探讨单体、模块化以及 “超级模块化” 架构的权衡。

  • MegaETH(模块化 L2):Leiyang 介绍 MegaETH 采用中心化排序器实现极致速度,同时将安全性委托给以太坊。此设计旨在为应用提供 Web2 级实时体验,复活了此前因性能受限而搁置的 “ICO 时代” 野心。
  • Solana(单体 L1):Solomon 说明 Solana 高节点要求的单体架构是为最大吞吐量而刻意设计,以支撑其将全球金融活动全部上链的愿景。目前重点在资产发行与支付。谈及互操作性时,Solomon 坦言:“总体来说,我们并不太在乎互操作性……核心是让尽可能多的资产流动性和使用场景落在链上。”
  • Realo(超级模块化 L1):Adi 介绍 Realo 的 “超级模块化” 概念,将预言机等关键服务直接内嵌到基础层,以降低开发者摩擦。此设计旨在原生连接现实世界,聚焦真实资产(RWA)并让区块链对终端用户透明不可见。

圆桌讨论:AI 与区块链的真实交叉

HackVC 的 Ed Roman 主持,三位嘉宾展示了各自对 AI 与 Crypto 融合的独特路径。

  • Ping AI(Bill):构建 “个人 AI”,用户自行保管数据。目标是取代传统广告交易模型,用户的数据若促成转化即可直接获得奖励,实现数字足迹的经济价值捕获。
  • Public AI(Jordan):自称 “AI 的人类层”,提供高质量、按需的数据市场,这类数据无法被爬取或合成。通过链上声誉系统与质押机制确保贡献者提供信号而非噪声,并对其贡献进行奖励。
  • Gradient(Eric):打造去中心化 AI 运行时,在闲置的消费级硬件网络上实现分布式推理与训练。目标是对大型 AI 公司中心化力量形成制衡,让全球社区协同训练与服务模型,保持 “智能主权”。

峰会更多亮点

  • Orin Katz(Starkware) 介绍了 “合规链上隐私” 的构建块,阐述 ZK‑proof 如何用于创建隐私池和私有代币(ZRC20),并加入 “查看密钥” 等监管监管机制。
  • Sam Green(Cambrian) 概述了 “代理金融” 生态,将 Crypto 代理划分为交易、流动性提供、借贷、预测与信息五类,并强调快速、完整、可验证的数据是其动力源。
  • Max Siegel(Privy) 分享了超过 7500 万用户的 onboarding 经验,强调要在用户所在的环境提供简化的产品体验,让产品需求驱动基础设施选择,而非相反。
  • Nil Dalal(Coinbase) 推出 “链上代理商业栈” 与开放标准 X42,这是一套面向机器的协议,旨在构建 “机器可支付的网络”,让 AI 代理可使用稳定币购买数据、API 与服务。
  • Gordon Liao 与 Austin Adams(Circle) 发布 Circle Gateway,一种创建统一 USDC 余额的原语,实现链抽象。它可在多链间实现 <500 ms 的准即时流动性部署,显著提升企业与流动性提供者的资本效率。

当天的闭幕词明确传达:Crypto 的底层正在成熟,焦点正决定性地转向构建稳健、用户友好且经济可持续的应用,以弥合链上世界与全球经济之间的鸿沟。

自主资本的崛起

· 阅读需 56 分钟
Dora Noda
Software Engineer

AI驱动的代理控制着自己的加密货币钱包,已经管理着数十亿美元的资产,做出独立的金融决策,并重塑着资本在去中心化系统中的流动方式。 这种人工智能与区块链技术的融合——被领先的思想家称为“自主资本”——代表着经济组织的一次根本性变革,智能软件可以作为自主经济参与者运作,无需人工干预。DeFi AI(DeFAI)市场在2025年初达到10亿美元,而更广泛的AI代理市场则达到170亿美元的峰值,这表明尽管存在重大的技术、监管和哲学挑战,但商业应用正在迅速普及。五位主要思想领袖——Tarun Chitra(Gauntlet)、Amjad Masad(Replit)、Jordi Alexander(Selini Capital)、Alexander Pack(Hack VC)和Irene Wu(Bain Capital Crypto)——正在这一领域开创不同的方法,从自动化风险管理和开发基础设施到投资框架和跨链互操作性。他们的工作正在为未来奠定基础,届时AI代理作为主要的区块链用户,其数量可能超过人类,自主管理投资组合并在去中心化网络中进行协调——尽管这一愿景面临着关于问责制、安全性以及无信任基础设施能否支持可信赖的AI决策的关键问题。

自主资本的含义及其重要性

自主资本是指由在区块链基础设施上运行的自主AI代理控制和部署的资本(金融资产、资源、决策权)。与需要人工监督的传统算法交易或自动化系统不同,这些代理拥有自己的带有私钥的加密货币钱包,做出独立的战略决策,并在无需持续人工干预的情况下参与去中心化金融协议。这项技术融合了三项关键创新:AI的决策能力、加密货币的可编程货币和无信任执行,以及智能合约在没有中介的情况下强制执行协议的能力。

这项技术已经到来。 截至2025年10月,仅Virtuals Protocol上就有超过17,000个AI代理在运行,其中AIXBT等知名代理的估值高达5亿美元,而Truth Terminal则催生了短时间内达到10亿美元市值的$GOAT迷因币。Gauntlet的风险管理平台每天分析DeFi协议中超过4亿个数据点,管理着数十亿美元的总锁定价值。Replit的Agent 3实现了200多分钟的自主软件开发,而SingularityDAO的AI管理投资组合通过自适应做市策略在两个月内实现了25%的投资回报率。

为什么这很重要: 传统金融无论AI系统多么复杂,都会将其排除在外——银行需要人类身份和KYC检查。相比之下,加密货币钱包通过加密密钥对生成,任何软件代理都可以访问。这创建了第一个AI可以作为独立经济参与者运作的金融基础设施,为机器对机器经济、自主资金管理以及AI协调的资本分配提供了可能性,其规模和速度是人类无法企及的。然而,这也引发了深刻的问题:当自主代理造成损害时谁来负责?去中心化治理能否管理AI风险?这项技术会集中还是民主化经济权力?

塑造自主资本的思想领袖

Tarun Chitra:从模拟到自动化治理

Gauntlet(估值10亿美元)的首席执行官兼联合创始人Tarun Chitra,开创性地将算法交易和自动驾驶汽车中的基于代理的模拟应用于DeFi协议。他的“自动化治理”愿景利用AI驱动的模拟,使协议能够科学地做出决策,而不仅仅是依靠主观投票。在他2020年的里程碑式文章《自动化治理:DeFi的科学演进》中,Chitra阐述了持续的对抗性模拟如何创建一个“更安全、更高效的DeFi生态系统,能够抵御攻击并公平奖励诚实参与者”。

Gauntlet的技术实现证明了该概念的规模化可行性。 该平台每天对实际的智能合约代码运行数千次模拟,建模在协议规则内交互的利润最大化代理,并为价值超过10亿美元的协议资产提供数据驱动的参数建议。他的框架包括编码协议规则、定义代理收益、模拟代理交互以及优化参数,以平衡宏观协议健康与微观用户激励。这一方法论影响了包括Aave(四年合作)、Compound、Uniswap和Morpho在内的主要DeFi协议,Gauntlet还发表了27篇关于恒定函数做市商、MEV分析、清算机制和协议经济学的研究论文。

Chitra在2023年创立的Aera协议推动了自主资金管理,通过“众包投资组合管理”使DAO能够快速响应市场变化。他最近对AI代理的关注反映了其预测,即到2025年,AI代理将“主导链上金融活动”,并且“AI将改变加密货币的历史进程”。从在伦敦(2021年)、新加坡(2024年、2025年)的Token2049大会亮相,到定期主持The Chopping Block播客,Chitra始终强调从主观的人工治理转向数据驱动、经过模拟测试的决策。

关键洞察: “金融本身本质上是一种法律实践——它是金钱加上法律。有了智能合约,金融变得更加优雅。”他的工作表明,自主资本并非完全取代人类,而是利用AI通过持续模拟和优化,使金融系统更具科学严谨性。

Amjad Masad:为网络经济构建基础设施

Replit(截至2025年10月估值30亿美元)的首席执行官Amjad Masad,设想了一场激进的经济转型,其中拥有加密钱包的自主AI代理将取代传统的层级软件开发,转变为去中心化网络经济。他2022年发布的病毒式推文预测“本十年软件将迎来巨大变革”,认为AI代表着下一个100倍的生产力提升,使程序员能够“指挥AI代理大军”,而非程序员也能指挥代理完成软件任务。

网络经济愿景的核心是将自主代理视为经济参与者。 在他接受红杉资本播客采访时,Masad描述了这样一个未来:“软件代理,我会说,‘好吧,我需要创建这个产品。’代理会说,‘哦,好吧,我将从这个区域获取这个数据库,从那个区域获取发送短信或电子邮件的东西。顺便说一下,它们将花费这么多钱。’作为一个代理,我实际上有一个钱包,我将能够为它们付费。”这取代了工厂流水线模型,转变为基于网络的组合,代理自主组装服务,价值通过网络自动流动。

Replit的Agent 3于2025年9月推出,通过比前代高出10倍的自主性,在技术上展示了这一愿景——独立运行200多分钟,通过“反思循环”进行自测试和调试,并构建其他代理和自动化。真实用户报告称,他们构建了价值400美元的ERP系统,而供应商报价为15万美元,生产力提高了85%。Masad预测,“所有应用软件的价值最终将‘归零’”,因为AI使任何人都能按需生成复杂的软件,将公司的性质从专业角色转变为由AI代理增强的“通才问题解决者”。

关于加密货币的作用, Masad强烈主张整合比特币闪电网络,将其视为必不可少的平台原语。他表示:“例如,比特币闪电网络将价值直接嵌入到软件供应链中,使人与人之间以及机器与机器之间的交易更加容易。降低软件中的交易成本和开销意味着将开发人员引入你的代码库进行一次性任务将变得更加容易。”他将Web3视为“读写-拥有-混音”的愿景以及考虑将原生Replit货币作为平台原语的计划,都表明AI代理基础设施与加密经济协调之间的深度整合。

Masad在Token2049之后立即在新加坡的网络国家会议(2025年10月3日)上发表演讲,与Vitalik Buterin、Brian Armstrong和Balaji Srinivasan同台,这使他成为加密货币和AI社区之间的桥梁。他的预测是:“当通过AI增强‘人人都是开发者’时,‘一人独角兽’将变得普遍,从根本上改变宏观经济,并实现‘十亿开发者’的未来,届时全球将有10亿人创建软件。”

Jordi Alexander:AI时代的判断力即货币

Selini Capital(管理资产规模超过10亿美元)的创始人兼首席投资官、Mantle Network的首席炼金术士Jordi Alexander,将职业扑克(2024年WSOP手镯赛中击败Phil Ivey)的博弈论专业知识带入市场分析和自主资本投资。他的核心论点是“判断力即货币”——人类整合复杂信息并做出机器无法复制的最佳决策的独特能力,即使AI处理执行和分析。

Alexander的自主资本框架 强调“本世纪两个关键行业”的融合:构建智能基础模块(如AI)和构建社会协调基础层(如加密技术)。他认为,由于实际通货膨胀(每年约15%而非官方利率)、即将到来的财富再分配以及需要保持经济生产力,传统的退休规划已经过时:“对于50岁以下的人来说,没有‘退休’这回事。”他颇具争议的论点是:“在未来10年内,拥有10万美元和1000万美元之间的差距可能不会那么大。关键是如何在未来几年内有效定位,以迎接财富创造急剧加速的‘100倍时刻’。”

他的投资组合证明了对AI与加密货币融合的信念。Selini支持了TrueNorth(2025年6月100万美元种子轮),该项目被描述为“加密货币首个自主、AI驱动的发现引擎”,利用“代理工作流”和强化学习进行个性化投资。该公司有史以来最大的一笔投资投向了Worldcoin(2024年5月),认识到“在即将到来的AI世界中,对全新技术基础设施和解决方案的明显需求”。Selini总计46-60项投资包括Ether.fi(流动性质押)、RedStone(预言机)以及跨中心化和去中心化交易所的做市,展示了应用于自主系统的系统化交易专业知识。

Token2049的参与 包括伦敦(2022年11月)讨论“对最新周期疯狂实验的反思”,迪拜(2025年5月)讨论流动性风险投资和迷因币,以及新加坡的宏观加密货币相互作用分析。他的Steady Lads播客(截至2025年已播出92+集)邀请了Vitalik Buterin讨论加密货币与AI的交叉点、量子风险和以太坊的演进。Alexander强调摆脱“生存模式”以进行更高层次的思考,不断提升技能,并通过经验建立判断力,这对于在AI代理激增时保持经济相关性至关重要。

关键视角: “判断力是整合复杂信息并做出最佳决策的能力——这正是机器的短板。”他的愿景将自主资本视为AI以机器速度执行,而人类提供战略判断的系统,加密货币则实现协调层。具体到比特币:“唯一具有真正宏观意义的数字资产”,预计在机构资本进入的五年内增长5-10倍,将其视为优于脆弱实物资产的财产权利保护。

Alexander Pack:去中心化AI经济的基础设施

Hack VC(管理资产规模约5.9亿美元)的联合创始人兼管理合伙人Alexander Pack,将Web3 AI描述为“当今投资中最大的阿尔法来源”,将公司最新基金的41%分配给AI与加密货币的融合——这是主要加密货币风险投资公司中最高的集中度。他的论点是:“AI的快速发展正在创造巨大的效率,但也增加了中心化。加密货币与AI的交叉是该领域最大的投资机会,提供了一个开放、去中心化的替代方案。”

Pack的投资框架 将自主资本视为需要四个基础设施层:数据(Grass投资——25亿美元FDV)、计算(io.net——22亿美元FDV)、执行(Movement Labs——79亿美元FDV,EigenLayer——49亿美元FDV)和安全(通过再质押实现共享安全)。Grass投资证明了这一论点:一个由250多万台设备组成的去中心化网络为AI训练数据执行网络爬取,每天已收集45TB数据(相当于ChatGPT 3.5的训练数据集)。Pack阐述道:“算法+数据+计算=智能。这意味着数据和计算可能成为世界上最重要的两种资产,对它们的访问将极其重要。加密货币旨在为全球提供新的数字资源,并通过代币将以前不是资产的东西资产化。”

Hack VC在2024年的表现验证了这一方法: 成为第二活跃的加密货币风险投资领投方,在数十笔交易中部署了1.28亿美元,仅2024年就有12项加密货币与AI投资产生了4家独角兽公司。主要的代币发行包括Movement Labs(79亿美元)、EigenLayer(49亿美元)、Grass(25亿美元)、io.net(22亿美元)、Morpho(24亿美元)、Kamino(10亿美元)和AltLayer(9亿美元)。该公司运营着Hack.Labs,一个内部平台,用于机构级网络参与、质押、量化研究和开源贡献,雇佣了前Jane Street高级交易员。

Pack在2024年3月Unchained播客中指出,AI代理是资本配置者,它们“可以自主管理投资组合、执行交易并优化收益”,而DeFi整合使“拥有加密钱包的AI代理能够参与去中心化金融市场”。他强调“我们仍处于加密基础设施的早期阶段”,在主流采用之前,可扩展性、安全性和用户体验需要大幅改进。Token2049新加坡2025 确认Pack为演讲嘉宾(10月1-2日),在亚洲顶级加密货币盛会(25,000多名与会者)上参与加密货币和AI主题的专家讨论小组。

自主资本框架(综合Hack VC的投资和出版物)设想了五个层次:智能(AI模型)、数据与计算基础设施(Grass,io.net)、执行与验证(Movement,EigenLayer)、金融原语(Morpho,Kamino)和自主代理(投资组合管理、交易、做市)。Pack的关键洞察:在2022年熊市期间,去中心化、透明的系统比中心化金融更具弹性(DeFi协议幸存,而Celsius、BlockFi、FTX崩溃),这表明区块链比不透明的中心化替代方案更适合AI驱动的资本配置。

Irene Wu:自主系统的全链基础设施

Bain Capital Crypto的风险合伙人、LayerZero Labs前战略主管Irene Wu,为自主资本基础设施带来了独特的技术专长,她创造了“全链”一词来描述通过消息传递实现的跨链互操作性。她的投资组合战略性地定位在AI与加密货币的融合点:Cursor(AI优先的代码编辑器)、Chaos Labs(人工智能金融智能)、Ostium(杠杆交易平台)和Econia(DeFi基础设施),这表明她专注于垂直化的AI应用和自主金融系统。

Wu对LayerZero的贡献 建立了基础的跨链基础设施,使自主代理能够无缝地跨区块链运行。她倡导了三个核心设计原则——不变性、无需许可和抗审查性——并开发了OFT(全链可替代代币)和ONFT(全链不可替代代币)标准。她领导的Magic Eden合作创建了“Gas Station”,实现了跨链NFT购买的无缝Gas代币转换,展示了在去中心化系统中实际减少摩擦。她将LayerZero定位为“区块链的TCP/IP”,抓住了代理经济底层通用互操作性协议的愿景。

Wu始终强调消除Web3体验中的摩擦,直接支持自主资本基础设施。她倡导链抽象——用户不应该需要了解他们正在使用哪个区块链——并推动“10倍更好的体验来证明区块链的复杂性”。她对加密货币研究方法的批评(“在Twitter上看看谁抱怨最多”)与Web2风格的用户研究访谈形成对比,反映了她对主流采用所必需的用户中心设计原则的承诺。

从她的投资组合中可以看出投资论点指标,她专注于AI增强开发(Cursor支持AI原生编码)、自主金融智能(Chaos Labs将AI应用于DeFi风险管理)、交易基础设施(Ostium提供杠杆交易)和DeFi原语(Econia构建基础协议)。这种模式与自主资本的需求高度契合:AI代理需要开发工具、金融智能能力、交易执行基础设施和基础DeFi协议才能有效运作。

尽管现有资料中未确认具体的Token2049参与情况(社交媒体访问受限),但Wu在Consensus 2023和Proof of Talk Summit的演讲表明她在区块链基础设施和开发者工具方面的思想领导力。她的技术背景(哈佛大学计算机科学、摩根大通软件工程、哈佛区块链俱乐部联合创始人)与在LayerZero和Bain Capital Crypto的战略角色相结合,使她在去中心化环境中运行的AI代理的基础设施需求方面成为一个关键的声音。

理论基础:AI和加密货币如何赋能自主资本

赋能自主资本的融合建立在解决基本协调问题的三个技术支柱之上。首先,加密货币提供了传统银行系统无法实现的金融自主性。 AI代理可以生成加密密钥对,无需人工批准即可“开设自己的银行账户”,访问无需许可的24/7全球结算和可编程货币,以进行复杂的自动化操作。传统金融无论能力如何,都明确排除非人类实体;加密货币是第一个将软件视为合法经济参与者的金融基础设施。

其次,无信任计算基底实现了可验证的自主执行。 区块链智能合约提供了图灵完备的全球计算机,通过去中心化验证确保防篡改执行,任何单一操作者都无法控制结果。可信执行环境(TEEs),如Intel SGX,提供基于硬件的安全飞地,将代码与主机系统隔离,实现机密计算和私钥保护——这对代理至关重要,因为“云管理员和恶意节点操作者都无法‘伸入罐子’”。去中心化物理基础设施网络(DePIN),如io.net和Phala Network,将TEEs与众包硬件结合,创建无需许可的分布式AI计算。

第三,基于区块链的身份和声誉系统赋予代理持久的身份。 自主主权身份(SSI)和去中心化标识符(DIDs)使代理能够拥有自己的“数字护照”,通过可验证凭证证明技能,链上声誉跟踪创建不可篡改的记录。拟议的“了解你的代理”(KYA)协议将KYC框架应用于机器身份,而新兴标准如模型上下文协议(MCP)、代理通信协议(ACP)、代理间协议(A2A)和代理网络协议(ANP)则实现了代理互操作性。

经济影响是深远的。 包括Nenad Tomasev在内的研究人员在“虚拟代理经济”论文中提出了分析新兴AI代理经济系统的方法,从起源(涌现式与意图式)和分离性(可渗透与不可渗透于人类经济)两个维度进行。当前轨迹:庞大、高度可渗透的AI代理经济体自发涌现,带来了前所未有的协调机会,但也伴随着重大风险,包括系统性经济不稳定和加剧的不平等。博弈论考量——代理间谈判中的纳什均衡、公平资源分配的机制设计、资源拍卖机制——变得至关重要,因为代理作为具有效用函数的理性经济参与者,在多代理环境中做出战略决策。

市场显示出爆炸性增长。 到2024年12月,AI代理代币市值达到100多亿美元,在2024年末飙升322%。Virtuals Protocol在Base(以太坊L2)上推出了17,000多个代币化AI代理,而ai16z在Solana上运营着一个市值23亿美元的自主风险基金。每个代理发行代币,实现部分所有权、通过质押进行收入分享以及社区治理——为AI代理性能创建了流动市场。这种代币化模型实现了自主代理的“共同所有权”,代币持有者获得代理活动的经济敞口,而代理则获得自主部署的资本。

从哲学角度看,自主资本挑战了关于代理、所有权和控制的基本假设。 传统代理需要控制/自由条件(无胁迫)、认知条件(理解行为)、道德推理能力和稳定的个人身份。基于LLM的代理引发了问题:它们真的“意图”还是仅仅模式匹配?概率系统能否承担责任?研究参与者指出,代理“是无法承担责任或意图的概率模型;它们不能像人类玩家那样被‘惩罚’或‘奖励’”,并且“缺乏感受痛苦的身体”,这意味着传统的威慑机制失效。“无信任悖论”出现:在无信任基础设施中部署代理避免了信任易犯错误的人类,但AI代理本身可能仍然不可信(幻觉、偏见、操纵),而且无信任基底阻止了AI行为不当时进行干预。

Vitalik Buterin指出了这种紧张关系,指出“代码即法律”(确定性智能合约)与LLM幻觉(概率性输出)之间存在冲突。根据研究,去中心化代理受四种“无效性”支配:地域管辖无效性(无边界操作使单一国家法律失效)、技术无效性(架构抵制外部控制)、执行无效性(制裁部署者后无法阻止代理)、问责无效性(代理缺乏法人资格,不能被起诉或指控)。当前实验性方法,如Truth Terminal的慈善信托与人类受托人,试图将所有权与代理自主性分离,同时将开发者的责任与运营控制联系起来。

领先思想家的预测趋向于变革性场景。 Balaji Srinivasan认为“AI是数字丰裕,加密货币是数字稀缺”——互补的力量,AI创造内容,而加密货币协调并证明价值,加密货币在“AI深度伪造的世界中实现人类真实性的证明”。Sam Altman的观察,即AI和加密货币代表“无限丰裕和确定稀缺”,抓住了它们共生关系。Ali Yahya(a16z)综合了这种紧张关系:“AI集中化,加密货币去中心化”,这表明需要强大的治理来管理自主代理风险,同时保留去中心化优势。a16z的“十亿美元自主实体”愿景——一个通过TEEs在无需许可节点上运行的去中心化聊天机器人,建立追随者,产生收入,在没有人为控制的情况下管理资产——代表了没有单一控制点且共识协议协调系统的逻辑终点。

技术架构:自主资本的实际运作方式

实施自主资本需要通过混合架构将AI模型与区块链协议进行复杂集成,以平衡计算能力和可验证性。标准方法采用三层架构:感知层通过预言机网络(Chainlink每天处理50多亿个数据点)收集区块链和外部数据;推理层通过零知识证明进行链下AI模型推理;行动层通过智能合约在链上执行交易。这种混合设计解决了区块链的基本限制——Gas限制阻止链上进行大量AI计算——同时保持无信任执行的保证。

Gauntlet的实现展示了生产就绪的规模化自主资本。 该平台的技术架构包括每天对实际智能合约代码运行数千个基于代理模型的加密经济模拟引擎,使用在400多万个数据点上训练的机器学习模型进行定量风险建模,这些数据点每天在12个以上Layer 1和Layer 2区块链上刷新6次,以及动态调整抵押率、利率、清算阈值和费用结构的自动化参数优化。他们的MetaMorpho在Morpho Blue上的金库系统为无需许可的金库创建提供了优雅的基础设施,并实现了外部化风险管理,使Gauntlet的WETH Prime和USDC Prime金库能够在流动性质押递归收益市场中优化风险调整后的收益。基差交易金库将LST现货资产与永续资金费率结合,在市场条件有利时,可实现高达2倍的动态杠杆,展示了管理真实资本的复杂自主策略。

零知识机器学习(zkML)实现了无信任的AI验证。 该技术在不泄露模型权重或输入数据的情况下,使用ZK-SNARKs和ZK-STARKs证明系统证明机器学习模型的执行。Modulus Labs对不同模型大小的证明系统进行了基准测试,结果表明,使用plonky2,参数多达1800万的模型可以在约50秒内被证明。EZKL提供了将ONNX模型转换为ZK电路的开源框架,OpenGradient用于去中心化机器学习推理。RiscZero提供了通用零知识虚拟机,可实现与DeFi协议集成的可验证机器学习计算。架构流程为:输入数据 → 机器学习模型(链下) → 输出 → ZK证明生成器 → 证明 → 智能合约验证器 → 接受/拒绝。用例包括可验证的收益策略(Giza + Yearn合作)、链上信用评分、敏感数据的私有模型推理以及模型真实性证明。

赋能自主资本的智能合约结构 包括Morpho的无需许可金库部署系统,具有可定制的风险参数;Aera的V3协议,用于可编程金库规则;以及与Pyth Network预言机的集成,提供亚秒级价格馈送。技术实现使用Web3接口(ethers.js, web3.py)通过RPC提供商将AI代理连接到区块链,并使用加密安全的多方计算(MPC)钱包(在参与者之间分割私钥)进行自动化交易签名。账户抽象(ERC-4337)实现了可编程账户逻辑,允许复杂的权限系统,使AI代理可以在不完全控制钱包的情况下执行特定操作。

Fetch.ai的uAgents框架展示了实际的代理开发,其Python库使自主经济代理能够在Almanac智能合约上注册。代理通过加密安全消息、自动化区块链注册和基于间隔的执行来处理市场分析、信号生成和交易执行。示例实现展示了市场分析代理获取预言机价格、进行机器学习模型推理,并在达到置信阈值时执行链上交易,代理间通信实现多代理协调以执行复杂策略。

安全考量至关重要。 自2017年以来,智能合约漏洞,包括重入攻击、算术溢出/下溢、访问控制问题和预言机操纵,已造成超过117.4亿美元的损失,仅2024年就损失了15亿美元。AI代理特有的威胁包括提示注入(恶意输入操纵代理行为)、预言机操纵(受损数据馈送误导决策)、上下文操纵(利用外部输入的对抗性攻击)和凭证泄露(暴露的API密钥或私钥)。伦敦大学学院和悉尼大学的研究表明,A1系统——一个AI代理自主发现并利用智能合约漏洞,在36个真实世界易受攻击的合约上成功率达63%,每次利用成本为0.01-3.59美元,可提取高达859万美元,证明AI代理在经济上更倾向于利用而非防御。

安全最佳实践包括智能合约的形式化验证、广泛的测试网测试、第三方审计(Cantina、Trail of Bits)、漏洞赏金计划、带断路器的实时监控、关键操作的时间锁、大额交易的多重签名要求、可信执行环境(Phala Network)、带系统调用过滤的沙盒代码执行、网络限制和速率限制。防御姿态必须达到偏执级别的严谨,因为攻击者在6,000美元的利用价值下即可盈利,而防御者需要60,000美元才能收支平衡,这造成了有利于攻击的根本经济不对称。

可扩展性和基础设施要求 造成了瓶颈。以太坊每个区块约3000万Gas、12-15秒的区块时间、拥堵时的高费用以及15-30 TPS的吞吐量无法直接支持机器学习模型推理。解决方案包括Layer 2网络(Arbitrum/Optimism Rollup将成本降低10-100倍,Base具有原生代理支持,Polygon侧链)、链下计算与链上验证以及混合架构。基础设施要求包括RPC节点(Alchemy、Infura、NOWNodes)、预言机网络(Chainlink、Pyth、API3)、去中心化存储(IPFS用于模型权重)、用于机器学习推理的GPU集群以及具有低延迟和高可靠性的24/7监控。运营成本从RPC调用(0-500+美元/月)、计算(GPU实例100-10,000+美元/月)到高度可变的Gas费用(每次复杂交易1-1,000+美元)不等。

当前的性能基准显示,zkML在强大的AWS实例上可在50秒内证明1800万参数模型,互联网计算机协议(ICP)通过Cyclotron优化实现了链上图像分类10倍以上的改进,Bittensor运营着80多个活跃子网,验证器评估机器学习模型。未来的发展包括通过专用ASIC芯片进行ZK证明生成的硬件加速、ICP中的GPU子网用于链上机器学习、改进的账户抽象、跨链消息协议(LayerZero、Wormhole)以及新兴的代理互操作性标准(如模型上下文协议)。技术成熟度正在迅速发展,Gauntlet等生产系统证明了数十亿美元TVL的可行性,尽管在大型语言模型规模、zkML延迟和频繁操作的Gas成本方面仍存在限制。

实际应用:当今的实际运作情况

SingularityDAO展示了AI管理投资组合的性能,并取得了可量化的结果。 该平台的DynaSets——由AI自动重新平衡的动态管理资产篮子——通过自适应多策略做市在两个月内(2022年10月至11月)实现了25%的投资回报率,并通过对BTC+ETH投资组合的每周和每两周策略评估实现了20%的投资回报率,加权基金分配的回报率高于固定分配。技术架构包括对7天历史市场数据进行回测、基于社交媒体情绪的预测策略、用于提供流动性的算法交易代理以及包括投资组合规划、平衡和交易在内的积极投资组合管理。风险引擎评估多种风险以实现最佳决策,动态资产管理器进行基于AI的自动化重新平衡。目前有三个活跃的DynaSets(dynBTC、dynETH、dynDYDX)管理着实时资本,并具有透明的链上表现。

Virtuals Protocol(市值18亿美元)在AI代理代币化方面处于领先地位,截至2025年初,该平台已推出17,000多个代理。每个代理获得10亿个铸造的代币,通过聊天互动产生的“推理费用”获得收入,并授予代币持有者治理权。值得注意的代理包括市值6900万美元的Luna(LUNA)——一个虚拟K-pop明星和直播主,拥有100万TikTok粉丝,通过娱乐产生收入;AIXBT(0.21美元)——提供AI驱动的市场洞察,拥有24万多Twitter粉丝和质押机制;以及VaderAI(VADER)(0.05美元)——提供AI货币化工具和DAO治理。GAME框架(生成式自主多模态实体)提供了技术基础,而代理商务协议创建了代理间商务的开放标准,并设有不可变贡献金库(ICV)维护已批准贡献的历史账本。与Illuvium的合作将AI代理整合到游戏生态系统中,安全审计解决了7个问题(3个中等,4个低严重性)。

ai16z作为一个自主风险基金运作,在Solana上拥有23亿美元的市值,构建了ELIZA框架——这是AI代理最广泛采用的开源模块化架构,拥有数千次部署。该平台支持去中心化、协作开发,其插件生态系统推动了网络效应:更多开发者创建更多插件,吸引更多开发者。一个信任市场系统解决了自主代理的问责制问题,而为AI代理专门构建区块链的计划则展示了长期基础设施愿景。该基金在设定到期日(2025年10月)前运作,并锁定了超过2200万美元,展示了有时限的自主资本管理。

Gauntlet的生产基础设施 通过持续模拟和优化管理着超过10亿美元的DeFi协议TVL。该平台监控100多个DeFi协议,进行实时风险评估,对协议在压力下的行为进行基于代理的模拟,并为抵押率、清算阈值、利率曲线、费用结构和激励计划提供动态参数调整。主要的协议合作包括Aave(因治理分歧于2024年结束的四年合作)、Compound(开创自动化治理实施)、Uniswap(流动性和激励优化)、Morpho(当前的金库策展合作)和Seamless Protocol(主动风险监控)。金库策展框架包括市场分析监控新兴收益机会、风险评估评估流动性和智能合约风险、策略设计创建最佳配置、自动化执行到MetaMorpho金库以及通过实时再平衡进行持续优化。性能指标展示了该平台的更新频率(每天6次)、数据量(跨12个以上区块链的4亿多个数据点)以及方法论的复杂性(捕获广泛市场下跌的风险价值、LST分歧和稳定币脱钩等相关性破裂风险以及尾部风险量化)。

自主交易机器人表现参差不齐但正在改善。 Gunbot用户报告称,他们在2月26日以496美元开始,在dYdX上运行20个交易对,通过自托管执行消除了第三方风险,增长到1,358美元(+174%)。Cryptohopper用户通过24/7基于云的自动化交易、AI驱动的策略优化和社交交易功能,在波动市场中实现了35%的年回报率。然而,总体统计数据显示,75-89%的机器人客户亏损,只有11-25%盈利,这凸显了过度优化(对历史数据进行曲线拟合)、市场波动和黑天鹅事件、技术故障(API故障、连接问题)以及用户配置不当带来的风险。主要故障包括Banana Gun漏洞(2024年9月,通过预言机漏洞损失563 ETH/190万美元)、Genesis债权人社会工程攻击(2024年8月,损失2.43亿美元)和Dogwifhat滑点事件(2024年1月,在薄弱订单簿中损失570万美元)。

Fetch.ai赋能自主经济代理,截至2024年,使用uAgents框架的活跃代理超过30,000个。应用包括交通预订自动化、智能能源交易(购买非高峰期电力,转售多余电力)、通过基于代理的谈判优化供应链,以及与博世(Web3移动用例)和Yoti(代理身份验证)的合作。该平台在2023年筹集了4000万美元,定位在预计到2030年将达到705.3亿美元(42.8%复合年增长率)的自主AI市场中。2023年宣布的DeFi应用包括用于DEX的基于代理的交易工具,取消流动性池,转而采用基于代理的匹配,实现直接点对点交易,消除蜜罐和跑路风险。

带有AI组件的DAO实施 展示了治理的演进。AI DAO在XRP EVM侧链上运营Nexus EVM驱动的DAO管理,通过AI投票异常检测确保公平决策,AI协助决策而人类保持监督的治理辅助,以及一个AI代理启动平台,其去中心化MCP节点网络使代理能够管理钱包并在Axelar区块链上进行交易。Aragon的框架设想了六层AI x DAO集成:AI机器人和助手(当前)、AI在边缘对提案进行投票(近期)、AI在中心管理资金(中期)、AI连接器在DAO之间创建群体智能(中期)、DAO将AI作为公共产品进行治理(长期),以及AI成为拥有链上资金所有权的DAO(未来)。技术实现使用Aragon OSx模块化插件系统,通过权限管理允许AI在低于美元阈值的情况下进行交易,而在高于阈值时触发投票,并能够通过撤销/授予插件权限来切换AI交易策略。

市场数据证实了快速采用和规模。 DeFAI市场在2025年1月达到约10亿美元市值,AI代理市场峰值达到170亿美元。DeFi总锁定价值为520亿美元(机构TVL:420亿美元),而MetaMask服务3000万用户,月活跃用户2100万。2024年区块链支出达到190亿美元,预计到2026年将达到10760亿美元。全球DeFi市场(2024-2025年)为204.8-323.6亿美元,预计到2030年增长到2310-4410亿美元,到2034年增长到15580亿美元,复合年增长率为40-54%。平台特定指标包括Virtuals Protocol推出17,000多个AI代理,Fetch.ai Burrito集成上线400,000多用户,以及SMARD等自主交易机器人在2022年初至今的盈利能力超过比特币200%以上,超过以太坊300%以上。

成功和失败的经验教训明确了哪些方法有效。 成功的实施方案具有共同的模式:专业代理优于通用代理(Griffain的多代理协作比单一AI更可靠),人工干预监督对于意外事件至关重要,自托管设计消除了交易对手风险,跨多个市场机制的全面回测防止了过度优化,以及具有头寸规模规则和止损机制的稳健风险管理防止了灾难性损失。失败案例表明,缺乏透明度的黑盒AI无法建立信任,纯粹的自主性目前无法处理市场复杂性和黑天鹅事件,忽视安全性会导致漏洞利用,以及“保证回报”的不切实际承诺表明存在欺诈计划。该技术在人机共生中表现最佳,AI处理速度和执行,而人类提供策略和判断。

更广泛的生态系统:参与者、竞争和挑战

自主资本生态系统已迅速扩展,超越了上述五位思想领袖,涵盖了主要平台、机构参与者、相互竞争的哲学方法以及复杂的监管挑战。Virtuals Protocol和ai16z代表了“大教堂与集市”的哲学分歧。 Virtuals(市值18亿美元)采取集中、有条不紊的方法,拥有结构化治理和质量受控的专业市场,由EtherMage共同创立,并利用不可变贡献金库进行透明归属。ai16z(市值23亿美元)通过开源ELIZA框架拥抱去中心化、协作开发,实现快速实验,由Shaw(自学成才的程序员)领导,为AI代理构建专用区块链,并设有信任市场以实现问责制。这种哲学上的张力——精确与创新、控制与实验——反映了历史上的软件开发辩论,并可能随着生态系统的成熟而持续存在。

主要协议和基础设施提供商 包括SingularityNET,运营去中心化AI市场,使开发者能够通过众包投资决策(Numerai对冲基金模型)将AI模型货币化;Fetch.ai,部署自主代理以简化交通和服务,并为AI代理初创公司提供1000万美元加速器;Autonolas,将链下AI代理桥接到链上协议,创建无需许可的应用市场;ChainGPT,开发用于Web3的AI虚拟机(AIVM),具有自动化流动性管理和交易执行;以及Warden Protocol,构建用于AI集成应用的Layer-1区块链,其中智能合约访问和验证链上AI模型输出,并与Messari、Venice和Hyperlane等建立了合作关系。

尽管存在谨慎,机构采用仍在加速。 Galaxy Digital从加密货币挖矿转向AI基础设施,拥有1.75亿美元的风险基金,并预计与CoreWeave的15年协议(提供200MW数据中心容量)将带来45亿美元的收入。主要金融机构正在试验代理AI:摩根大通的LAW(法律代理工作流)实现了92.9%的准确率,纽约梅隆银行实施了自主编码和支付验证,而万事达卡、PayPal和Visa正在推行代理商务计划。Messari、CB Insights(跟踪1400多个技术市场)、德勤、麦肯锡和标普全球评级等研究和分析公司提供关于自主代理、AI与加密货币交叉、企业采用和风险评估的关键生态系统情报。

竞争愿景在多个维度上显现。 商业模式的变体包括具有透明社区投票的基于代币的DAO(MakerDAO、MolochDAO),面临代币集中(不到1%的持有者控制90%的投票权)的挑战;类似于公司结构但具有区块链透明度的股权型DAO;以及结合代币流动性与所有权股份的混合模型,平衡社区参与与投资者回报。监管合规方法包括:主动合规,提前寻求明确性;监管套利,在监管宽松的司法管辖区运营;以及观望策略,先构建再解决监管问题。这些战略选择造成了碎片化和竞争动态,因为项目会针对不同的约束进行优化。

监管环境日益复杂和受限。 美国的发展包括:SEC加密货币工作组由委员Hester Pierce领导,AI和加密货币监管作为2025年审查重点,总统数字资产工作组(60天审查,180天建议),David Sacks被任命为AI和加密货币特别顾问,以及SAB 121被撤销,放宽了银行的托管要求。SEC关注的重点包括Howey测试下的证券分类、投资顾问法对AI代理的适用性、托管和信托责任,以及AML/KYC要求。CFTC代理主席Pham支持负责任的创新,同时关注商品市场和衍生品。州级法规显示出创新,怀俄明州率先承认DAO为法律实体(2021年7月),新罕布什尔州正在审议DAO立法,而纽约州金融服务部(DFS)发布了AI风险网络安全指南(2024年10月)。

欧盟MiCA法规 建立了全面的框架,实施时间表如下:2023年6月生效,2024年6月30日稳定币条款适用,2024年12月30日全面适用于加密资产服务提供商,现有提供商有18个月的过渡期。主要要求包括代币发行方的强制性白皮书、资本充足率和治理结构、AML/KYC合规、稳定币的托管和储备要求、旅行规则交易可追溯性,以及许可提供商在欧盟范围内的护照权利。当前的挑战包括法国、奥地利和意大利呼吁加强执法(2025年9月),成员国之间实施不均衡,监管套利担忧,与PSD2/PSD3支付法规重叠,以及对不符合MiCA的稳定币的限制。DORA(数字运营韧性法案)于2025年1月17日适用,增加了全面的运营韧性框架和强制性网络安全措施。

市场动态既表现出狂热也表现出谨慎。 2024年风险投资活动在前三个季度向加密货币投资了80亿美元(与2023年持平),2024年第三季度在478笔交易中投资了24亿美元(环比下降20%),但AI x 加密货币项目在第三季度获得了2.7亿美元(环比增长5倍)。2024-2025年,种子期AI自主代理吸引了7亿美元,中位数投前估值达到创纪录的2500万美元,平均交易规模为350万美元。2025年第一季度筹集了801亿美元(环比增长28%,由OpenAI的400亿美元交易驱动),尽管交易量下降,AI仍占IT行业投资的74%。地域分布显示美国占据主导地位,占资本的56%和交易的44%,亚洲在日本(+2%)、印度(+1%)、韩国(+1%)增长,而中国同比下降33%。

估值揭示了与基本面的脱节。 包括Virtuals Protocol(同比上涨35,000%至18亿美元)、ai16z(一周内上涨176%至23亿美元)、AIXBT(约5亿美元)在内的顶级AI代理代币,以及Zerebro和Griffain在币安期货上的上市,都表明了投机狂热。高波动性,如单周内闪崩导致5亿美元杠杆头寸被清算,通过pump.fun等平台快速发行代币,以及“AI代理迷因币”作为独特类别,都暗示了泡沫特征。传统风险投资关注加密货币市销率约为250倍,而纳斯达克为6.25倍,标普为3.36倍,机构配置者在2022年崩盘后仍保持谨慎,“收入元”的出现要求有经过验证的商业模式。

批评主要集中在五个方面。 技术和安全问题包括:钱包基础设施漏洞,大多数DeFi平台需要手动批准,造成灾难性风险;算法故障,如Terra/Luna的20亿美元清算;代理之间的无限反馈循环;级联多代理系统故障;数据质量和偏见问题,导致歧视持续存在;以及通过投毒训练数据进行操纵的漏洞。治理和问责问题表现为:代币集中化破坏去中心化(不到1%的持有者控制90%的投票权);不活跃的股东扰乱功能;易受恶意收购(Build Finance DAO在2022年被掏空);代理损害责任的问责空白;可解释性挑战;以及利用编程漏洞的“流氓代理”。

市场和经济批评集中在:估值与基本面脱节,加密货币市销率250倍,而传统市场为6-7倍;泡沫担忧,类似于ICO繁荣/萧条周期;许多代理只是“美化过的聊天机器人”;投机驱动而非实用驱动的采用;实用性有限,大多数代理目前只是简单的Twitter网红;跨链互操作性差;以及碎片化的代理框架阻碍了采用。系统性和社会风险包括:大型科技公司集中化,严重依赖微软/OpenAI/云服务(2024年7月CrowdStrike中断凸显了相互依赖性);63%的AI模型使用公共云进行训练,降低了竞争;模型训练的巨大能源消耗;到2030年9200万个工作岗位被取代,尽管预计将创造1.7亿个新工作岗位;以及AML/KYC挑战带来的金融犯罪风险,自主代理可能实现自动化洗钱。

“生成式AI悖论”捕捉了部署挑战: 79%的企业采用,但78%报告没有显著的底线影响。麻省理工学院报告称,95%的AI试点因数据准备不佳和缺乏反馈循环而失败。与遗留系统集成是60%组织面临的最大挑战,这需要从一开始就建立安全框架、进行变革管理和AI素养培训,以及从以人为中心向AI协作模型的文化转变。这些实际障碍解释了为什么机构的热情尚未转化为相应的财务回报,这表明尽管市场市值快速增长,但生态系统仍处于实验性早期阶段。

对金融、投资和商业的实际影响

自主资本通过即时生产力提升和战略重新定位 改变传统金融。金融服务业看到AI代理以126%的速度更快地执行交易,实现实时投资组合优化;通过实时异常检测和主动风险评估进行欺诈检测;预计到2028年,68%的客户互动将由AI处理;利用实时交易数据和行为趋势进行持续评估的信用评估;以及进行动态风险评估和监管报告的合规自动化。转型指标显示,70%的金融服务高管预计代理AI将用于个性化体验,AI实施者的收入增长3-15%,销售投资回报率提高10-20%,90%观察到更高效的工作流程,38%的员工报告创造力得到促进。

风险投资的投资理念正在演变,从纯粹的基础设施投资转向特定应用的基础设施,重点关注需求、分销和收入,而非预发布代币。在监管明确后,稳定币、能源与DePIN(为AI基础设施供电)以及GPU计算资源市场中出现了重大机遇。尽职调查要求大幅扩展:评估技术架构(1-5级自主性)、治理和道德框架、安全态势和审计追踪、监管合规路线图、代币经济学和分发分析,以及团队应对监管不确定性的能力。风险因素包括95%的AI试点失败(麻省理工学院报告)、数据准备不佳和缺乏反馈循环是主要原因、缺乏内部专业知识的公司对供应商的依赖,以及估值倍数与基本面脱节。

商业模式倍增,因为自主资本实现了以前不可能的创新。自主投资工具通过DAO汇集资本,进行算法部署,利润分配与贡献成比例(ai16z对冲基金模型)。AI即服务(AIaaS)将代币化代理能力作为服务出售,通过聊天互动收取推理费用,并对高价值代理进行部分所有权。数据货币化创建去中心化数据市场,通过代币化利用零知识证明等隐私保护技术实现安全共享。自动化做市提供流动性并进行优化,利率根据供需动态调整,并进行跨链套利。合规即服务提供自动化AML/KYC检查、实时监管报告和智能合约审计。

商业模式风险包括监管分类不确定性、消费者保护责任、平台依赖性、有利于先行者的网络效应以及代币流通速度问题。然而,成功的实施证明了其可行性:Gauntlet通过模拟驱动的风险管理管理着超过10亿美元的TVL,SingularityDAO通过AI管理的投资组合实现了25%的投资回报率,Virtuals Protocol推出了17,000多个代理,提供创收的娱乐和分析产品。

传统行业在各领域进行自动化。 医疗保健部署AI代理进行诊断(FDA在2023年批准了223个AI医疗设备,高于2015年的6个)、患者治疗优化和行政自动化。交通运输领域,Waymo每周进行超过15万次自动驾驶,百度Apollo Go服务多个中国城市,自动驾驶系统同比提高67.3%。供应链和物流受益于实时路线优化、库存管理自动化和供应商协调。法律和专业服务采用文档处理和合同分析、监管合规监控和尽职调查自动化。

劳动力转型在创造机会的同时也带来了岗位流失。 尽管到2030年有9200万个工作岗位面临流失,但预计将创造1.7亿个需要不同技能的新工作岗位。挑战在于转型——再培训计划、安全网和教育改革必须加速,以防止大规模失业和社会动荡。早期证据显示,2025年第一季度美国AI工作岗位达到35,445个(同比增长25.2%),中位数工资为156,998美元,AI招聘广告提及量在2023年增长114.8%,2024年增长120.6%。然而,这种增长集中在技术岗位,关于更广泛经济包容性的问题仍未解决。

风险需要全面的缓解策略,分为五类。技术风险(智能合约漏洞、预言机故障、级联错误)需要持续的红队测试、形式化验证、断路器、Nexus Mutual等保险协议,以及最初有限自主性的逐步推出。监管风险(法律地位不明确、追溯性执法、管辖权冲突)需要主动与监管机构沟通、清晰的披露和白皮书、健全的KYC/AML框架、法律实体规划(怀俄明州DAO LLC)和地理多元化。运营风险(数据投毒、模型漂移、集成失败)需要关键决策的人工干预监督、持续监控和再训练、分阶段集成、备用系统和冗余,以及全面的代理注册表跟踪所有权和风险敞口。

市场风险(泡沫动态、流动性危机、代币集中、估值崩溃)需要关注基本价值创造而非投机、多元化的代币分发、锁定期和归属时间表、资金管理最佳实践,以及关于局限性的透明沟通。系统性风险(大型科技公司集中、网络故障、金融传染)需要多云策略、去中心化基础设施(边缘AI、本地模型)、压力测试和情景规划、跨司法管辖区的监管协调,以及行业联盟制定标准。

采用时间表表明近期持谨慎乐观态度,长期具有变革潜力。 近期2025-2027年将出现1-2级自主性,以基于规则的自动化和工作流优化为主,保持人工监督;25%的公司在2025年使用生成式AI启动代理试点(德勤),到2027年增长到50%;自主AI代理市场从68亿美元(2024年)扩大到200多亿美元(2027年);到2028年,15%的工作决策将由自主AI做出(高德纳)。采用障碍包括用例和投资回报率不明确(60%提及此点)、遗留系统集成挑战、风险和合规担忧以及人才短缺。

中期2028-2030年将带来3-4级自主性,代理在狭窄领域无需持续监督即可运行,多代理协作系统,实时自适应决策,以及对代理建议日益增长的信任。市场预测显示,生成式AI每年将为全球GDP贡献2.6-4.4万亿美元,自主代理市场到2030年将达到526亿美元(复合年增长率45%),每天自动化3小时的活动(2024年为1小时),68%的客户-供应商互动将由AI处理。基础设施发展包括代理专用区块链(ai16z)、跨链互操作性标准、统一的密钥库协议用于权限,以及可编程钱包基础设施主流化。

长期2030年以后设想5级自主性,即完全自主的代理,人工干预最少,自我改进系统接近通用人工智能(AGI)能力,代理雇佣其他代理和人类,以及大规模自主资本配置。系统性转型特点是AI代理作为同事而非工具,代币化经济与代理间交易,项目协调的去中心化“好莱坞模式”,以及1.7亿个需要新技能的新工作岗位。关键不确定性依然存在:监管框架的成熟度、公众信任和接受度、AI的技术突破或局限性、经济中断管理,以及伦理对齐和控制问题。

生态系统发展的关键成功因素 包括:监管明确性,在保护消费者的同时促进创新;互操作性标准,用于跨链和跨平台通信;作为基础的安全基础设施,具有强大的测试和审计;通过AI素养计划和劳动力转型支持进行人才培养;以及创造超越投机的价值的可持续经济。个体项目需要解决实际问题的真正效用、具有平衡利益相关者代表的强大治理、安全优先设计的卓越技术、主动合规的监管策略,以及通过透明沟通和共享价值实现社区对齐。机构采用需要超越效率提升的投资回报率证明、全面的风险管理框架、文化转型和培训的变革管理、平衡自建与购买并避免锁定的供应商策略,以及自主决策权限的伦理准则。

自主资本生态系统代表着真正的技术和金融创新,具有变革潜力,但面临着安全、治理、监管和实际效用方面的重大挑战。市场在投机和合法发展的双重驱动下快速增长,要求所有参与者在这一新兴领域走向主流采用时,具备复杂的理解、谨慎的导航和切合实际的期望。

结论:自主资本的轨迹

自主资本革命既不是不可避免的乌托邦,也不是反乌托邦的必然,而是一个新兴领域,真正的技术创新与重大风险交织,需要对能力、局限性和治理挑战有细致入微的理解。这里介绍的五位主要思想领袖——Tarun Chitra、Amjad Masad、Jordi Alexander、Alexander Pack和Irene Wu——展示了构建这一未来的独特而互补的方法: Chitra通过模拟和风险管理实现自动化治理,Masad的代理驱动网络经济和开发基础设施,Alexander以博弈论为基础强调人类判断力的投资理念,Pack以基础设施为重点的风险投资策略,以及Wu的全链互操作性基础。

他们的集体工作表明,自主资本在技术上今天已可行——Gauntlet管理着超过10亿美元的TVL,SingularityDAO通过AI投资组合实现了25%的投资回报率,Virtuals Protocol推出了17,000多个代理,以及生产交易系统提供了经过验证的结果,都证明了这一点。然而,研究人员指出的“无信任悖论”仍未解决:在无信任区块链基础设施中部署AI避免了信任易犯错误的人类,但却创建了可能不可信且超出干预范围的AI系统。自主性与问责制之间的这种根本性张力将决定自主资本是成为人类繁荣的工具还是无法治理的力量。

近期展望(2025-2027年)预示着谨慎的实验,25-50%的生成式AI用户将启动代理试点,1-2级自主性将保持人工监督,市场规模将从68亿美元增长到200多亿美元,但围绕投资回报率不明确、遗留系统集成挑战和监管不确定性的采用障碍将持续存在。中期(2028-2030年)可能会出现3-4级自主性,代理在狭窄领域运行,无需持续监督,多代理系统自主协调,如果技术和治理挑战成功解决,生成式AI将为全球GDP贡献2.6-4.4万亿美元。长期(2030年以后)关于5级自主性、完全自我改进系统大规模管理资本的愿景仍具投机性,取决于AI能力、监管框架、安全基础设施以及社会管理劳动力转型方面的突破。

关键的开放问题决定了结果: 监管明确性会促进还是限制创新?安全基础设施能否足够快地成熟以防止灾难性故障?去中心化目标能否实现,还是大型科技公司的集中度会增加?除了投机之外,可持续的商业模式能否出现?即使创造了1.7亿个新工作岗位,社会又将如何管理9200万个被取代的岗位?这些问题今天没有明确的答案,使得自主资本生态系统同时具有高风险和高机遇。

五位思想领袖的观点汇聚于关键原则:人机共生优于纯粹的自主性,AI处理执行速度和数据分析,而人类提供战略判断和价值观对齐;安全和风险管理需要偏执级别的严谨,因为攻击者相对于防御者拥有根本性的经济优势;互操作性和标准化将决定哪些平台实现网络效应和长期主导地位;监管参与必须是主动而非被动的,因为法律框架在全球范围内不断演变;以及关注根本价值创造而非投机,将可持续项目与泡沫受害者区分开来。

对于生态系统中的参与者, 战略建议因角色而异。投资者应分散对平台、应用和基础设施层的风险敞口,同时关注创收模式和监管立场,为极端波动做好准备,并相应地调整头寸规模。开发者必须选择架构哲学(大教堂与集市),大力投资安全审计和形式化验证,为跨链互操作性构建,尽早与监管机构接触,并解决实际问题而非创建“美化过的聊天机器人”。企业应从客户服务和分析领域的低风险试点开始,投资于支持代理的基础设施和数据,为自主决策权限建立清晰的治理,对员工进行AI素养培训,并平衡创新与控制。

政策制定者面临的挑战或许最为复杂:在促进创新的同时协调国际监管,采用沙盒方法和安全港进行实验,通过强制披露和欺诈预防保护消费者,解决大型科技公司集中和网络依赖带来的系统性风险,并通过教育计划和对失业工人的转型支持来准备劳动力。欧盟的MiCA法规提供了一个平衡创新与保护的典范,尽管执法挑战和管辖套利担忧依然存在。

最现实的评估表明,自主资本将逐步演进而非一夜之间发生革命性变化,狭窄领域的成功(交易、客户服务、分析)将先于通用自主性,混合人机系统在可预见的未来将优于纯自动化,监管框架需要数年才能明确,从而造成持续的不确定性。鉴于投机动态、技术局限性和安全漏洞,市场洗牌和失败是不可避免的,但潜在的技术趋势——AI能力的提升、区块链的成熟以及两者在机构中的应用——预示着持续的增长和复杂化。

自主资本代表着真正的技术范式转变,有可能使复杂的金融工具普及化,通过24/7自主优化提高市场效率,实现传统金融中不可能实现的新商业模式,并创建以超人速度运行的机器对机器经济。然而,它也可能将权力集中在控制关键基础设施的技术精英手中,通过相互连接的自主系统造成系统性不稳定,使人类工人失业的速度快于再培训计划的适应速度,并通过自动化洗钱和欺诈等方式实现机器规模的金融犯罪。

结果取决于建设者、投资者、政策制定者和用户今天所做的选择。所介绍的五位思想领袖表明,优先考虑安全、透明、人工监督和伦理治理的深思熟虑、严谨的方法可以创造真正的价值,同时管理风险。他们的工作提供了负责任发展的蓝图:Chitra通过模拟实现的科学严谨性,Masad以用户为中心的基础设施,Alexander以博弈论为基础的风险评估,Pack以基础设施为先的投资,以及Wu的互操作性基础。

正如Jordi Alexander所强调的:“判断力是整合复杂信息并做出最佳决策的能力——这正是机器的短板。”自主资本的未来可能不是由完全的AI自主性定义,而是由复杂的协作定义,其中AI处理执行、数据处理和优化,而人类提供判断、策略、伦理和问责制。这种由加密货币的无信任基础设施和可编程货币赋能的人机伙伴关系,代表着最充满希望的前进道路——平衡创新与责任,效率与安全,以及自主性与人类价值观的对齐。

Sui 区块链:赋能 AI、机器人和量子计算的未来

· 阅读需 29 分钟
Dora Noda
Software Engineer

Sui 区块链已成为下一代计算工作负载技术最先进的平台,实现了每秒 297,000 笔事务,最终性为 480 毫秒,同时集成了抗量子密码学和专用机器人基础设施。在首席密码学家 Kostas Chalkias 的领导下——他拥有 50 多篇学术出版物,并在 Meta 的 Diem 项目中开创了密码学创新——Sui 代表了对传统区块链的根本性架构突破,专门设计用于赋能自主 AI 代理、多机器人协作和后量子安全。

与为高级计算改造区块链的竞争对手不同,Sui 的面向对象数据模型、Move 编程语言和 Mysticeti 共识协议从一开始就为并行 AI 操作、实时机器人控制和密码学敏捷性而设计——这些能力已通过实际部署得到验证,包括 50 多个 AI 项目、多机器人协作演示以及全球首个区块链钱包向后兼容的量子安全升级路径。

Sui 革命性的技术基础赋能不可能

Sui 的架构通过三项协同创新打破了传统的基于账户的区块链模型,使其在 AI、机器人和量子应用方面独具优势。

Mysticeti 共识协议通过未经认证的 DAG 架构实现了前所未有的性能,将共识延迟降低到 390-650 毫秒(比其前身快 80%),同时支持 200,000+ TPS 的持续吞吐量。这代表了一个根本性的突破:以太坊等传统区块链需要 12-15 秒才能达到最终性,而 Sui 的单所有者事务快速路径仅需 250 毫秒即可完成。该协议每轮的多个领导者和隐式提交机制赋能了需要亚秒级反馈的实时 AI 决策循环和机器人控制系统——这些应用在顺序执行链上是物理上不可能实现的。

面向对象数据模型将每个资产视为具有明确所有权和版本控制的独立可寻址对象,从而在执行前进行静态依赖分析。这种架构选择消除了困扰乐观执行模型的追溯冲突检测开销,允许数千个 AI 代理同时进行事务处理而不会发生争用。当由单方拥有时,对象完全绕过共识,为常见操作节省了 70% 的处理时间。对于机器人技术而言,这意味着单个机器人维护用于传感器数据的自有对象,仅在必要时通过共享对象进行协调——精确地反映了现实世界中自主系统的架构。

Move 编程语言提供了基于账户的语言(如 Solidity)无法实现的资源导向安全性。资产作为一等类型存在,不能被复制或销毁——只能在上下文之间移动——从而防止了包括重入攻击、双重支付和未经授权的资产操纵在内的所有漏洞类别。Move 的线性类型系统和形式化验证支持使其特别适合自主管理有价值资产的 AI 代理。可编程事务块可原子地组合多达 1,024 个函数调用,从而实现具有一致性保证的复杂多步 AI 工作流。

Kostas Chalkias 将抗量子能力构建为竞争优势

Kostas "Kryptos" Chalkias 为 Sui 的量子计算战略带来了无与伦比的密码学专业知识,他撰写了 Blockchained Post-Quantum Signature (BPQS) 算法,领导了 Meta Diem 区块链的密码学工作,并发表了 50 多篇被引用 1,374+ 次的同行评审论文。他于 2025 年 7 月的研究突破展示了区块链钱包首个向后兼容的量子安全升级路径,适用于包括 Sui、Solana、Near 和 Cosmos 在内的基于 EdDSA 的链。

Chalkias 的愿景将抗量子能力定位为即时的竞争差异化因素,而非遥远的担忧。他于 2025 年 1 月警告称:“各国政府都清楚量子计算带来的风险。全球各机构已发布指令,要求到 2030 年或 2035 年淘汰 ECDSA 和 RSA 等经典算法。”他的技术洞察是:即使用户保留私钥,他们也可能无法生成后量子所有权证明,而不会将密钥暴露于量子攻击。Sui 的解决方案利用零知识 STARK 证明来证明密钥生成种子的知识,而无需泄露敏感数据——这在缺乏内置敏捷性的区块链上是不可能实现的密码学创新。

密码学敏捷框架代表了 Chalkias 标志性的设计理念。Sui 使用 1 字节标志来区分签名方案(Ed25519、ECDSA Secp256k1/r1、BLS12-381、多重签名、zkLogin),从而在协议层面支持新算法,而无需智能合约开销或硬分叉。这种架构允许在量子威胁出现时,“一键”过渡到 NIST 标准化的后量子算法,包括 CRYSTALS-Dilithium(2,420 字节签名)和 FALCON(666 字节签名)。Chalkias 设计了多种迁移路径:主动式(新账户在创建时生成 PQ 密钥)、自适应式(STARK 证明赋能从现有种子进行 PQ 迁移)和混合式(结合经典和抗量子密钥的限时多重签名)。

他的 zkLogin 创新展示了应用于可用性的密码学创造力。该系统允许用户通过 Google、Facebook 或 Twitch 凭证使用基于 BN254 曲线的 Groth16 零知识证明进行身份验证,用户控制的盐值可防止 Web2-Web3 身份关联。zkLogin 地址从设计之初就考虑了量子因素——即使底层 JWT 签名从 RSA 过渡到基于格的替代方案,基于 STARK 的种子知识证明也能提供后量子安全性。

在 Sui Basecamp 2025 上,Chalkias 发布了原生可验证随机性、用于链下逻辑的 zk 隧道、闪电交易(零 Gas 费、零延迟)和用于加密未来数据访问的时间胶囊。这些功能赋能了私人 AI 代理模拟、需要可信随机性的赌博应用以及零知识扑克游戏——所有这些都离不开协议层面的密码学原语。他的愿景是:“Sui 的目标是成为第一个采用后量子技术的区块链,从而提高安全性并为未来的监管标准做准备。”

AI 代理基础设施在 Sui 上达到生产成熟度

Sui 拥有区块链行业最全面的 AI 代理生态系统,包含 50 多个涵盖基础设施、框架和应用程序的项目——所有这些都利用 Sui 的并行执行和亚秒级最终性进行实时自主操作。

Atoma Network 于 2024 年 12 月在 Sui 主网上线,作为第一个完全去中心化的 AI 推理层,将自己定位为“开源 AI 的去中心化超大规模计算平台”。所有处理都在可信执行环境 (TEE) 中进行,确保完全的隐私和抗审查性,同时保持与 OpenAI 端点的 API 兼容性。Utopia 聊天应用程序展示了生产就绪的隐私保护 AI,其性能与 ChatGPT 相当,通过 Sui 的亚秒级最终性结算支付和验证。Atoma 赋能了 DeFi 投资组合管理、社交媒体内容审核和个人助理应用程序——这些用例需要 AI 智能和区块链结算,在较慢的链上无法实现。

OpenGraph Labs 实现了技术突破,成为第一个专为 AI 代理设计的完全链上 AI 推理系统。他们的 TensorflowSui SDK 自动化了 Web2 机器学习模型(TensorFlow、PyTorch)在 Sui 区块链上的部署,将训练数据存储在 Walrus 去中心化存储上,同时使用可编程事务块执行推理。OpenGraph 提供了三种灵活的推理方法:用于需要原子性的关键计算的 PTB 推理、用于成本优化的拆分事务以及根据用例定制的混合组合。这种架构通过完全可验证、可审计的推理过程和明确定义的算法所有权消除了“黑盒”AI 风险——这对于需要可解释 AI 的受监管行业至关重要。

Talus Network 于 2025 年 2 月在 Sui 上线,其 Nexus 框架使开发人员能够构建可组合的 AI 代理,直接在链上执行工作流。Talus 的 Idol.fun 平台展示了面向消费者的 AI 代理作为代币化实体 24/7 自主运行,利用 Walrus 存储的数据集进行市场情绪、DeFi 统计和社交趋势的实时决策。示例应用包括动态 NFT 档案管理、实时加载模型的 DeFi 流动性策略代理以及分析来自不可变 Sui 检查点历史事务模式的欺诈检测代理。

阿里云合作于 2025 年 8 月宣布,将 AI 编码助手集成到 ChainIDE 开发平台中,支持多语言(英语、中文、韩语)。功能包括自然语言到 Move 代码生成、智能自动补全、实时安全漏洞检测和自动化文档生成——降低了 Sui 60% 的非英语开发者目标用户的门槛。此次合作验证了 Sui 作为 AI 开发平台(而不仅仅是 AI 部署平台)的定位。

Sui 的赞助交易消除了 AI 代理的 Gas 支付摩擦——构建者可以支付事务费用,允许代理在不持有 SUI 代币的情况下运行。MIST 面额(1 SUI = 10 亿 MIST)赋能了小至几美分的小额支付,非常适合按推理付费的 AI 服务。平均事务成本约为 $0.0023,AI 代理每天可以执行数千次操作,只需几美分,使自主代理经济在经济上可行。

多机器人协作证明 Sui 的实时协调优势

Sui 使用 Mysticeti 共识展示了区块链行业首个多机器人协作系统,并得到了 Tiger Research 2025 年全面分析的验证。该系统使机器人能够在分布式环境中共享一致状态,同时保持拜占庭容错——即使机器人发生故障或被对手入侵,也能确保共识。

技术架构利用 Sui 的对象模型,其中机器人作为具有元数据、所有权和能力的可编程对象存在。任务分配给特定的机器人对象,智能合约自动化排序和资源分配规则。系统在没有中央服务器的情况下保持可靠性,多个验证者的并行区块提案防止了单点故障。亚秒级事务最终性赋能了实时调整循环——机器人在 400 毫秒内接收任务确认和状态更新,符合响应式自主操作的控制系统要求。

使用狗形机器人进行的物理测试已经证明了可行性,来自 NASA、Meta 和 Uber 背景的团队正在开发基于 Sui 的机器人应用程序。Sui 独特的“无网络模式”能力——通过无线电波运行而无需稳定的互联网连接——为非洲、亚洲农村地区的部署和紧急情况提供了革命性的优势。这种离线能力在主要区块链中仅 Sui 独有,并通过西班牙/葡萄牙停电期间的测试得到验证。

3DOS 合作于 2024 年 9 月宣布,验证了 Sui 在大规模制造机器人方面的能力。3DOS 将全球 120 多个国家的 79,909 多台 3D 打印机集成到 Sui 的独家区块链合作伙伴中,创建了一个“3D 打印的 Uber”网络,赋能点对点制造。知名客户包括约翰迪尔、谷歌、麻省理工学院、哈佛大学、博世、英国陆军、美国海军、美国空军和美国国家航空航天局——这表明企业级对 Sui 基础设施的信任。该系统使机器人能够通过智能合约自动化自主订购和打印替换零件,以近乎零的人工干预促进机器人自我修复。这通过按需生产消除了库存、浪费和国际运输,解决了 15.6 万亿美元的全球制造业市场。

Sui 的拜占庭容错对于安全关键型机器人应用至关重要。共识机制在 3f+1 系统中可容忍多达 f 个故障/恶意机器人,确保自动驾驶车队、仓库机器人和制造系统在单个故障的情况下仍能保持协调。智能合约强制执行安全约束和操作边界,不可变审计追踪为自主决策提供问责制——这些要求是集中式协调服务器(容易出现单点故障)无法满足的。

抗量子路线图提供密码学优势

Sui 的量子计算战略代表了区块链行业唯一全面、主动的方法,与 NIST 要求在 2030 年前淘汰经典算法并在 2035 年前实现完全抗量子标准化的指令保持一致。

Chalkias 于 2025 年 7 月的突破性研究表明,包括 Sui 在内的基于 EdDSA 的链可以在不进行硬分叉、地址变更或账户冻结的情况下,通过证明种子知识的零知识证明实现量子安全钱包升级。这甚至赋能了休眠账户的安全迁移——解决了区块链面临的生存威胁,即一旦量子计算机出现,数百万个钱包“可能瞬间被掏空”。这项技术创新使用 STARK 证明(基于哈希的抗量子安全性)来证明 EdDSA 密钥生成种子的知识,而无需暴露敏感数据,允许用户建立与现有地址绑定的 PQ 密钥所有权。

Sui 的密码学敏捷架构赋能了多种过渡策略:主动式(PQ 密钥在创建时签署 PreQ 公钥)、自适应式(STARK 证明迁移现有地址)和混合式(结合经典和 PQ 密钥的限时多重签名)。该协议支持立即部署 NIST 标准化的算法,包括 CRYSTALS-Dilithium (ML-DSA)、FALCON (FN-DSA) 和 SPHINCS+ (SLH-DSA),以实现基于格和基于哈希的后量子安全性。验证者 BLS 签名过渡到基于格的替代方案,哈希函数从 256 位升级到 384 位输出以实现抗量子碰撞抵抗,zkLogin 电路从 Groth16 迁移到基于 STARK 的零知识证明。

Nautilus 框架于 2025 年 6 月推出,通过自管理 TEE(可信执行环境)提供安全的链下计算,目前支持 AWS Nitro Enclaves,未来将兼容 Intel TDX 和 AMD SEV。对于 AI 应用,Nautilus 赋能了具有链上验证的密码学证明的私人 AI 推理,解决了计算效率和可验证性之间的矛盾。包括 Bluefin(TEE 中基于订单匹配,<1 毫秒)、TensorBlock(AI 代理基础设施)和 OpenGradient 在内的启动合作伙伴展示了隐私保护抗量子计算的生产就绪性。

比较分析显示了 Sui 的量子优势:以太坊仍处于规划阶段,Vitalik Buterin 表示抗量子能力“至少还需要十年”,需要硬分叉和社区共识。Solana 于 2025 年 1 月推出了 Winternitz Vault 作为可选的基于哈希的签名功能,需要用户选择加入,而非全协议范围的实现。其他主要区块链(Aptos、Avalanche、波卡)仍处于研究阶段,没有具体的实施时间表。只有 Sui 将密码学敏捷性设计为基本原则,赋能快速算法过渡,而无需治理斗争或网络分裂。

技术架构综合创造了新兴能力

Sui 的架构组件协同作用,创造出超越单个功能总和的能力——这是真正创新平台与渐进式改进平台之间的区别。

Move 语言资源模型并行对象执行相结合,为 AI 代理群提供了前所未有的吞吐量。使用基于账户模型的传统区块链需要顺序执行以防止竞态条件,将 AI 代理协调限制在单线程瓶颈。Sui 通过对象引用进行显式依赖声明,允许验证者在执行前识别独立操作,同时在 CPU 核心上调度数千个 AI 代理事务。这种状态访问并行化(相对于需要冲突检测的乐观执行)提供了可预测的性能,而不会出现追溯性事务失败——这对于需要可靠性保证的 AI 系统至关重要。

可编程事务块通过在原子事务中赋能多达 1,024 个异构函数调用,增强了 Move 的可组合性。AI 代理可以执行复杂的工作流——交换代币、更新预言机数据、触发机器学习推理、铸造 NFT、发送通知——所有这些都保证同时成功或失败。这种异构组合将逻辑从智能合约转移到事务层面,大大降低了 Gas 成本,同时增加了灵活性。对于机器人技术而言,PTB 赋能了原子多步操作,如“检查库存、订购零件、授权支付、更新状态”,并提供密码学一致性保证。

单所有者对象的共识绕过快速路径创建了一个两层性能模型,完美匹配 AI/机器人访问模式。单个机器人将私有状态(传感器读数、操作参数)作为自有对象维护,并在 250 毫秒内处理,无需验证者共识。协调点(任务队列、资源池)作为共享对象存在,需要 390 毫秒的共识。这种架构反映了现实世界的自主系统,其中代理维护本地状态但通过共享资源进行协调——Sui 的对象模型提供了与这些模式自然匹配的区块链原生原语。

zkLogin 解决了阻碍主流 AI 代理采用的入职摩擦。传统区块链要求用户管理助记词和私钥——这在认知上要求很高且容易出错。zkLogin 赋能通过熟悉的 OAuth 凭证(谷歌、脸书、Twitch)进行身份验证,用户控制的盐值可防止 Web2-Web3 身份关联。AI 代理可以在 Web2 身份验证下运行,同时保持区块链安全性,大大降低了消费者应用程序的门槛。已集成 zkLogin 的 10 多个 DApp 证明了非加密原生受众的实际可行性。

竞争定位揭示技术领先和生态系统增长

对主要区块链(Solana、以太坊、Aptos、Avalanche、波卡)的比较分析揭示了 Sui 在高级计算工作负载方面的技术优势,同时平衡了以太坊的生态系统成熟度和 Solana 当前的 DePIN 采用。

性能指标确立了 Sui 作为吞吐量领导者的地位,在 100 个验证者上测试达到 297,000 TPS,保持 480 毫秒的最终性,而 Solana 的理论 TPS 为 65,000-107,000(持续 3,000-4,000),以太坊的基础层 TPS 为 15-30。Aptos 理论上达到 160,000 TPS,具有相似的基于 Move 的架构但执行模型不同。对于需要实时决策的 AI 工作负载,Sui 的 480 毫秒最终性赋能了即时响应循环,这在以太坊的 12-15 分钟最终性甚至 Solana 偶尔的网络拥堵(2024 年 4 月高峰负载期间 75% 的事务失败)上是不可能实现的。

抗量子能力分析显示 Sui 是唯一从一开始就将抗量子密码学设计到核心架构中的区块链。以太坊在“The Splurge”路线图阶段解决了量子问题,但 Vitalik Buterin 估计到 2030 年量子突破加密技术的可能性为 20%,依赖于被动而非主动的紧急“恢复分叉”计划。Solana 的 Winternitz Vault 提供了可选的量子保护,需要用户选择加入,而不是自动全网络安全。Aptos、Avalanche 和波卡仍处于研究阶段,没有具体的时间表。Sui 的密码学敏捷性,包括多种迁移路径、基于 STARK 的 zkLogin 和符合 NIST 的路线图,使其成为唯一为 2030/2035 年强制性后量子过渡做好准备的区块链。

AI 代理生态系统显示 Solana 目前在采用方面处于领先地位,拥有成熟的工具(SendAI Agent Kit、ElizaOS)和最大的开发者社区,但 Sui 通过 300,000 TPS 容量、亚秒级延迟和 50 多个项目(包括生产平台 Atoma 主网、Talus Nexus、OpenGraph 链上推理)展示了卓越的技术能力。以太坊专注于机构 AI 标准(用于 AI 身份/信任的 ERC-8004),但 15-30 TPS 的基础层将实时 AI 应用限制在 Layer 2 解决方案。阿里云合作将 Sui 定位为 AI 开发平台(而不仅仅是部署平台),这标志着与纯金融区块链的战略差异化。

机器人能力在主要区块链中仅 Sui 独有。没有竞争对手展示多机器人协作基础设施、拜占庭容错协调或“无网络模式”离线操作。Tiger Research 的分析总结道,“鉴于机器人能够利用去中心化协调而无需中心化信任,区块链可能比人类更适合作为机器人的基础设施。”摩根士丹利预测到 2050 年将有 10 亿个人形机器人,Sui 专为机器人打造的基础设施在新兴机器人经济中创造了先发优势,其中自主系统需要身份、支付、合约和协调——Sui 原生提供了这些原语。

Move 编程语言的优势使 Sui 和 Aptos 在需要安全性的复杂应用方面优于基于 Solidity 的链。Move 的资源导向模型防止了 Solidity 中无法修复的漏洞类别,2024 年以太坊因漏洞攻击损失超过 11 亿美元就是明证。形式化验证支持、线性类型系统和一等资产抽象使 Move 特别适合自主管理有价值资产的 AI 代理。Sui Move 的面向对象变体(相对于基于账户的 Diem Move)赋能了 Aptos 无法实现的并行执行优势,尽管它们共享语言遗产。

实际实施验证了技术能力

Sui 的生产部署证明了该平台正在从技术潜力转向 AI、机器人和量子领域的实际应用。

AI 基础设施成熟度显示出明显的吸引力,Atoma Network 于 2024 年 12 月主网上线,提供生产 AI 推理服务;Talus 于 2025 年 2 月部署 Nexus 框架,赋能可组合代理工作流;Swarm Network 获得 1300 万美元融资,由 Kostas Chalkias 支持,在 Sui 上销售了 10,000 多个 AI 代理许可证。阿里云合作通过将 AI 编码助手集成到开发者工具中,提供了企业级验证,展示了超越投机应用的战略承诺。OpenGraph Labs 凭借链上机器学习推理在 Sui AI 台风黑客马拉松中获得第一名,这表明其技术创新得到了专家评委的认可。

制造机器人技术通过 3DOS 在全球 120 多个国家拥有 79,909 台打印机的网络达到了商业规模,服务于美国国家航空航天局、美国海军、美国空军、约翰迪尔和谷歌。这代表了全球最大的区块链集成制造网络,处理了 420 多万个零件,拥有 50 多万用户。赋能机器人自主订购替换零件的点对点模型展示了智能合约自动化,消除了工业规模的协调开销——这一概念验证得到了要求可靠性和安全性的政府和航空航天客户的验证。

财务指标显示出不断增长的采用率,总锁定价值 (TVL) 达到 5.38 亿美元,月活跃钱包达到 1760 万(2025 年 2 月峰值),SUI 代币市值超过 160 亿美元。Mysten Labs 获得了 a16z、币安实验室、Coinbase Ventures 和 Jump Crypto 支持的 30 多亿美元估值——这是对技术潜力的机构验证。瑞士银行(Sygnum、Amina Bank)提供 Sui 托管和交易,提供了传统的金融入口,而 Grayscale、富兰克林邓普顿和 VanEck 的机构产品则标志着主流认可。

开发者生态系统增长通过全面的工具(TypeScript、Rust、Python、Swift、Dart、Golang SDK)、ChainIDE 中的 AI 编码助手以及活跃的黑客马拉松项目(其中 50% 的获奖者专注于 AI 应用)展示了可持续性。主网上 122 个活跃验证者提供了足够的去中心化,同时保持了性能,在安全性和吞吐量之间取得了比高度中心化替代方案更好的平衡。

战略愿景使 Sui 定位为融合时代

Kostas Chalkias 和 Mysten Labs 的领导层阐明了一个连贯的长期愿景,将 Sui 与专注于狭隘用例或渐进式改进的竞争对手区分开来。

Chalkias 大胆预测“最终,区块链在事务速度上将超越 Visa。它将成为常态。我看不出我们如何能摆脱这一点”,这表明对技术轨迹的信心,并由赋能未来的架构决策所支持。他表示 Mysten Labs“可能超越今天的苹果”,这反映了其雄心壮志,即为下一代计算构建基础架构,而不是渐进式的 DeFi 应用。将他的儿子命名为“Kryptos”(希腊语意为“秘密/隐藏”)象征着对密码学创新作为文明基础设施的个人承诺。

三大支柱战略整合了 AI、机器人和量子计算,创造了相互强化的优势。抗量子密码学为自主运行的 AI 代理提供了长期资产安全性。亚秒级最终性支持实时机器人控制循环。并行执行允许数千个 AI 代理同时协调。对象模型为 AI 代理状态和机器人设备表示提供了自然的抽象。这种架构一致性将有目的的平台设计与附加功能区分开来。

Sui Basecamp 2025 技术发布展示了持续创新,包括原生可验证随机性(消除了 AI 推理的预言机依赖)、赋能直接在 Sui 上进行私人视频通话的 zk 隧道、用于紧急情况的零 Gas 费闪电交易以及用于加密未来数据访问的时间胶囊。这些功能解决了实际用户问题(隐私、可靠性、可访问性),而不是学术练习,在需要可信随机性的 AI 代理、需要离线操作的机器人系统以及用于敏感数据的抗量子加密方面具有明确的应用。

将自身定位为从医疗保健数据管理到个人数据所有权再到机器人技术的**“广泛应用的协调层”**,反映了该平台超越金融投机的雄心。Chalkias 将医疗保健数据效率低下识别为需要通用数据库的问题,这表明他正在思考社会基础设施,而不是狭隘的区块链爱好者利基市场。这一愿景吸引了研究实验室、硬件初创公司和政府——这些受众寻求长期项目的可靠基础设施,而不是投机性收益耕作。

技术路线图提供可操作的执行时间表

Sui 的开发路线图提供了具体的里程碑,展示了在所有三个重点领域从愿景到实施的进展。

抗量子时间表与 NIST 指令保持一致:2025-2027 年完成密码学敏捷基础设施和测试,2028-2030 年引入 Dilithium/FALCON 签名的协议升级,并进行 PreQ-PQ 混合操作,2030-2035 年实现完全后量子过渡,淘汰经典算法。多种迁移路径(主动式、自适应式、混合式)为不同的用户群体提供了灵活性,而无需强制采用单一策略。哈希函数升级到 384 位输出和 zkLogin PQ-zkSNARK 研究并行进行,确保全面的量子就绪性,而不是零散的修补。

AI 基础设施扩展显示出明确的里程碑,包括 Walrus 主网上线(2025 年第一季度)为 AI 模型提供去中心化存储,Talus Nexus 框架赋能可组合代理工作流(2025 年 2 月部署),以及 Nautilus TEE 框架扩展到 Intel TDX 和 AMD SEV,超越当前 AWS Nitro Enclaves 支持。阿里云合作路线图包括扩展语言支持、更深入的 ChainIDE 集成以及在香港、新加坡和迪拜针对开发者社区的演示日。OpenGraph 的链上推理浏览器和 TensorflowSui SDK 的成熟为 AI 开发者提供了超越理论框架的实用工具。

机器人能力提升从多机器人协作演示进展到生产部署,包括 3DOS 网络扩展、“无网络模式”无线电波事务能力以及赋能零 Gas 费机器人命令的 zkTunnels。支持拜占庭容错、亚秒级协调循环和自主 M2M 支付的技术架构今天已经存在——采用障碍是教育和生态系统建设,而不是技术限制。NASA、Meta 和 Uber 校友的参与表明了严肃的工程人才正在解决现实世界的机器人挑战,而不是学术研究项目。

协议改进包括 Mysticeti 共识优化,保持 80% 的延迟降低优势,通过 Pilotfish 多机执行实现横向扩展,以及存储优化以应对不断增长的状态。检查点系统(每约 3 秒)为 AI 训练数据和机器人审计追踪提供了可验证的快照。事务大小缩减为单字节预设格式,降低了物联网设备的带宽要求。赞助事务扩展消除了消费者应用程序的 Gas 摩擦,这些应用程序需要无缝的 Web2 类似用户体验。

技术卓越使 Sui 在高级计算领域占据主导地位

对技术架构、领导愿景、实际实施和竞争定位的全面分析表明,Sui 是唯一为 AI、机器人和量子计算融合做好准备的区块链平台。

Sui 通过可衡量的性能指标实现了技术优势:297,000 TPS 和 480 毫秒的最终性超越了所有主要竞争对手,赋能了在较慢链上不可能实现的实时 AI 代理协调和机器人控制。面向对象的数据模型与 Move 语言安全性相结合,提供了编程模型优势,防止了困扰基于账户架构的漏洞类别。从一开始就设计而非改造的密码学敏捷性,赋能了无需硬分叉或治理斗争的抗量子过渡。这些能力今天已在主网上通过 122 个验证者投入生产,而不是理论白皮书或遥远的路线图。

Kostas Chalkias 拥有 50 多篇出版物、8 项美国专利和密码学创新(zkLogin、BPQS、Winterfell STARK、HashWires),通过富有远见的领导力提供了智力基础,使 Sui 与技术上称职但缺乏想象力的竞争对手区分开来。他的量子计算突破性研究(2025 年 7 月)、AI 基础设施支持(Swarm Network 支持)和公开交流(Token 2049、韩国区块链周、London Real)确立了思想领导地位,吸引了顶尖开发者和机构合作伙伴。愿意为 2030 年及以后的时间框架进行架构设计,而不是仅仅关注季度指标,这表明了平台基础设施所需的长期战略思维。

通过生产部署(Atoma 主网 AI 推理、3DOS 79,909 台打印机网络、Talus 代理框架)进行的生态系统验证证明了技术能力转化为实际效用。机构合作(阿里云、瑞士银行托管、Grayscale/富兰克林邓普顿产品)标志着超越区块链原生爱好者的主流认可。开发者增长指标(50% 的黑客马拉松获奖者专注于 AI、全面的 SDK 覆盖、AI 编码助手)展示了支持长期采用的可持续生态系统扩展。

将自身战略定位为机器人经济、抗量子金融系统和自主 AI 代理协调的区块链基础设施,创造了差异化的价值主张,超越了专注于现有区块链用例渐进式改进的竞争对手。摩根士丹利预测到 2050 年将有 10 亿个人形机器人,NIST 要求到 2030 年采用抗量子算法,麦肯锡预测代理 AI 将带来 40% 的生产力提升——Sui 的技术能力与需要去中心化宏观技术趋势精确对齐。

对于在区块链上构建高级计算应用程序的组织而言,Sui 提供了无与伦比的技术能力(297K TPS,480 毫秒最终性)、面向未来的抗量子架构(唯一从一开始就为量子设计区块链)、经过验证的机器人基础设施(唯一展示多机器人协作的区块链)、卓越的编程模型(Move 语言的安全性和表达性)以及赋能 AI/机器人应用程序的实时性能,这些在顺序执行链上是物理上不可能实现的。该平台代表的不是渐进式改进,而是区块链未来十年根本性的架构再思考。

Sui 为自主智能打造的量子就绪基础

· 阅读需 30 分钟
Dora Noda
Software Engineer

Sui 区块链凭借其基础性的密码学敏捷性和以对象为中心的架构,在竞争对手中脱颖而出,使其成为唯一一个同时推进人工智能集成、机器人协调和抗量子安全的主要 Layer 1 区块链。这并非营销定位,而是架构现实。联合创始人兼首席密码学家 Kostas "Kryptos" Chalkias 自 Sui 诞生之初就系统地将这些能力融入其核心设计,创建了他所描述的“速度甚至超越 Visa”的基础设施,同时在未来十年内抵御可能“摧毁所有现代密码学”的量子威胁。

技术基础已准备就绪:390 毫秒的共识最终性实现了实时 AI 代理协调,并行执行在峰值时每秒处理 297,000 笔交易,而 EdDSA 签名方案则提供了一条无需硬分叉即可迁移到后量子密码学的成熟路径。与此同时,比特币和以太坊面临着量子计算带来的生存威胁,且没有向后兼容的升级路径。Chalkias 的愿景围绕三个融合的支柱:AI 作为协调层、需要亚秒级最终性的自主机器人系统,以及在 2035 年及以后仍保持安全的密码学框架。他在会议、研究论文和技术实现中的声明揭示的并非投机性承诺,而是 Mysten Labs 于 2022 年成立时所确立路线图的系统性执行。

这超越了区块链部落主义的范畴。到 2030 年,NIST 强制要求废弃当前的加密标准。从制造机器人到 AI 代理的自主系统将需要大规模的无需信任协调。Sui 的架构同时解决了这两个必然性,而竞争对手则争相改造解决方案。问题不在于这些技术是否会融合,而在于哪些平台能在融合中保持完整。

以“Kryptos”为子命名的密码学家

Kostas Chalkias 为区块链与新兴技术的交叉领域带来了非凡的信誉。在共同创立 Mysten Labs 之前,他曾担任 Meta Diem 项目和 Novi 钱包的首席密码学家,在 R3 的 Corda 区块链与 Mike Hearn(与中本聪相关的比特币首批开发者之一)合作,并拥有基于身份密码学的博士学位,发表了 50 多篇科学论文,拥有 8 项美国专利,并被学术引用 1,374 次。他对该领域的奉献甚至延伸到给儿子取名 Kryptos——“我如此深入地研究区块链和密码学技术,以至于我真的说服了我的妻子生一个名叫 Kryptos 的孩子,”他在 Sui 博客采访中解释道。

他的职业轨迹表明,他始终专注于大规模的实用密码学。在 Facebook,他为 WhatsApp 构建了安全基础设施,并为数十亿用户提供了身份验证系统。在 R3,他为企业区块链开创了零知识证明和后量子签名。他的早期职业生涯包括创立 Betmanager,一个利用股市技术预测足球结果的 AI 平台——这段经历为他目前对区块链-AI 集成的看法提供了信息。这种 AI 经验、生产级密码学和区块链基础设施的结合,使他能够独特地设计连接这些领域的系统。

Chalkias 的技术理念强调“密码学敏捷性”——将灵活性融入基础协议,而不是假设其永久性。在布拉格的 Emergence 大会(2024 年 12 月)上,他阐述了这一世界观:“最终,区块链的交易速度将超越 Visa。这将成为常态。我看不出我们如何能摆脱这一点。”但仅仅速度是不够的。他的工作始终将性能与前瞻性安全性相结合,认识到量子计算机带来的威胁需要今天就采取行动,而不是等到危险真正出现。这种双重关注——当前性能和未来弹性——定义了 Sui 在 AI、机器人和抗量子方面的架构决策。

为智能代理构建的架构

Sui 的技术基础与以太坊和 Solana 等基于账户的区块链根本不同。每个实体都作为一个具有全球唯一 32 字节 ID、版本号、所有权字段和类型化内容的对象存在。这种以对象为中心的模型并非审美偏好,而是实现大规模并行执行的推动力。当 AI 代理作为自有对象运行时,它们完全绕过共识进行单写入操作,实现约 400 毫秒的最终性。当多个代理通过共享对象进行协调时,Sui 的 Mysticeti 共识提供 390 毫秒的延迟——仍然是亚秒级,但通过拜占庭容错协议实现。

Move 编程语言最初由 Meta 为 Diem 开发,并为 Sui 进行了增强,在类型系统层面强制执行资源安全。未经许可,资产不能被意外复制、销毁或创建。对于管理有价值数据或模型权重的 AI 应用程序,这可以防止困扰 Solidity 智能合约的整个漏洞类别。Chalkias 在迪拜的 Sui Basecamp 2025 上强调了这一点:“我们从第一天起就在 Sui 内部引入了零知识证明和隐私保护技术。因此,现在任何人都可以创建一个具有他们所需隐私程度的 KYC 系统。”

并行交易执行通过显式依赖声明达到理论极限。与需要追溯验证的乐观执行不同,Sui 的调度器通过唯一的对象 ID 预先识别不重叠的交易。独立操作在验证器核心上并发执行,互不干扰。该架构在测试中展示了297,000 TPS 的峰值吞吐量——这不是理论最大值,而是在生产硬件上测得的性能。对于 AI 应用程序,这意味着数千个推理请求同时处理,多个自主代理无需阻塞即可协调,并且实时决策以人类可感知的速度运行。

Mysticeti 共识协议于 2024 年推出,实现了 Chalkias 及其合著者在数学上证明的最佳结果:三轮消息即可完成提交。通过消除显式区块认证并实现未经认证的 DAG 结构,Mysticeti 将延迟从之前的 Narwhal-Bullshark 共识减少了 80%。该协议每轮而不是每两轮提交区块,使用源自 DAG 模式的直接和间接决策规则。对于需要实时控制反馈的机器人应用,这种亚秒级最终性变得不可协商。在 2025 年韩国区块链周期间,Chalkias 将 Sui 定位为“应用程序和 AI 的协调层”,强调支付、游戏和 AI 领域的合作伙伴如何利用这一性能基础。

Walrus:解决 AI 的数据问题

AI 工作负载需要与传统区块链经济学不兼容的存储规模。训练数据集跨越 TB 级,模型权重需要 GB 级,推理日志迅速累积。Sui 通过 Walrus 解决此问题,Walrus 是一种去中心化存储协议,使用擦除码实现 4-5 倍的复制,而不是链上存储典型的 100 倍复制。 “Red Stuff”算法将数据分割成碎片,分布在存储节点上,即使 2/3 的节点不可用,数据仍可恢复。元数据和可用性证明存储在 Sui 区块链上,而实际数据驻留在 Walrus 中,从而创建了 PB 级可加密验证的存储。

在 Walrus 测试网的第一个月,网络在25 个以上社区节点上存储了超过 4,343 GB 的数据,验证了该架构的可行性。TradePort、Tusky 和 Decrypt Media 等项目集成了 Walrus 用于媒体存储和检索。对于 AI 应用程序,这实现了实际场景:将训练数据集代币化为可编程资产,许可条款编码在智能合约中;模型权重通过版本控制持久化;推理结果不可变地记录用于审计追踪;以及经济高效地存储 AI 生成内容。Atoma Network 的 AI 推理层作为 Sui 的首个区块链集成合作伙伴,利用这一存储基础进行自动化代码生成、工作流自动化和 DeFi 风险分析。

这种集成超越了存储,延伸到计算编排。Sui 的可编程交易块(PTB)原子性地捆绑多达 1,024 个异构操作,执行全部或不执行任何操作。一个 AI 工作流可以从 Walrus 检索训练数据,在智能合约中更新模型权重,在链上记录推理结果,并向数据贡献者分发奖励——所有这些都在一个原子交易中完成。这种可组合性,结合 Move 的类型安全,为复杂的 AI 系统创建了构建块,而没有其他环境中跨合约调用的脆弱性。

在 Just The Metrics 播客(2025 年 7 月)中,Chalkias 强调能力而非营销,指出“医疗保健数据管理中的低效率”是实际应用领域。医疗保健 AI 需要跨机构协调、敏感数据的隐私保护以及监管合规的可验证计算。Sui 的架构——结合链上协调、Walrus 存储和零知识隐私——从技术层面而非概念层面解决了这些要求。2024 年宣布的 Google Cloud 合作强化了这一方向,将 Sui 数据集成到 BigQuery 进行分析,并使用 Move 语言训练 Google 的 Vertex AI 平台以进行 AI 辅助开发。

当机器人需要亚秒级结算时

机器人愿景通过技术能力而非已宣布的合作关系更具体地实现。Sui 的对象模型将机器人、工具和任务表示为具有细粒度访问控制的一等链上公民。与机器人通过账户级权限进行交互的基于账户的系统不同,Sui 的对象支持从基本操作到具有多重签名要求的完全控制的多级权限系统。PassKeys 和 FaceID 集成支持人机协作场景,而 zkTunnels 则实现无 Gas 的命令传输,用于实时远程操作。

在社交媒体讨论中,Chalkias(以“Kostas Kryptos”身份发帖)透露,来自 NASA、Meta 和 Uber 背景的 Sui 工程师正在网络上测试狗形四足机器人。基于对象的架构适用于机器人协调:每个机器人拥有代表其状态和能力的对象,任务作为具有执行参数的可转移对象存在,资源分配通过对象组合而非集中协调进行。一个制造工厂可以部署机器人群,其中每个单元自主接受任务,通过共享对象与同行协调,通过密码学验证执行操作,并结算所提供服务的微支付——所有这些都无需中央机构或人工干预。

在 Sui Basecamp 2025 和 London Real 播客(2025 年 4 月)中讨论的“无网络”交易模式解决了机器人技术的实际限制。Chalkias 描述了该系统如何在西班牙和葡萄牙停电期间保持功能,交易大小通过预设格式优化到单个字节。对于在灾区、农村地区或连接不可靠环境中运行的自主系统,这种弹性变得至关重要。机器人可以进行点对点交易以实现即时协调,并在连接恢复时与更广泛的网络同步。

3DOS 项目在实践中例证了这一愿景:一个基于区块链的 3D 打印网络,实现按需制造,机器自主打印零件。未来的迭代设想能够检测组件故障、通过智能合约订购替换件、通过链上发现识别附近的 3D 打印机、协调打印和交付以及安装组件的自修复机器人——所有这些都自主进行。这并非科幻小说,而是现有能力的逻辑延伸:ESP32 和 Arduino 微控制器集成已支持基本的物联网设备,BugDar 为机器人智能合约提供安全审计,多重签名批准则为关键操作提供了有人监督的渐进式自主性。

量子时钟正在滴答作响

当讨论量子计算时,Kostas Chalkias 的语气从哲学转向紧迫。在 2025 年 7 月的一份研究报告中,他直言不讳地警告:“各国政府都清楚量子计算带来的风险。全球各机构已发布指令,要求到 2030 年或 2035 年废弃 ECDSA 和 RSA 等经典算法。”他在 Twitter 上的声明伴随着 Mysten Labs 发布到 IACR ePrint Archive 的突破性研究,该研究表明 Sui、Solana、Near 和 Cosmos 等基于 EdDSA 的区块链在量子过渡方面具有比特币和以太坊所不具备的结构优势

这种威胁源于运行 Shor 算法的量子计算机,该算法能有效地分解大数——这是 RSA、ECDSA 和 BLS 密码学背后的数学难题。谷歌拥有 105 个量子比特的 Willow 量子处理器预示着能够破解经典加密的机器正在加速发展。“先存储,后解密”攻击加剧了紧迫性:攻击者今天收集加密数据,等待量子计算机追溯解密。对于区块链资产,Chalkias 向 Decrypt 杂志解释说:“即使有人仍然持有他们的比特币或以太坊私钥,他们也可能无法生成一个后量子安全的拥有权证明,这取决于该密钥最初是如何生成的,以及其相关数据随着时间的推移暴露了多少。”

比特币的特殊脆弱性源于具有暴露公钥的“休眠”钱包。中本聪估计的 100 万枚 BTC 存在于使用“支付到公钥”格式的早期地址中——公钥在链上可见,而不是隐藏在哈希地址后面。一旦量子计算机规模足够大,这些钱包将立即被盗空。Chalkias 的评估是:“一旦量子计算机到来,包括中本聪在内的数百万个钱包可能会立即被盗空。如果你的公钥是可见的,它最终会被破解。”以太坊面临类似的挑战,尽管暴露的公钥较少,这减轻了即时风险。两条链都需要社区范围内的硬分叉,并进行前所未有的协调才能迁移——前提是围绕后量子算法形成共识。

Sui 的 EdDSA 基础提供了一条优雅的逃生路径。与 ECDSA 的随机私钥不同,EdDSA 根据 RFC 8032 使用哈希函数从种子确定性地派生密钥。这种结构差异使得通过 zk-STARKs(它们是后量子安全的)进行零知识证明成为可能,从而证明对底层种子的了解,而无需暴露椭圆曲线数据。用户从相同的种子随机性构建后量子密钥对,提交 ZK 证明以展示相同的拥有权,并在保留地址的同时过渡到量子安全方案——无需硬分叉。Chalkias 在 2022 年 6 月的 Sui AMA 中详细阐述了这一点:“如果你使用确定性算法,例如 EdDSA,那么有一种方法可以使用 Stark 证明来证明你在 EdDSA 密钥生成中对私钥金字塔的了解,因为它内部使用了哈希函数。”

密码学敏捷性作为战略护城河

Sui 通过代码库中统一的类型别名同时支持多种签名方案——EdDSA (Ed25519)、ECDSA(用于以太坊兼容性)以及计划中的后量子算法。Chalkias 设计了这种“密码学敏捷性”,认识到密码学中的永久性是幻想。该架构类似于“更换锁芯”,而不是重建整个安全系统。当 NIST 推荐的后量子算法部署时——用于签名的 CRYSTALS-Dilithium、用于紧凑替代方案的 FALCON、用于基于哈希方案的 SPHINCS+——Sui 通过直接更新而不是基础协议重写来集成它们。

过渡策略平衡了主动和适应性方法。对于新地址,用户可以生成 PQ-signs-PreQ 配置,其中后量子密钥在创建时签署前量子公钥,从而实现未来平稳迁移。对于现有地址,zk-STARK 证明方法在保留地址的同时证明量子安全所有权。分层防御优先保护高价值数据——钱包私钥立即获得 PQ 保护,而临时隐私数据则遵循较慢的升级路径。哈希函数输出从 256 位扩展到 384 位,以抵抗 Grover 算法的碰撞,对称加密密钥长度加倍(AES 在密钥更大时仍具有抗量子性)。

零知识证明系统需要仔细考虑。Groth16 等线性 PCP(目前为 zkLogin 提供支持)依赖于易受量子攻击的配对友好椭圆曲线。Sui 的过渡路线图转向基于哈希的 STARK 系统——由 Mysten Labs 共同开发的 Winterfell 仅使用哈希函数,并被认为具有后量子安全性。zkLogin 迁移在更新内部电路的同时保持相同的地址,需要与采用 PQ-JWT 令牌的 OpenID 提供商进行协调。随机信标和分布式密钥生成协议从阈值 BLS 签名过渡到基于格的替代方案,如 HashRand 或 HERB 方案——这些内部协议更改对链上 API 不可见。

Chalkias 的专业知识在这里至关重要。作为 **BPQS(区块链后量子签名,XMSS 基于哈希方案的变体)**的作者,他带来了超越理论知识的实现经验。他 2022 年 6 月的承诺被证明是具有先见之明的:“我们将以一种方式构建我们的链,让人们只需轻触按钮即可实际迁移到后量子密钥。”NIST 的截止日期——2030 年废弃经典算法,2035 年完全采用 PQ——极大地压缩了时间表。Sui 的领先优势使其处于有利地位,但 Chalkias 强调紧迫性:“如果你的区块链支持主权资产、加密国家金库、ETF 或 CBDC,那么如果你的社区关心长期信誉和大规模采用,它很快就需要采用后量子密码标准。”

AI 代理已创造 18 亿美元价值

生态系统正从基础设施转向生产应用。Dolphin Agent (DOLA) 专注于区块链数据跟踪和分析,实现了超过 18 亿美元的市值——验证了对 AI 增强区块链工具的需求。SUI Agents 提供一键式 AI 代理部署,包括 Twitter 角色创建、代币化和在去中心化生态系统内的交易。Sentient AI 筹集了 150 万美元用于利用 Sui 的安全性和可扩展性的对话式聊天机器人。DeSci Agents 通过 24/7 全天候 AI 驱动的互动推广 Epitalon 和 Rapamycin 等科学化合物,通过代币配对连接研究和投资。

Atoma Network 作为 Sui 的首个区块链 AI 推理合作伙伴,其集成实现了自动化代码生成和审计、工作流自动化、DeFi 风险分析、游戏资产生成、社交媒体内容分类和 DAO 管理等功能。此次合作选择反映了技术要求:Atoma 需要低延迟以实现交互式 AI、高吞吐量以实现规模化、AI 资产的安全所有权、可验证计算、经济高效的存储以及隐私保护选项。Sui 满足了所有这六项要求。在 Sui Basecamp 2025 期间,Chalkias 强调了 Aeon、Atoma 的 AI 代理以及 Nautilus 在可验证链下计算方面的工作等项目,作为“Sui 如何成为下一波智能去中心化系统基础”的例子。

Google Cloud 合作通过 BigQuery 访问 Sui 区块链数据进行分析、Vertex AI 基于 Move 编程语言进行 AI 辅助开发训练、使用 OAuth 凭证(Google)支持 zkLogin 以简化访问,以及支持网络性能和可扩展性的基础设施,深化了集成。阿里云的 ChainIDE 集成实现了 Move 代码生成的自然语言提示——开发者可以用英语、中文或韩语编写“创建一个年化收益率为 10% 的质押合约”,即可获得语法正确、有文档记录且经过安全检查的 Move 代码。这种 AI 辅助开发在保持 Move 安全保证的同时,使区块链构建民主化。

这些技术优势对 AI 应用而言是复合的。对象所有权模型适用于独立运行的自主代理。并行执行支持数千个同时进行的 AI 操作而互不干扰。亚秒级最终性支持交互式用户体验。Walrus 存储经济高效地处理训练数据集。赞助交易消除了用户的 Gas 摩擦。zkLogin 消除了助记词障碍。可编程交易块原子性地编排复杂工作流。形式化验证选项在数学上证明 AI 代理的正确性。这些并非孤立的功能,而是构成连贯开发环境的集成能力。

竞争者对比

Sui 的 297,000 TPS 峰值和 390 毫秒共识延迟在数量级上超越了以太坊平均 11.3 TPS 和 12-13 分钟的最终性。与 Solana(其最接近的性能竞争对手)相比,Sui 实现了快 32 倍的最终性(0.4 秒对比 12.8 秒),尽管 Solana 的槽时间为 400 毫秒,但 Solana 需要多次确认才能达到经济最终性。Phoenix Group 2025 年 8 月的真实世界测量报告显示,Sui 处理 3,900 TPS,而 Solana 为 92.1 TPS,这反映的是实际运行性能而非理论性能。Sui 上的交易成本保持可预测的低水平(平均约 0.0087 美元,不到一美分),且没有 Solana 历史上的拥堵和中断问题。

架构差异解释了性能差距。Sui 的以对象为中心模型实现了固有的并行化——每秒 300,000 次简单传输不需要共识协调。以太坊和比特币通过完整共识顺序处理每笔交易。Solana 通过 Sealevel 实现并行化,但使用需要追溯验证的乐观执行。同样使用 Move 语言的 Aptos 实现了 Block-STM 乐观执行,而不是 Sui 的状态访问方法。对于需要可预测低延迟的 AI 和机器人应用,Sui 的显式依赖声明提供了乐观方法无法保证的确定性。

量子定位的差异更为显著。比特币和以太坊使用 secp256k1 ECDSA 签名,没有向后兼容的升级路径——量子过渡需要硬分叉、地址更改、资产迁移以及可能导致链分裂的社区治理。Solana 拥有与 Sui 相同的 EdDSA 优势,支持类似的 zk-STARK 过渡策略,并引入了基于 Winternitz Vault 哈希的一次性签名。Near 和 Cosmos 也受益于 EdDSA。Aptos 使用 Ed25519,但其量子就绪路线图发展较少。Chalkias 2025 年 7 月的研究论文明确指出,这些发现“适用于 Sui、Solana、Near、Cosmos 和其他基于 EdDSA 的链,但不适用于比特币和以太坊。”

生态系统成熟度暂时有利于竞争对手。Solana 于 2020 年推出,拥有成熟的 DeFi 协议、NFT 市场和开发者社区。以太坊于 2015 年推出,在智能合约、机构采用和网络效应方面具有先发优势。Sui 于 2023 年 5 月推出——仅两年半——拥有超过 20 亿美元的总锁定价值(TVL)和 6.59 万活跃地址,增长迅速,但远低于 Solana 的 1610 万。技术优势创造了机会:今天在 Sui 上开发的开发者正为生态系统增长做准备,而不是加入成熟、拥挤的平台。Chalkias 在 London Real 采访中表达了这种信心:“老实说,如果 Mysten Labs 及其所触及的一切超越今天的苹果,我一点也不会感到惊讶。”

看似不同愿景之间的协同作用

AI、机器人和抗量子叙事看似不相关,直到认识到它们的技术相互依赖性。AI 代理需要低延迟和高吞吐量——Sui 两者兼备。机器人协调需要没有中央机构的实时操作——Sui 的对象模型和亚秒级最终性提供了这一点。后量子安全需要密码学灵活性和前瞻性架构——Sui 从一开始就构建了这些。这些不是独立的产品线,而是 2030-2035 年技术格局的统一技术要求。

考虑自主制造:AI 系统分析需求预测和材料可用性,确定最佳生产计划。机器人代理通过区块链协调接收经过验证的指令,确保真实性而无需集中控制。每个机器人作为自有对象并行处理任务,必要时通过共享对象进行协调。微支付即时结算所提供的服务——机器人 A 向机器人 B 提供材料,机器人 B 为机器人 C 处理组件。系统在连接中断期间无网络运行,并在网络恢复时同步。至关重要的是,所有通信通过后量子密码方案保持对量子对手的安全,保护知识产权和操作数据免受“先存储,后解密”攻击。

医疗保健数据管理是另一个融合的例子。AI 模型在 Walrus 中存储的医疗数据集上进行训练,并附带密码学可用性证明。零知识证明在保护患者隐私的同时促进研究。机器人手术系统通过区块链进行协调,以实现审计追踪和责任文档。后量子加密保护敏感医疗记录免受长期威胁。协调层(Sui 的区块链)实现了无需信任的机构数据共享、不损害隐私的 AI 计算以及无需定期更换基础设施的未来安全。

Chalkias 在 Sui Basecamp 2025 期间的愿景声明抓住了这种综合:将 Sui 定位为“下一波智能、去中心化系统的基础”,并“不断增长地支持 AI 原生和计算密集型应用”。模块化架构——Sui 用于计算,Walrus 用于存储,Scion 用于连接,zkLogin 用于身份——创建了团队成员所描述的“区块链操作系统”,而不是狭隘的金融账本。无网络模式、量子安全密码学和亚秒级最终性并非功能清单,而是在对抗性环境和不可靠基础设施中运行的自主系统的先决条件。

技术领先背后的创新方法论

理解 Mysten Labs 的方法可以解释其执行的一致性。Chalkias 在他的“Build Beyond”博客文章中阐述了这一理念:“Mysten Labs 非常擅长在没有人实现过的领域中发现新理论,其中一些假设可能不准确。但我们将其与我们现有的技术相结合,最终,这推动我们创造出一种新颖的产品。”这描述了一个系统化的过程:识别具有实际潜力的学术研究,通过严格的工程实践挑战未经测试的假设,与生产系统集成,并通过部署进行验证。

Mysticeti 共识协议就是例证。学术研究确立了三轮消息作为拜占庭共识提交的理论最小值。以前的实现需要每区块 1.5 次往返和法定签名。Mysten Labs 设计了未经认证的 DAG 结构,消除了显式认证,通过 DAG 模式而非投票机制实现了最佳提交规则,并展示了与之前的 Narwhal-Bullshark 共识相比 80% 的延迟降低。结果是:一篇经过同行评审的论文,附有形式化证明,并伴随着处理数十亿笔交易的生产部署。

类似的方法论也适用于密码学。BPQS(Chalkias 的区块链后量子签名方案)针对区块链约束调整了 XMSS 基于哈希的签名。Winterfell 实现了第一个仅使用哈希函数进行后量子安全的开源 STARK 证明器。zkLogin 将 OAuth 身份验证与零知识证明相结合,在消除额外受信任方的同时保护隐私。每项创新都通过新颖的密码学构造并辅以形式化分析,解决了实际障碍(后量子安全性、ZK 证明可访问性、用户入职摩擦)。

团队构成强化了这一能力。来自 Meta 的工程师为数十亿用户构建了身份验证系统,来自 NASA 的工程师开发了安全关键型分布式系统,来自 Uber 的工程师在全球范围内扩展了实时协调。Chalkias 带来了来自 Facebook/Diem、R3/Corda 和学术研究的密码学专业知识。这并非传统的初创团队边学边做,而是经验丰富的专家执行他们以前构建过的系统,现在不受公司优先事项的限制。来自 a16z、Coinbase Ventures 和 Binance Labs 的 3.36 亿美元资金反映了投资者对执行能力而非投机技术的信心。

炒作之外的挑战与考量

技术优势并不能保证市场采用——这是技术史上反复吸取的教训。Sui 的6.59 万活跃地址与 Solana 的 1610 万相比显得苍白无力,尽管其技术可能更优。网络效应是复合的:开发者在用户聚集的地方构建,用户在应用存在的地方到来,为成熟平台创造了锁定优势。以太坊“更慢且昂贵”的区块链通过其纯粹的现有地位,获得了比技术上更优的替代方案高出几个数量级的开发者关注度。

“区块链操作系统”的定位存在稀释风险——试图同时在金融、社交应用、游戏、AI、机器人、物联网和去中心化存储等所有领域都表现出色,可能导致所有领域都平庸,而非在一个领域做到卓越。注意到这一担忧的批评者指出,机器人部署仅限于概念验证,AI 项目主要处于投机阶段而非生产实用阶段,以及量子安全准备应对五到十年后的威胁。反驳观点认为,模块化组件能够实现专注开发——构建 AI 应用的团队使用 Atoma 推理和 Walrus 存储,而无需关注机器人集成。

后量子密码学引入了不可忽视的开销。CRYSTALS-Dilithium 签名在安全级别 2 下测量为 3,293 字节,而 Ed25519 为 64 字节——大 50 多倍。网络带宽、存储成本和处理时间按比例增加。与经典方案的高效批处理相比,批验证的改进仍然有限(相对于独立验证,速度提升 20-50%)。迁移风险包括过渡期间的用户错误、生态系统参与者(钱包、dApp、交易所)之间的协调、向后兼容性要求,以及在没有真实量子计算机的情况下难以进行大规模测试。时间线的不确定性加剧了规划挑战——量子计算进展仍然不可预测,NIST 标准不断演变,并且可能会出现针对 PQ 方案的新密码分析攻击。

市场时机可能是最大的风险。Sui 的优势在 2030-2035 年期间最为显著:当量子计算机威胁经典密码学时,当自主系统激增需要无需信任的协调时,当 AI 代理管理需要安全基础设施的巨大经济价值时。如果区块链采用在此融合之前停滞不前,技术领先地位将变得无关紧要。反之,如果采用更快爆发,Sui 较新的生态系统可能缺乏应用和流动性来吸引用户,尽管其性能优越。投资论点不仅需要相信 Sui 的技术,还需要相信区块链成熟与新兴技术采用之间的时机契合。

基于第一性原理的十年赌注

Kostas Chalkias 给儿子取名 Kryptos 并非迷人的轶事,而是其承诺深度的标志。他的职业轨迹——从 AI 研究到密码学,从学术出版到 Meta 的生产系统,从 R3 的企业区块链到 Mysten Labs 的 Layer 1 架构——都表明他始终专注于大规模的基础技术。抗量子工作在谷歌宣布 Willow 之前就开始了,当时后量子密码学似乎只是理论上的担忧。机器人集成在 AI 代理获得数十亿美元估值之前就开始了。实现这些能力的架构决策早于市场对其重要性的认识。

这种前瞻性导向与加密领域常见的反应式开发形成对比。以太坊在部署后引入 Layer 2 Rollup 以解决出现的扩展瓶颈。Solana 实施 QUIC 通信和基于权益的 QoS 以应对网络中断和拥堵。比特币在交易费用飙升时讨论区块大小增加和闪电网络采用。Sui 在主网启动之前就设计了并行执行、以对象为中心的数据模型和密码学敏捷性——解决的是预期需求而非已发现的问题。

研究文化强化了这种方法。Mysten Labs 在宣称能力之前会发布带有形式化证明的学术论文。Mysticeti 共识论文出现在同行评审的期刊上,附有正确性证明和性能基准。提交给 IACR ePrint Archive 的量子过渡研究通过数学构造而非营销声明展示了 EdDSA 的优势。zkLogin 论文(arXiv 2401.11735)在部署前详细介绍了零知识认证。Chalkias 积极维护 GitHub 贡献 (kchalkias),在 LinkedIn 和 Twitter 上发布技术见解,在 PQCSA 研讨会上介绍量子威胁,并与密码学社区进行实质性互动,而不是仅仅推广 Sui。

最终的验证将在 5-10 年后到来,届时量子计算机成熟,自主系统普及,AI 代理管理着万亿美元经济。如果 Sui 始终如一地执行其路线图——在 2030 年 NIST 截止日期前部署后量子签名,大规模展示机器人协调,并支持处理数百万请求的 AI 推理层——它将成为重塑文明的技术基础设施层。如果量子计算机比预期晚到,自主采用停滞,或者竞争对手成功改造解决方案,Sui 的早期投资可能被证明为时过早。赌注的中心不在于技术能力——Sui 确实提供了承诺的性能——而在于市场时机和问题的紧迫性。

Chalkias 在 Emergence 大会上的观点简洁地概括了这一点:“最终,区块链的交易速度将超越 Visa。这将成为常态。我看不出我们如何能摆脱这一点。”这种必然性主张假设了正确的技术方向、足够的执行质量和恰当的时机。如果这些假设成立,Sui 将抓住机遇。以对象为中心的架构、密码学敏捷性、亚秒级最终性以及系统化的研究方法并非改造,而是为未来十年新兴技术格局而设计的基石选择。无论 Sui 能否占据市场领导地位,或者这些能力是否成为所有区块链的标配,Kostas Chalkias 和 Mysten Labs 都在为量子时代的自主智能构建基础设施——一次一个密码学原语,一次一毫秒的延迟减少,一次一个概念验证机器人。

去中心化 AI 推理市场:Bittensor、Gensyn 与 Cuckoo AI

· 阅读需 79 分钟
Dora Noda
Software Engineer

引言

去中心化 AI 推理/训练市场旨在以无需信任的方式利用全球计算资源和社区模型。像 BittensorGensynCuckoo Network (Cuckoo AI) 这样的项目展示了区块链技术如何为开放的 AI 市场提供动力。每个平台都将关键的 AI 资产——计算能力、机器学习模型,有时还包括数据——代币化为链上经济单位。在下文中,我们将深入探讨支撑这些网络的技术架构、它们如何将资源代币化、它们的治理和激励结构、跟踪模型所有权的方法、收入分成机制,以及由此产生的攻击面(例如女巫攻击、合谋、搭便车、投毒)。文末的对比表格总结了 Bittensor、Gensyn 和 Cuckoo AI 在所有关键维度上的表现。

技术架构

Bittensor:基于子网的去中心化“神经互联网”

Bittensor 构建在一个自定义的 Layer-1 区块链(Subtensor 链,基于 Substrate)之上,该区块链协调着一个由分布在多个专业子网中的 AI 模型节点组成的网络。每个子网都是一个独立的迷你网络,专注于特定的 AI 任务(例如,一个子网用于语言生成,另一个用于图像生成等)。Bittensor 的参与者扮演着不同的角色:

  • 矿工 – 他们在自己的硬件上运行机器学习模型,并为子网的任务提供推理答案(甚至执行训练)。本质上,矿工是一个托管 AI 模型的节点,负责回答查询。
  • 验证者 – 他们用提示查询矿工的模型,并评估响应的质量,从而判断哪些矿工贡献了有价值的结果。验证者有效地对矿工的表现进行评分。
  • 子网所有者 – 他们创建和定义子网,设定该子网中执行任务和进行验证的规则。例如,子网所有者可以指定一个子网用于某个特定的数据集或模态,并定义验证程序。
  • 委托人 – 不运行节点的代币持有者可以将其 Bittensor 代币 (TAO) 委托(质押)给矿工或验证者,以支持表现最佳者并赚取一部分奖励(类似于权益证明网络中的质押)。

Bittensor 的共识机制是新颖的:它不使用传统的区块验证,而是采用 Yuma 共识,这是一种“智能证明”的形式。在 Yuma 共识中,验证者对矿工的评估在链上聚合,以确定奖励分配。每 12 秒一个区块,网络会铸造新的 TAO 代币,并根据验证者对哪些矿工提供了有用工作的共识进行分配。验证者的分数通过一种权益加权的中位数方案进行组合:离群的意见被剔除,诚实的多数意见占主导。这意味着,如果大多数验证者都认为某个矿工是高质量的,那么该矿工将获得丰厚的奖励;如果一个验证者的意见与其他验证者相差甚远(可能是由于合谋或错误),该验证者将因赚取较少奖励而受到惩罚。通过这种方式,Bittensor 的区块链协调了一个矿工-验证者反馈循环:矿工竞争产生最佳的 AI 输出,验证者则策划和排名这些输出,双方都能根据其增加的价值按比例赚取代币。这种架构通常被描述为“去中心化的神经网络”或“全球大脑”,其中模型相互学习信号并共同进化。值得注意的是,Bittensor 最近升级了其链以支持 EVM 兼容性(用于智能合约),并引入了 dTAO,一个子网特定代币和质押系统(稍后解释),以进一步去中心化资源分配的控制。

Gensyn:无需信任的分布式计算协议

Gensyn 从分布式计算协议的角度切入去中心化 AI,专注于机器学习。其架构连接了拥有 AI 任务(如训练模型或运行推理作业)的开发者(提交者)与全球拥有闲置 GPU/TPU 资源的计算提供者(解决者)。最初,Gensyn 计划建立一个 Substrate L1 链,但后来转向在以太坊上构建一个 rollup,以获得更强的安全性和流动性。因此,Gensyn 网络是一个以太坊 Layer-2(一个以太坊 rollup),负责协调作业发布和支付,而计算则在提供者的硬件上离线进行。

Gensyn 设计的一个核心创新是其链下工作验证系统。Gensyn 结合使用**乐观验证(欺诈证明)**和密码学技术,以确保当解决者声称已运行训练/推理任务时,结果是正确的。实际上,该协议涉及多个参与者角色:

  • 提交者 – 请求作业的一方(例如,需要训练模型的人)。他们支付网络费用,并提供模型/数据或任务规范。
  • 解决者 – 竞标并在其硬件上执行机器学习任务的节点。他们会按要求训练模型或运行推理,然后提交结果和计算证明。
  • 验证者/挑战者 – 可以审计或抽查解决者工作的节点。Gensyn 实现了一种类似 Truebit 的方案,默认情况下接受解决者的结果,但如果验证者怀疑计算不正确,可以在一个时间窗口内提出挑战。在挑战中,会使用一种交互式的“二分查找”来遍历计算步骤(一种欺诈证明协议),以精确定位任何差异。这使得链上只需执行计算中最小的关键部分即可解决争议,而无需重新进行整个昂贵的任务。

至关重要的是,Gensyn 的设计旨在避免朴素方法带来的巨大冗余。Gensyn 的**“学习证明”方法不让许多节点都重复相同的机器学习作业(这会破坏成本节约),而是使用训练元数据来验证学习取得了进展。例如,解决者可能会提供中间模型权重的加密哈希或检查点,以及一个简洁的证明,表明这些权重根据训练更新取得了进展。这种概率性的学习证明可以比重新运行整个训练便宜得多地进行检查,从而实现无需完全复制的无需信任验证。只有当验证者检测到异常时,才会触发更繁重的链上计算作为最后手段。与暴力验证相比,这种方法大大减少了开销,使去中心化机器学习训练变得更加可行。因此,Gensyn 的架构非常强调加密经济博弈设计**:解决者需要质押或提供保证金,如果他们作弊(提交错误结果),他们将失去那笔质押金,而抓住他们的诚实验证者将获得这笔钱。通过将区块链协调(用于支付和争议解决)与链下计算和巧妙的验证相结合,Gensyn 创建了一个机器学习计算市场,可以利用任何地方的闲置 GPU,同时保持无需信任。其结果是一个超大规模的“计算协议”,任何开发者都可以按需访问经济实惠的、全球分布式的训练能力。

Cuckoo AI:全栈式去中心化 AI 服务平台

Cuckoo Network(或 Cuckoo AI)采用了一种更加垂直整合的方法,旨在提供端到端的去中心化 AI 服务,而不仅仅是原始计算能力。Cuckoo 构建了自己的区块链(最初是在 Arbitrum Orbit 上称为 Cuckoo Chain 的 Layer-1,这是一个与以太坊兼容的 rollup 框架)来协调一切:它不仅将作业与 GPU 匹配,还在一个系统中托管 AI 应用程序并处理支付。其设计是全栈式的:它将区块链计算AI 应用这三个层次整合在一个平台内。

Cuckoo 的参与者分为四组:

  • AI 应用构建者(协调者) – 这些是将 AI 模型或服务部署到 Cuckoo 上的开发者。例如,一个开发者可能会托管一个 Stable Diffusion 图像生成器或一个 LLM 聊天机器人作为服务。他们运行协调者节点,负责管理他们的服务:接受用户请求,将其拆分为任务,并将这些任务分配给矿工。协调者质押原生代币($CAI)以加入网络并获得利用矿工的权利。他们实际上充当了连接用户和 GPU 提供者的第二层协调者。
  • GPU/CPU 矿工(任务节点) – 这些是资源提供者。矿工运行 Cuckoo 任务客户端,并贡献他们的硬件来为 AI 应用执行推理任务。例如,一个矿工可能会被协调者分配一个图像生成请求(带有给定的模型和提示),并使用他们的 GPU 计算结果。矿工也必须质押 $CAI 以确保承诺和良好行为。他们为正确完成的每个任务赚取代币奖励。
  • 终端用户 – AI 应用程序的消费者。他们通过 Cuckoo 的门户网站或 API 进行交互(例如,通过 CooVerse 生成艺术作品或与 AI 人物聊天)。用户可以为每次使用支付加密货币,或者可能贡献自己的计算能力(或质押)来抵消使用成本。一个重要的方面是抗审查性:如果一个协调者(服务提供者)被封锁或宕机,用户可以切换到另一个提供相同应用程序的协调者,因为在去中心化网络中,多个协调者可以托管相似的模型。
  • 质押者(委托人) – 不运行 AI 服务或挖矿硬件的社区成员仍然可以通过在运行这些服务的人身上质押 $CAI 来参与。通过用他们的质押投票给受信任的协调者或矿工,他们帮助建立声誉,并作为回报获得一部分网络奖励。这种设计构建了一个 Web3 声誉层:好的参与者吸引更多的质押(从而获得信任和奖励),而坏的参与者则失去质押和声誉。甚至终端用户在某些情况下也可以质押,使他们与网络的成功保持一致。

Cuckoo 链(目前正从一个独立的链过渡到一个共享安全的 rollup)跟踪所有这些交互。当用户调用一个 AI 服务时,协调者节点为矿工创建链上任务分配。矿工在链下执行任务并将结果返回给协调者,协调者验证它们(例如,检查输出的图像或文本不是乱码)并将最终结果交付给用户。区块链处理支付结算:对于每个任务,协调者的智能合约以 $CAI 支付给矿工(通常将微支付聚合成每日支付)。Cuckoo 强调无需信任和透明度——所有参与者都质押代币,所有任务的分配和完成都被记录下来,因此作弊行为会因失去质押的威胁和性能的公开可见性而受到抑制。网络的模块化设计意味着可以轻松添加新的 AI 模型或用例:虽然它以文本到图像生成作为概念验证开始,但其架构足够通用,可以支持其他 AI 工作负载(例如,语言模型推理、音频转录等)。

Cuckoo 架构的一个显著特点是,它最初推出了自己的 Layer-1 区块链,以最大化 AI 交易的吞吐量(在测试期间达到每日 30 万笔交易的峰值)。这允许为 AI 任务调度进行自定义优化。然而,团队发现维护一个独立的 L1 成本高昂且复杂,截至 2025 年中期,他们决定弃用自定义链并迁移到以太坊上的 rollup/AVS(主动验证服务)模型。这意味着 Cuckoo 将从以太坊或像 Arbitrum 这样的 L2 继承安全性,而不是运行自己的共识,但将继续在该共享安全层上运营其去中心化 AI 市场。这一改变旨在提高经济安全性(利用以太坊的稳健性),并让 Cuckoo 团队专注于产品而非底层的链维护。总而言之,Cuckoo 的架构创建了一个去中心化的 AI 服务平台,任何人都可以在其中接入硬件或部署 AI 模型服务,全球用户可以以更低的成本和更少对大型科技基础设施的依赖来访问 AI 应用。

资产代币化机制

这些网络的一个共同主题是将计算、模型和数据转换为可以在链上交易或货币化的资产或经济单位。然而,每个项目都以不同的方式专注于将这些资源代币化:

  • 计算能力: 所有三个平台都将计算工作转化为奖励代币。在 Bittensor 中,有用的计算(由矿工完成的推理或训练)通过验证者评分量化,并在每个区块中以 TAO 代币进行奖励。本质上,Bittensor“衡量”贡献的智能,并铸造 TAO 作为代表该贡献的商品。Gensyn 明确将计算视为一种商品——其协议创建了一个市场,其中 GPU 时间是产品,价格由代币的供需决定。开发者使用代币购买计算,提供者通过出售其硬件周期来赚取代币。Gensyn 团队指出,任何数字资源(计算、数据、算法)都可以以类似的无需信任的市场方式进行表示和交易。Cuckoo 通过 ERC-20 代币 $CAI 将计算代币化,作为完成任务的支付。GPU 提供者基本上通过进行 AI 推理工作来“挖掘”CAI。Cuckoo 的系统创建了任务的链上记录,因此可以将每个完成的 GPU 任务视为一个以代币支付的原子工作单元。这三个平台的前提都是,原本闲置或无法访问的计算能力变成了一种代币化的、流动的资产——无论是通过协议级别的代币发行(如 Bittensor 和早期的 Cuckoo)还是通过计算作业的买卖订单开放市场(如 Gensyn)。

  • AI 模型: 将 AI 模型表示为链上资产(例如 NFT 或代币)仍处于初级阶段。Bittensor 将模型本身代币化——模型仍然由矿工在链下拥有。相反,Bittensor 通过奖励表现良好的模型来间接为模型定价。实际上,模型的“智能”被转化为 TAO 收益,但没有一个 NFT 代表模型权重或允许他人使用该模型。Gensyn 的重点是计算交易,而不是明确为模型创建代币。在 Gensyn 中,模型通常由开发者在链下提供(可能是开源或专有的),由解决者训练,然后返回——没有内置机制来创建一个拥有该模型或其 IP 的代币。(也就是说,如果各方选择,Gensyn 市场可能可以促进模型工件或检查点的交易,但协议本身将模型视为计算的内容,而不是代币化资产。)Cuckoo 介于两者之间:它提到了“AI 代理”和集成到网络中的模型,但目前没有代表每个模型的非同质化代币。相反,模型由应用构建者部署,然后通过网络提供服务。该模型的使用权被隐式代币化,因为当模型被使用时(通过部署它的协调者),它可以赚取 $CAI。所有三个平台都承认模型代币化的概念——例如,通过代币让社区拥有模型——但实际实现有限。作为一个行业,将 AI 模型代币化(例如,作为具有所有权和利润分享的 NFT)仍在探索中。Bittensor 的模型相互交换价值的方法是一种*“模型市场”*的形式,但没有为每个模型明确的代币。Cuckoo 团队指出,去中心化的模型所有权有望降低与中心化 AI 相比的门槛,但这需要有效的方法来验证链上的模型输出和使用情况。总而言之,计算能力现在被立即代币化(为完成的工作支付代币是直接的),而模型则是间接或有抱负地被代币化(因其输出而获得奖励,可能由质押或声誉代表,但尚未在这些平台上被视为可转让的 NFT)。

  • 数据: 数据代币化仍然是最困难的。Bittensor、Gensyn 或 Cuckoo 都没有完全集成的通用链上数据市场(其中数据集以可强制执行的使用权进行交易)。Bittensor 节点可能会在各种数据集上进行训练,但这些数据集不是链上系统的一部分。Gensyn 可能允许开发者提供一个用于训练的数据集,但协议不会将该数据代币化——它只是在链下提供给解决者使用。Cuckoo 同样不将用户数据代币化;它主要以短暂的方式处理数据(如用户提示或输出)以进行推理任务。Cuckoo 的博客明确指出,“去中心化数据仍然难以代币化”,尽管它是一种关键资源。数据是敏感的(隐私和所有权问题),并且难以用当前的区块链技术处理。因此,虽然计算正在商品化,模型也开始如此,但数据在很大程度上仍然停留在链下,除非是特殊情况(这三个项目之外的一些项目正在试验数据联盟和数据贡献的代币奖励,但这超出了我们当前的范围)。总而言之,计算能力在这些网络中现在是一种链上商品,模型通过代币进行估值,但尚未作为资产单独代币化,而数据代币化仍然是一个悬而未决的问题(除了承认其重要性之外)。

治理与激励

一个稳健的治理和激励设计对于这些去中心化 AI 网络自主、公平地运作至关重要。在这里,我们审视每个平台如何自我治理(谁做决策,如何进行升级或参数更改),以及它们如何通过代币经济学来协调参与者的激励。

  • Bittensor 治理: 在早期阶段,Bittensor 的开发和子网参数主要由核心团队和主子网上的一组 64 个“根”验证者控制。这是一个中心化点——少数强大的验证者对奖励分配有巨大的影响力,导致了一些人所说的*“寡头投票系统”*。为了解决这个问题,Bittensor 在 2025 年引入了 dTAO(去中心化 TAO)治理。dTAO 系统将资源分配转变为市场驱动和社区控制。具体来说,TAO 持有者可以将其代币质押到子网特定的流动性池中(本质上,他们“投票”决定哪些子网应该获得更多的网络发行),并收到代表这些子网池所有权的 alpha 代币。吸引更多质押的子网将拥有更高的 alpha 代币价格,并获得每日 TAO 发行的更大份额,而不受欢迎或表现不佳的子网将看到资本(以及发行)流失。这就形成了一个反馈循环:如果一个子网产生有价值的 AI 服务,更多的人会向其质押 TAO(寻求奖励),这使得该子网有更多的 TAO 来奖励其参与者,从而促进增长。如果一个子网停滞不前,质押者会撤回到更有利可图的子网。实际上,TAO 持有者通过财务信号集体治理网络的焦点,表明哪些 AI 领域值得更多资源。这是一种通过代币权重进行的链上治理形式,与经济成果保持一致。除了资源分配,重大的协议升级或参数更改可能仍需通过治理提案,由 TAO 持有者投票(Bittensor 有一个由 Bittensor 基金会和选举产生的理事会管理的链上提案和公投机制,类似于 Polkadot 的治理)。随着时间的推移,可以预期 Bittensor 的治理将变得越来越去中心化,基金会会逐渐退后,由社区(通过 TAO 质押)来决定通货膨胀率、新子网批准等事项。向 dTAO 的过渡是朝着这个方向迈出的一大步,用一个激励一致的代币利益相关者市场取代了中心化的决策者。

  • Bittensor 激励: Bittensor 的激励结构与其共识紧密相连。每个区块(12 秒),会新铸造 1 个 TAO,并根据每个子网贡献者的表现进行分配。每个子网的区块奖励默认分配为41% 给矿工,41% 给验证者,18% 给子网所有者。这确保了所有角色都得到奖励:矿工因进行推理工作而获得报酬,验证者因其评估工作而获得报酬,而子网所有者(可能为该子网引导了数据/任务)则因提供“市场”或任务设计而获得剩余收益。这些百分比在协议中是固定的,旨在使每个人的激励都朝着高质量的 AI 输出方向发展。Yuma 共识机制通过根据质量分数加权奖励来进一步完善激励——提供更好答案的矿工(根据验证者共识)将获得那 41% 的更高部分,而紧密遵循诚实共识的验证者将获得验证者部分的更多份额。表现不佳者在经济上被淘汰。此外,委托人(质押者)支持矿工或验证者,通常会收到该节点收益的一部分(节点通常会设定一个佣金,将其余部分分给委托人,类似于 PoS 网络中的质押)。这使得被动的 TAO 持有者能够支持最佳贡献者并获得收益,进一步加强了精英管理。因此,Bittensor 的代币 (TAO) 是一种实用代币:它用于新矿工的注册(矿工必须花费少量 TAO 加入,以对抗女巫垃圾邮件),并且可以质押以增加影响力或通过委托赚取收益。它也被设想为一种支付代币,如果外部用户想从 Bittensor 网络消费服务(例如,支付 TAO 来查询 Bittensor 上的语言模型),尽管内部奖励机制迄今为止一直是主要的“经济体”。总体的激励理念是奖励“有价值的智能”——即帮助产生良好 AI 成果的模型——并创造一个不断提高网络中模型质量的竞争。

  • Gensyn 治理: Gensyn 的治理模型旨在随着网络的成熟从核心团队控制演变为社区控制。最初,Gensyn 将有一个Gensyn 基金会和一个选举产生的理事会,负责监督协议升级和财库决策。预计该理事会最初将由核心团队成员和早期社区领袖组成。Gensyn 计划为其原生代币(通常称为 GENS)进行代币生成事件 (TGE),之后治理权将越来越多地通过链上投票掌握在代币持有者手中。基金会的角色是代表协议的利益,并确保向完全去中心化的平稳过渡。实际上,Gensyn 可能会有链上提案机制,其中对参数的更改(例如,验证博弈的长度、费率)或升级由社区投票决定。因为 Gensyn 正在作为以太坊 rollup 实现,治理也可能与以太坊的安全性相关联(例如,使用 rollup 合约的升级密钥,最终移交给代币持有者的 DAO)。Gensyn 白皮书的去中心化与治理部分强调,该协议最终必须是全球拥有的,这与“机器智能网络”应属于其用户和贡献者的理念相一致。总而言之,Gensyn 的治理始于半中心化,但其架构旨在成为一个 DAO,其中 GENS 代币持有者(可能按质押或参与度加权)共同做出决策。

  • Gensyn 激励: Gensyn 中的经济激励是直接的市场动态,辅以加密经济安全。开发者(客户)用 Gensyn 代币支付机器学习任务,而解决者通过正确完成这些任务来赚取代币。计算周期的价格由公开市场决定——据推测,开发者可以发布带有赏金的任务,解决者可以竞标或在价格符合其期望时直接接受。这确保了只要有闲置 GPU 的供应,竞争就会将成本推低至一个公平的水平(Gensyn 团队预计与云价格相比成本可降低高达 80%,因为网络在全球范围内寻找最便宜的可用硬件)。另一方面,解决者有赚取代币的激励;他们原本可能闲置的硬件现在可以产生收入。为了确保质量,Gensyn 要求解决者在接受工作时质押抵押品——如果他们作弊或产生不正确的结果并被抓住,他们将失去那笔质押(它可能被罚没并奖励给诚实的验证者)。验证者的激励来自于有机会在抓住欺诈性解决者时获得**“大奖”奖励**,类似于 Truebit 的设计,即定期奖励成功识别不正确计算的验证者。这使得解决者保持诚实,并激励一些节点充当监督者。在最优情况下(没有作弊),解决者只赚取任务费用,而验证者角色大多处于闲置状态(或者参与的解决者之一可能兼任其他人的验证者)。因此,Gensyn 的代币既是购买计算的燃料货币,也是保障协议安全的质押抵押品。白皮书提到一个带有非永久性代币的测试网,并且早期测试网参与者将在 TGE 时获得真实代币奖励。这表明 Gensyn 分配了一些代币供应用于引导——奖励早期采用者、测试解决者和社区成员。从长远来看,来自真实工作的费用应该能够维持网络。也可能有一个小的协议费(每个任务支付的一定百分比)进入财库或被销毁;这个细节尚未确认,但许多市场协议都包含一个费用来资助开发或代币回购和销毁。总而言之,Gensyn 的激励围绕着诚实完成机器学习工作:完成工作,获得报酬;试图作弊,失去质押;验证他人,抓住作弊者则获得奖励。这创建了一个旨在实现可靠分布式计算的自我监管经济体系。

  • Cuckoo 治理: Cuckoo Network 从第一天起就将治理融入其生态系统,尽管它仍处于发展阶段。CAI代币除了其效用角色外,明确是一种治理代币。Cuckoo的理念是,GPU节点运营商、应用开发者甚至终端用户都应该在网络的演变中有发言权——这反映了其社区驱动的愿景。实际上,重要决策(如协议升级或经济变化)将由代币加权投票决定,大概是通过DAO机制。例如,Cuckoo可以就改变奖励分配或采用新功能进行链上投票,而CAI 代币除了其效用角色外,明确是一种治理代币。Cuckoo 的理念是,GPU 节点运营商、应用开发者甚至终端用户都应该在网络的演变中有发言权——这反映了其社区驱动的愿景。实际上,重要决策(如协议升级或经济变化)将由代币加权投票决定,大概是通过 DAO 机制。例如,Cuckoo 可以就改变奖励分配或采用新功能进行链上投票,而 CAI 持有者(包括矿工、开发者和用户)将进行投票。链上投票已经被用作声誉系统:Cuckoo 要求每个角色都质押代币,然后社区成员可以投票(或许通过委托质押或通过治理模块)决定哪些协调者或矿工是值得信赖的。这会影响声誉分数,并可能影响任务调度(例如,获得更多投票的协调者可能会吸引更多用户,或者获得更多投票的矿工可能会被分配更多任务)。这是治理和激励的结合——使用治理代币来建立信任。Cuckoo 基金会或核心团队迄今为止一直在指导项目的方向(例如,最近决定弃用 L1 链),但他们的博客表明了向去中心化所有权迈进的承诺。他们认识到运行自己的链会产生高昂的开销,转向 rollup 将允许更开放的开发和与现有生态系统的整合。很可能一旦在一个共享层(如以太坊)上,Cuckoo 将为升级实施一个更传统的 DAO,社区使用 CAI 进行投票。

  • Cuckoo 激励: Cuckoo 的激励设计有两个阶段:初始的引导阶段,有固定的代币分配;以及未来的状态,有基于使用的收入分成。在启动时,Cuckoo 进行了 10 亿 CAI 代币的**“公平启动”**分配。51% 的供应量留给社区,分配如下:

  • 挖矿奖励: 总供应量的 30% 用于支付 GPU 矿工执行 AI 任务。

  • 质押奖励: 总供应量的 11% 用于那些质押并帮助保护网络的人。

  • 空投: 5% 给早期用户和社区成员作为采用激励。

  • (另外 5% 用于开发者资助,以鼓励在 Cuckoo 上构建。)

这种大规模的分配意味着在网络早期,即使实际用户需求很低,矿工和质押者也能从发行池中获得奖励。事实上,Cuckoo 的初始阶段以高 APY 收益为特色,用于质押和挖矿,这成功地吸引了参与者,但也吸引了只为代币而来的“收益农民”。团队注意到,一旦奖励率下降,许多用户就离开了,这表明这些激励措施与真正的使用无关。吸取了这一教训,Cuckoo 正在转向一个奖励与真实 AI 工作负载直接相关的模型。在未来(部分已经实现),当终端用户为 AI 推理付费时,那笔付款(以 CAI 或可能转换为 CAI 的其他接受的代币)将在贡献者之间分配:

  • GPU 矿工将因其提供的计算而获得大部分份额。
  • **协调者(应用开发者)**将作为提供模型和处理请求的服务提供商获得一部分。
  • 质押者委托给这些矿工或协调者的人可能会获得一小部分或通胀奖励,以继续激励支持可靠的节点。
  • 网络/财库可能会保留一笔费用用于持续开发或资助未来的激励措施(或者费用可能为零/名义上的,以最大化用户的可负担性)。

本质上,Cuckoo 正在向收入分成模型迈进:如果 Cuckoo 上的一个 AI 应用产生收益,这些收益将以公平的方式分配给该服务的所有贡献者。这使得激励措施保持一致,参与者从实际使用中受益,而不仅仅是通货膨胀。网络已经要求所有方质押 CAI——这意味着矿工和协调者不仅获得固定的奖励,还可能获得基于质押的奖励(例如,如果许多用户在他们身上质押,或者如果他们自己质押更多,协调者可能会获得更高的奖励,类似于权益证明验证者的收益方式)。在用户激励方面,Cuckoo 还引入了空投门户和水龙头(一些用户利用了这些)来播种初始活动。展望未来,用户可能会通过使用服务的代币返利或通过参与策划的治理奖励(例如,为评级输出或贡献数据赚取少量代币)来获得激励。底线是 Cuckoo 的代币($CAI)是多用途的:它是链上的燃料/费用代币(所有交易和支付都使用它),它用于质押和投票,并且是完成工作的奖励单位。Cuckoo 明确提到,它希望将代币奖励与服务级 KPI(关键绩效指标)挂钩——例如,正常运行时间、查询吞吐量、用户满意度——以避免纯粹的投机性激励。这反映了代币经济从简单的流动性挖矿向更可持续、实用驱动的模型的成熟。

模型所有权与 IP 归属

处理 AI 模型的知识产权 (IP) 和所有权是去中心化 AI 网络的一个复杂方面。每个平台都采取了略有不同的立场,总的来说,这是一个不断发展的领域,目前还没有完整的解决方案:

  • Bittensor: Bittensor 中的模型由矿工节点提供,这些矿工保留对其模型权重的完全控制(这些权重从未在链上发布)。除了模型在某个钱包地址上运行这一事实外,Bittensor 并没有明确跟踪谁“拥有”一个模型。如果一个矿工离开,他们的模型也随之离开。因此,Bittensor 中的 IP 归属是链下的:如果一个矿工使用专有模型,链上没有任何东西可以强制执行甚至知道这一点。Bittensor 的理念鼓励开放贡献(许多矿工可能会使用像 GPT-J 或其他开源模型),网络奖励的是这些模型的性能。可以说,Bittensor 为模型创建了一个声誉分数(通过验证者排名),这是一种承认模型价值的形式,但模型本身的权利并未被代币化或分发。值得注意的是,Bittensor 中的子网所有者可以被视为拥有一部分 IP:他们定义一个任务(可能包括一个数据集或方法)。子网所有者在创建子网时会铸造一个 NFT(称为子网 UID),该 NFT 使他们有权获得该子网 18% 的奖励。这有效地将创建模型市场(即子网)代币化,而不是模型实例。如果将子网的定义(比如一个带有特定数据集的语音识别任务)视为 IP,那么它至少被记录和奖励了。但是,矿工训练的单个模型权重——没有这些权重的链上所有权记录。归属以支付给该矿工地址的奖励形式出现。Bittensor 目前没有实现一个系统,例如,多个人可以共同拥有一个模型并获得自动的收入分成——运行模型的人(矿工)获得奖励,而他们是否遵守所用模型的任何 IP 许可是他们链下的事情。

  • Gensyn: 在 Gensyn 中,模型所有权是直接的,因为提交者(想要训练模型的人)提供模型架构和数据,训练后,他们会收到最终的模型工件。执行工作的解决者对模型没有权利;他们就像为服务付费的承包商。因此,Gensyn 的协议假设了传统的 IP 模型:如果你对提交的模型和数据拥有合法权利,那么在训练后你仍然拥有它们——计算网络不声称任何所有权。Gensyn 确实提到,市场也可以像交易任何其他资源一样交易算法和数据。这暗示了一种情景,即有人可以在网络中提供一个模型或算法供使用,可能需要付费,从而将该模型的访问权代币化。例如,一个模型创建者可能会将其预训练模型放在 Gensyn 上,并允许他人在网络上对其进行微调,并收取费用(这实际上将模型 IP 货币化)。虽然协议不强制执行许可条款,但可以编码支付要求:一个智能合约可以要求支付费用以向解决者解锁模型权重。然而,这些都是推测性的用例——Gensyn 的主要设计是关于促成训练作业。至于归属,如果多方对一个模型做出贡献(比如一方提供数据,另一方提供计算),这很可能由他们在开始使用 Gensyn 之前建立的任何合同或协议来处理(例如,一个智能合约可以在数据提供者和计算提供者之间分配支付)。Gensyn 本身除了记录哪些地址为该工作支付了费用之外,不会在链上跟踪“这个模型是由 X、Y、Z 构建的”。总而言之,Gensyn 中的模型 IP 仍然属于提交者,任何归属或许可都必须通过协议之外的法律协议或在其之上构建的自定义智能合约来处理。

  • Cuckoo: 在 Cuckoo 的生态系统中,模型创建者(AI 应用构建者)是一等参与者——他们部署 AI 服务。如果一个应用构建者微调了一个语言模型或开发了一个自定义模型并将其托管在 Cuckoo 上,那么该模型基本上是他们的财产,他们充当服务所有者。Cuckoo 不会夺取任何所有权;相反,它为他们提供了将使用货币化的基础设施。例如,如果一个开发者部署了一个聊天机器人 AI,用户可以与之互动,开发者(以及矿工)可以从每次互动中赚取 CAI。因此,该平台将使用收入归属于模型创建者,但不会明确发布模型权重或将其变成 NFT。事实上,为了在矿工的 GPU 上运行模型,协调者节点可能需要以某种形式将模型(或运行时)发送给矿工。这就提出了 IP 问题:恶意的矿工是否可以复制模型权重并分发它们?在去中心化网络中,如果使用专有模型,这种风险是存在的。Cuckoo 目前的重点是相当开放的模型(Stable Diffusion、LLaMA 衍生的模型等)和建立社区,所以我们还没有看到通过智能合约强制执行 IP 权利。该平台未来可能会集成像加密模型执行或安全区域之类的工具来保护 IP,但文档中没有提到具体内容。它确实跟踪的是谁为每个任务提供了模型服务——因为协调者是一个链上身份,其模型的所有使用都归于他们,他们会自动获得他们的奖励份额。如果要将模型转交或出售给其他人,实际上他们会转移协调者节点的控制权(如果协调者角色被代币化,甚至可能只是给他们私钥或 NFT)。目前,模型的社区所有权(通过代币份额)尚未实现,但 Cuckoo 的愿景暗示了去中心化的社区驱动 AI,所以他们可能会探索让人们集体资助或治理一个 AI 模型。在这些网络中,模型的代币化超越个人所有权仍然是一个开放领域——它被认为是一个目标(让社区而不是公司拥有 AI 模型),但实际上它需要解决上述 IP 和验证挑战的方案。

总而言之,在 Bittensor、Gensyn 和 Cuckoo 中,模型所有权是通过传统方式在链下处理的:运行或提交模型的人或实体实际上是所有者。这些网络以经济奖励的形式提供归属(为模型的贡献者的 IP 或努力支付报酬)。这三者都还没有在智能合约层面内置模型使用的许可或版税强制执行。归属通过声誉和奖励来实现:例如,Bittensor 的最佳模型获得高声誉分数(这是公开记录)和更多的 TAO,这是对其创建者的隐性认可。随着时间的推移,我们可能会看到像NFT 绑定的模型权重去中心化许可这样的功能来更好地跟踪 IP,但目前的优先事项是让网络运作并激励贡献。所有人都同意,验证模型来源和输出是实现真正的模型资产市场的关键,这方面的研究正在进行中。

收入分成结构

所有三个平台都必须决定,当多方合作产生有价值的 AI 输出时,如何分配经济蛋糕。当一个 AI 服务被使用或代币被发行时,谁得到报酬,以及多少?每个平台都有一个独特的收入分成模型:

  • Bittensor: 如激励部分所述,Bittensor 的收入分配是在区块级别由协议定义的:每个区块的 TAO 发行中,41% 给矿工,41% 给验证者,18% 给子网所有者。这实际上是为每个子网产生的价值内置的收入分成。子网所有者的份额(18%)就像是为“模型/任务设计”或为引导该子网生态系统而收取的版税。矿工和验证者获得相等的份额,确保了没有验证,矿工就得不到奖励(反之亦然)——它们是共生的,各自获得铸造奖励的相等部分。如果我们考虑一个外部用户支付 TAO 来查询一个模型,Bittensor 白皮书设想这笔支付也会在回答的矿工和帮助审查答案的验证者之间类似地分配(具体分配比例可以由协议或市场力量决定)。此外,委托人质押在矿工/验证者身上,实际上是合作伙伴——通常,矿工/验证者会将其赚取的 TAO 的一部分与他们的委托人分享(这是可配置的,但通常大部分给委托人)。所以,如果一个矿工从一个区块中赚取了 1 TAO,根据质押情况,这可能会在他们的委托人和他们自己之间以 80/20 的比例分配。这意味着即使非运营商也能根据他们的支持按比例获得网络收入的一部分。随着 dTAO 的引入,又增加了一层分享:那些质押到子网池中的人会得到 alpha 代币,这使他们有权获得该子网发行的一部分(就像收益农场)。实际上,任何人都可以通过持有 alpha 代币来分享特定子网的成功,并获得矿工/验证者奖励的一部分(alpha 代币会随着子网吸引更多使用和发行而升值)。总而言之,Bittensor 的收入分成是由代码固定的,适用于主要角色,并通过社交/质押安排进一步分享。这是一个相对透明、基于规则的分配——每个区块,参与者都确切地知道 1 TAO 是如何分配的,从而知道他们每次贡献的“收益”。这种清晰度是 Bittensor 有时被比作 AI 领域的比特币的原因之一——一个确定性的货币发行,参与者的奖励是数学上设定的。

  • Gensyn: Gensyn 中的收入分成更加动态和市场驱动,因为任务是单独定价的。当一个提交者创建一个工作时,他们会附上一个他们愿意支付的奖励(比如 X 个代币)。完成工作的解决者会得到那个 X(减去任何网络费用)。如果涉及到验证者,通常有一个规则,比如:如果没有检测到欺诈,解决者保留全部支付;如果检测到欺诈,解决者将被罚没——失去部分或全部质押——而被罚没的金额将作为奖励给予验证者。所以验证者不是从每个任务中赚钱,只有当他们抓住一个坏结果时才赚钱(加上可能参与的少量基准费用,取决于实现方式)。这里没有内置的向模型所有者支付的概念,因为假设提交者要么是模型所有者,要么有权使用该模型。可以想象一种情景,提交者正在微调别人的预训练模型,一部分支付会给原始模型创建者——但这必须在协议之外处理(例如,通过协议或一个单独的智能合约来相应地分配代币支付)。Gensyn 的协议级分享本质上是客户 -> 解决者 (-> 验证者)代币模型可能包括一些分配给协议财库或基金会;例如,每个任务支付的一小部分可能会进入一个财库,用于资助开发或保险池(这在现有文档中没有明确说明,但许多协议都这样做)。此外,在早期,Gensyn 可能会通过通货膨胀来补贴解决者:测试网用户在 TGE 时被承诺奖励,这实际上是来自初始代币分配的收入分成(早期解决者和支持者因帮助引导而获得一部分代币,类似于空投或挖矿奖励)。随着时间的推移,随着真实工作的增多,通胀奖励会逐渐减少,解决者的收入将主要来自用户支付。Gensyn 的方法可以总结为一个按服务收费的收入模型:网络促成需要完成工作的人向完成工作的人直接支付,验证者和可能的代币质押者只有在他们在保障该服务中发挥作用时才分得一杯羹。

  • Cuckoo: Cuckoo 的收入分成已经演变。最初,因为没有太多付费的终端用户,收入分成基本上是通货膨胀分享:来自代币供应的 30% 挖矿和 11% 质押分配意味着矿工和质押者分享网络公平启动池发行的代币。实际上,Cuckoo 运行着像每日 CAI 支付这样的机制,按完成的任务比例支付给矿工。这些支付主要来自挖矿奖励分配(这是保留的固定供应的一部分)。这类似于许多 Layer-1 区块链向矿工/验证者分配区块奖励的方式——它与外部用户的实际使用无关,更多的是为了激励参与和增长。然而,正如他们在 2025 年 7 月的博客中所强调的,这导致了由代币农场而不是真实需求激励的使用。Cuckoo 的下一阶段是一个基于服务费的真正收入分成模型。在这个模型中,当一个终端用户使用,比如说,图像生成服务并支付 1 美元(以加密货币计算)时,那 1 美元价值的代币可能会这样分配:0.70 给完成 GPU 工作的矿工,0.20 给提供模型和接口的应用开发者(协调者),0.10 给质押者或网络财库。(注意:确切的比例是假设的;Cuckoo 尚未公开指定它们,但这说明了概念。)这样,所有为提供服务做出贡献的人都能分得一杯羹。这类似于,例如,共享出行经济,但用于 AI:车辆(GPU 矿工)获得大部分,司机或平台(构建模型服务的协调者)获得一部分,也许平台的治理/质押者获得少量费用。Cuckoo 提到*“收入分成模型和代币奖励直接与使用指标挂钩”*,这表明如果某个特定的服务或节点处理大量流量,其运营商和支持者将赚得更多。他们正在摆脱仅仅锁定代币就能获得固定收益的模式(这在他们最初的质押 APY 中是这样的)。具体来说:如果你在一个最终为非常受欢迎的 AI 应用提供动力的协调者上质押,你可以赚取该应用费用的一部分——这是一个真正的将质押作为对效用投资的场景,而不仅仅是为了通货膨,胀而质押。这使得每个人的激励都朝着吸引为 AI 服务付费的真实用户方向发展,这反过来又将价值反馈给代币持有者。值得注意的是,Cuckoo 的链也有交易费用(gas),所以生产区块的矿工(最初 GPU 矿工也为 Cuckoo 链上的区块生产做出了贡献)也得到了 gas 费用。随着链的关闭和向 rollup 的迁移,gas 费用可能会很小(或者在以太坊上),所以主要收入变成了 AI 服务费用本身。总而言之,Cuckoo 正在从一个补贴驱动的模型(网络从其代币池中支付参与者)过渡到一个需求驱动的模型(参与者从实际用户支付中赚钱)。代币仍将在质押和治理中发挥作用,但矿工和应用开发者的日常收入应越来越多地来自购买 AI 服务的用户。这个模型在长期内更具可持续性,并与 Web2 SaaS 的收入分成密切相似,但通过智能合约和代币实现透明度。

攻击面与漏洞

去中心化 AI 引入了一些激励和安全挑战。我们现在分析关键的攻击向量——女巫攻击、合谋、搭便车以及数据/模型投毒——以及每个平台如何减轻或仍然容易受到这些攻击:

  • 女巫攻击(虚假身份):在一个开放网络中,攻击者可能会创建许多身份(节点)以获得不成比例的奖励或影响力。

  • Bittensor:女巫攻击的抵抗主要来自于进入成本。要在 Bittensor 上注册一个新的矿工或验证者,必须花费或质押 TAO——这可能是一种销毁或保证金要求。这意味着创建 N 个虚假节点会产生 N 倍的成本,使得大规模的女巫攻击变得昂贵。此外,Bittensor 的共识将影响力与质押和性能挂钩;一个没有质押或性能不佳的女巫几乎赚不到钱。攻击者必须投入巨资,并且让他们的女巫节点实际贡献有用的工作才能获得任何显著的奖励(这不是典型的女巫策略)。也就是说,如果一个攻击者确实拥有大量资本,他们可以获得大部分 TAO 并注册许多验证者或矿工——实际上是一种财富女巫。这与 51% 攻击情景重叠:如果单个实体控制了一个子网中超过 50% 的质押 TAO,他们就可以严重影响共识。Bittensor 引入 dTAO 在这里有所帮助:它将影响力分散到各个子网,并要求社区质押支持子网才能发展,这使得单个实体更难控制一切。尽管如此,资金雄厚的对手发起的财富女巫攻击仍然是一个担忧——Arxiv 的分析明确指出,目前的质押相当集中,因此多数攻击的门槛并不像期望的那么高。为了缓解这种情况,有人提出了像每个钱包的质押上限(例如,将有效质押上限设在第 88 百分位数,以防止一个钱包独大)之类的建议。总而言之,Bittensor 依靠质押加权身份(你不能在没有相应质押的情况下廉价地生成身份)来处理女巫攻击;除了在资源非常丰富的攻击者面前,它相当有效。

  • Gensyn:Gensyn 中的女巫攻击将表现为攻击者启动许多解决者或验证者节点来操纵系统。Gensyn 的防御纯粹是经济和密码学的——身份本身不重要,但完成工作或提供抵押品很重要。如果一个攻击者创建了 100 个虚假的解决者节点,但他们没有工作或没有质押,他们什么也得不到。要赢得任务,一个女巫节点必须有竞争力地出价,并拥有完成工作的硬件。如果他们以低于成本的价格出价而没有能力,他们会失败并失去质押。同样,攻击者可以创建许多验证者身份,希望被选中进行验证(如果协议随机选择验证者)。但如果数量太多,网络或工作发布者可能会限制活跃验证者的数量。此外,验证者可能需要执行计算来检查它,这是昂贵的;拥有许多虚假的验证者并没有帮助,除非你真的能验证结果。在 Gensyn 中,一个更相关的女巫攻击角度是,如果攻击者试图用虚假的工作或响应填满网络以浪费他人的时间。这可以通过要求提交者也提供押金来缓解(发布虚假工作的恶意提交者会失去他们的支付或押金)。总的来说,Gensyn 使用必需的质押/保证金随机选择验证意味着攻击者除非也带来相应的资源,否则通过拥有多个身份获得的收益甚微。这变成了一种成本高昂的攻击,而不是廉价的攻击。乐观安全模型假设至少有一个诚实的验证者——女巫必须压倒并成为所有验证者才能持续作弊,这又回到了拥有大部分质押或计算能力的问题。因此,Gensyn 的女巫抵抗能力与乐观 rollup 相当:只要有一个诚实的参与者,女巫就很难轻易造成系统性损害。

  • Cuckoo:Cuckoo 中防止女巫攻击依赖于质押和社区审查。Cuckoo 中的每个角色(矿工、协调者,甚至在某些情况下的用户)都需要质押 $CAI。这立即提高了女巫身份的成本——一个制造 100 个虚假矿工的攻击者需要为每个矿工获取并锁定质押。此外,Cuckoo 的设计有一个人为/社区因素:新节点需要通过链上投票来获得声誉。一个没有声誉的新节点女巫大军不太可能被分配到很多任务或被用户信任。特别是协调者必须吸引用户;一个没有记录的虚假协调者不会得到使用。对于矿工,协调者可以在 Cuckoo Scan 上看到他们的性能统计数据(成功任务等),并且会偏爱可靠的矿工。Cuckoo 的矿工数量也相对较少(在 beta 测试中一度只有 40 个 GPU),所以任何大量节点的奇怪涌入都会很明显。潜在的弱点是,如果攻击者也操纵声誉系统——例如,他们在自己的女巫节点上质押大量 CAI,使它们看起来信誉良好,或者创建虚假的“用户”账户来为自己点赞。这在理论上是可能的,但由于这一切都是代币策划的,这样做需要花费代币(你基本上是用自己的质押在自己的节点上投票)。Cuckoo 团队也可以在观察到女巫行为时调整质押和奖励参数(特别是现在它正在成为一个更中心化的 rollup 服务;他们可以暂停或罚没不良行为者)。总而言之,女巫通过要求投入(质押)需要社区批准来得到控制。没有人可以仅仅带着数百个虚假的 GPU 进来就 reaping 奖励,而无需大量投资,而诚实的参与者可以更好地将这些投资用于真实的硬件和质押。

  • 合谋: 这里我们考虑多个参与者合谋操纵系统——例如,Bittensor 中的验证者和矿工合谋,或 Gensyn 中的解决者和验证者合谋等。

  • Bittensor:合谋已被确定为一个真正的问题。在最初的设计中,少数验证者可以合谋总是支持某些矿工或他们自己,从而不公平地扭曲奖励分配(这在根子网中被观察为权力集中)。Yuma 共识提供了一些防御:通过取验证者分数的中位数并惩罚偏离者,它防止了一个小的合谋团体大幅提升一个目标,除非他们是多数。换句话说,如果 10 个验证者中有 3 个合谋给一个矿工一个超高的分数,但其他 7 个没有,那么合谋者的离群分数会被剔除,矿工的奖励将基于中位数分数(所以合谋未能显著帮助)。然而,如果合谋者构成了超过 50% 的验证者(或验证者中超过 50% 的质押),他们实际上就是共识——他们可以就虚假的高分达成一致,中位数将反映他们的观点。这是经典的 51% 攻击情景。不幸的是,Arxiv 的研究发现,在一些 Bittensor 子网中,仅占参与者数量 1-2% 的联盟就控制了大部分质押,这是由于代币高度集中。这意味着少数大户的合谋是一个可信的威胁。Bittensor 通过 dTAO 追求的缓解措施是民主化影响力:通过让任何 TAO 持有者将质押导向子网,它稀释了封闭验证者团体的权力。此外,像凹形质押(对超大质押的收益递减)和质押上限等提案旨在打破单个合谋实体聚集过多投票权的能力。Bittensor 的安全假设现在类似于权益证明:没有单个实体(或卡特尔)控制超过 50% 的活跃质押。只要这一点成立,合谋就是有限的,因为诚实的验证者会覆盖不良评分,合谋的子网所有者也不能任意提升自己的奖励。最后,关于子网所有者和验证者之间的合谋(例如,一个子网所有者贿赂验证者以高评价其子网的矿工),dTAO 消除了直接的验证者控制,代之以代币持有者的决策。与“市场”合谋更难,除非你买断代币供应——在这种情况下,这就不再是合谋,而是接管。所以 Bittensor 的主要反合谋技术是算法共识(中位数裁剪)广泛的代币分配

  • Gensyn:Gensyn 中的合谋可能涉及一个解决者和一个验证者(或多个验证者)合谋欺骗系统。例如,一个解决者可以产生一个虚假的结果,而一个合谋的验证者可以故意不挑战它(或者如果协议要求验证者签署,甚至证明它是正确的)。为了缓解这种情况,Gensyn 的安全模型要求至少有一个诚实的验证者。如果所有验证者都与解决者合谋,那么一个坏结果就不会受到挑战。Gensyn 通过鼓励许多独立的验证者(任何人都可以验证)以及博弈论来解决这个问题,即一个验证者可以通过脱离合谋并提出挑战来获得巨大的奖励(因为他们会得到解决者的质押)。本质上,即使有一群人同意合谋,每个成员都有动机背叛并为自己索取赏金——这是一个经典的囚徒困境设置。希望这能使合谋团体保持小规模或无效。另一个潜在的合谋是多个解决者之间合谋抬高价格或垄断任务。然而,由于开发者可以选择在哪里发布任务(而且任务不是可以轻易垄断的相同单位),解决者在价格上的合谋很难在全球范围内协调——任何不合谋的解决者都可以以更低的价格赢得工作。开放的市场动态对抗了定价合谋,假设至少有一些竞争参与者。另一个角度:验证者合谋刁难解决者——例如,验证者错误地指控诚实的解决者以窃取他们的质押。Gensyn 的欺诈证明是二元的和链上的;当链上重新计算发现没有错误时,一个错误的指控会失败,并且据推测,恶意的验证者会因此失去一些东西(也许是押金或声誉)。所以,试图破坏解决者的验证者合谋会被协议的验证过程抓住。总而言之,只要任何合谋集合中至少有一方有动机保持诚实,Gensyn 的架构就是稳健的——这是乐观验证的一个特性,类似于要求比特币中至少有一个诚实的矿工最终揭露欺诈。如果一个攻击者可以控制一个任务中的所有验证者和解决者(比如网络的大多数),理论上合谋是可能的,但那时他们就可以直接作弊而不需要合谋。加密经济激励的安排使得维持合谋变得不理性。

  • Cuckoo:Cuckoo 中的合谋可能以几种方式发生:

  1. 一个协调者与矿工合谋——例如,一个协调者可以总是将任务分配给一组友好的矿工并分享奖励,而忽略其他诚实的矿工。由于协调者在任务调度上有自由裁量权,这可能会发生。然而,如果友好的矿工表现不佳,终端用户可能会注意到服务缓慢或质量差而离开,所以协调者没有动机纯粹为了偏袒而损害质量。如果合谋是为了操纵奖励(比如,提交虚假任务给矿工代币),这将在链上被检测到(大量任务可能具有相同的输入或没有实际用户)并可能受到惩罚。Cuckoo 的链上透明度意味着任何不寻常的模式都可能被社区或核心团队标记。此外,因为所有参与者都质押,一个合谋的协调者-矿工团伙如果被发现滥用系统,将面临失去质押的风险(例如,如果治理决定因欺诈而罚没他们)。
  2. 矿工之间合谋——他们可能会分享信息或形成一个卡特尔,比如说,在声誉上互相投票,或者都拒绝为一个特定的协调者服务以索取更高的费用。这些情况不太可能发生:声誉投票是由质押者(包括用户)完成的,而不是矿工自己互相投票。而拒绝服务只会促使协调者寻找其他矿工或发出警报。鉴于目前规模相对较小,任何合谋都很难隐藏。
  3. 合谋操纵治理——大的 CAI 持有者可以合谋通过对他们有利的提案(比如设定过高的费用或重定向财库)。这在任何代币治理中都是一个风险。最好的缓解措施是广泛分配代币(Cuckoo 的公平启动将 51% 分给了社区)并有活跃的社区监督。此外,由于 Cuckoo 从 L1 转型,直接的链上治理可能会受到限制,直到他们在新的链上重新安顿下来;团队在此期间可能会保留一个多签控制,这讽刺地防止了恶意外部人员的合谋,但代价是暂时的中心化。 总的来说,Cuckoo 依靠透明度和质押来处理合谋。在某种程度上,信任协调者会表现良好,因为他们想在竞争环境中吸引用户。如果合谋导致服务质量下降或明显的奖励操纵,利益相关者可以投票淘汰或停止质押不良行为者,网络可以罚没或阻止他们。相当开放的性质(任何人只要质押就可以成为协调者或矿工)意味着合谋需要大规模的协调努力,而这将是显而易见的。它不像 Bittensor 或 Gensyn 那样在数学上被阻止,但经济质押和社区治理的结合提供了一种制衡。
  • 搭便车(搭便车问题):这指的是参与者试图在不贡献同等价值的情况下获得奖励——例如,一个实际上不进行评估但仍然赚钱的验证者,或者一个复制他人答案而不是自己计算的矿工,或者在不提供有用输入的情况下刷奖励的用户。

  • Bittensor:Bittensor 中一个已知的搭便车问题是懒惰验证者的**“权重复制”。一个验证者可以简单地复制多数意见(或其他验证者的分数),而不是独立评估矿工。通过这样做,他们避免了运行 AI 查询的成本,但如果他们提交的分数看起来与共识一致,他们仍然可以获得奖励。Bittensor 通过衡量每个验证者的共识一致性信息贡献来对抗这一点。如果一个验证者总是只是复制他人,他们可能与共识一致(所以他们不会受到重罚),但他们没有增加任何独特的价值。协议开发者已经讨论过给那些提供准确但不纯粹冗余评估的验证者更高的奖励。像噪声注入**(故意给验证者略有不同的查询)这样的技术可以迫使他们实际工作而不是复制——尽管尚不清楚这是否已实现。Arxiv 建议使用性能加权发行和复合评分方法来更好地将验证者的努力与奖励联系起来。至于矿工,一种可能的搭便车行为是,如果一个矿工查询其他矿工并转发答案(一种抄袭形式)。Bittensor 的设计(带有去中心化查询)可能允许一个矿工的模型通过自己的树突调用其他模型。如果一个矿工只是转发别人的答案,一个好的验证者可能会发现这一点,因为答案可能与该矿工声称的模型能力不一致。这在算法上很难检测,但一个从不计算原始结果的矿工最终应该在某些查询上得分很低并失去声誉。另一个搭便车情景是委托人在不做 AI 工作的情况下获得奖励。这是有意的(为了让代币持有者参与),所以不是攻击——但它确实意味着一些代币发行给了只质押的人。Bittensor 将此解释为协调激励,而不是浪费奖励。简而言之,Bittensor 承认验证者搭便车问题,并正在调整激励措施(比如给予验证者信任分数,以提升那些不偏离或复制的人)。他们的解决方案本质上是更明确地奖励努力和正确性,以便什么都不做或盲目复制随着时间的推移会产生更少的 TAO。

  • Gensyn:在 Gensyn 中,搭便车者会发现很难赚钱,因为一个人必须要么提供计算,要么抓住作弊者才能获得代币。一个解决者不能“伪造”工作——他们必须提交一个有效的证明,否则就有被罚没的风险。没有机制可以在不完成任务的情况下获得报酬。一个验证者理论上可以坐等他人抓住欺诈——但那样他们什么也得不到(因为只有提出欺诈证明的人才能获得奖励)。如果太多的验证者试图搭便车(不实际重新计算任务),那么一个欺诈性的解决者可能会溜走,因为没有人在检查。Gensyn 的激励设计通过大奖奖励来解决这个问题:只需要一个活跃的验证者抓住一个作弊者就能获得一大笔报酬,所以至少有一个人总是在工作是理性的。其他人不做工作不会损害网络,只是没用;他们也得不到奖励。所以系统自然会过滤掉搭便车者:只有那些真正验证的验证者才能在长期内获利(其他人将资源花在节点上却一无所获,或者很少有机会偶然获得奖励)。协议也可能随机化哪个验证者有机会挑战,以阻止所有验证者都假设“别人会做的”。由于任务是单独支付的,除了临时的测试网激励外,没有类似于“不工作就有质押奖励”的情况。一个值得关注的领域是多任务优化:一个解决者可能会试图在任务之间重用工作,或者秘密地将其外包给更便宜的人(比如使用中心化的云)——但这并不是真正有害的搭便车;如果他们按时交付正确的结果,他们是如何做到的并不重要。这更像是套利而不是攻击。总而言之,Gensyn 的机制设计几乎没有给搭便车者留下获利的空间,因为每个分发的代币都对应着一个完成的工作或一个被惩罚的作弊行为。

  • Cuckoo:Cuckoo 的初始阶段无意中创造了一个搭便车问题:空投和高收益质押吸引了只为刷代币而来的用户。这些用户会通过水龙头循环代币或操纵空投任务(例如,不断使用免费的测试提示或创建许多账户来领取奖励),而没有为网络的长期价值做出贡献。Cuckoo 认识到这是一个问题——本质上,人们“使用”网络不是为了 AI 输出,而是为了投机性奖励。决定结束 L1 链并重新聚焦,部分原因是为了摆脱这些激励错位。通过将未来的代币奖励与实际使用挂钩(即,你赚钱是因为服务实际上被付费客户使用),搭便车的吸引力就减小了。还有一个矿工端的搭便车情景:一个矿工可以加入,被分配任务,然后以某种方式不执行它们但仍然声称奖励。然而,协调者正在验证结果——如果一个矿工不返回输出或返回坏的输出,协调者不会将其计为已完成的任务,所以矿工不会得到报酬。矿工也可能试图挑选容易的任务而放弃困难的任务(例如,如果一些提示较慢,矿工可能会断开连接以避免它们)。这可能是一个问题,但协调者可以注意到矿工的可靠性。如果一个矿工经常掉线,协调者可以停止向他们分配任务或罚没他们的质押(如果存在这样的机制或干脆不奖励他们)。用户搭便车——由于许多 AI 服务都有免费试用,用户可以滥发请求以获得输出而不付费(如果有补贴的模型)。这与其说是协议层面的问题,不如说是服务层面的问题;每个协调者可以决定如何处理免费使用(例如,要求少量支付或限流)。因为 Cuckoo 最初提供了一些免费服务(比如免费的 AI 图像生成以吸引用户),一些人利用了这一点,但这是预期的增长营销的一部分。随着这些促销活动的结束,用户将不得不付费,因此没有免费的午餐可以利用。总的来说,Cuckoo 的新策略是将代币分配与真实效用挂钩,这明确旨在消除“为了做无意义的循环而挖矿”的搭便车问题。

  • 数据或模型投毒: 这指的是恶意引入不良数据或行为,使得 AI 模型退化或输出被操纵,以及贡献有害或有偏见内容的问题。

  • Bittensor:Bittensor 中的数据投毒意味着一个矿工故意给出不正确或有害的答案,或者验证者故意将好的答案评估为坏的。如果一个矿工持续输出垃圾或恶意内容,验证者会给出低分,该矿工将赚得很少并最终退出——经济激励是提供质量,所以“投毒”他人对攻击者没有好处(除非他们的目标纯粹是自费破坏)。一个恶意的矿工能毒害别人吗?在 Bittensor 中,矿工不直接互相训练(至少在设计上不是——没有一个可以被毒害的全局模型在更新)。每个矿工的模型是独立的。他们确实在某种意义上学习,即一个矿工可以从他人那里获取有趣的样本来微调自己,但这完全是可选的,取决于每个人。如果一个恶意行为者滥发无意义的答案,诚实的验证者会过滤掉这些(他们会给它低分),所以它不会显著影响任何诚实矿工的训练过程(此外,一个矿工可能会使用高分同行的知识,而不是低分的)。所以经典的数据投毒(注入不良训练数据以破坏模型)在 Bittensor 当前的设置中是最小的。更相关的风险是模型响应操纵:例如,一个矿工输出微妙的偏见或危险内容,而这对验证者来说并不明显。然而,由于验证者也是人类设计的或至少是算法代理,公然的毒性或错误很可能被发现(一些子网甚至可能有 AI 验证者检查不安全内容)。最坏的情况是,如果一个攻击者以某种方式拥有大多数验证者和矿工合谋将某个不正确的输出推为“正确”——他们就可以偏袒网络对响应的共识(比如所有合谋的验证者都支持一个恶意答案)。但要让外部用户因此受到伤害,他们必须实际查询网络并信任输出。Bittensor 仍处于一个构建能力的阶段,尚未被终端用户广泛用于关键查询。到那时,希望它将有内容过滤和验证者的多样性来减轻这种风险。在验证者方面,一个恶意的验证者可以提供有毒的评估——例如,持续地给某个诚实的矿工低分以消除竞争。如果有足够的质押,他们可能会成功地将该矿工挤出(如果该矿工的奖励下降到他们离开的程度)。这是对激励机制的攻击。同样,如果他们不是多数,中位数裁剪将挫败一个离群的验证者。如果他们多数,这就与合谋/51% 的情景合并了——任何多数都可以重写规则。解决方案又回到了去中心化:防止任何一个实体占主导地位。总而言之,Bittensor 的设计通过其评分系统固有地惩罚有毒的数据/模型贡献——不良贡献获得低权重,从而获得低奖励。没有一个永久的模型库可以被毒害;一切都是动态的并持续评估。这提供了弹性:网络可以随着不良行为者的贡献被验证者过滤掉而逐渐“忘记”或忽略他们。

  • Gensyn:如果一个解决者想毒害一个正在训练的模型(比如在训练期间引入后门或偏见),他们可以尝试秘密地这样做。Gensyn 协议会验证训练是否按照指定的算法进行(随机梯度下降步骤等),但它不一定能检测到解决者是否引入了一个微妙的后门触发器,而这个触发器在正常的验证指标中不会出现。这是一个更阴险的问题——它不是计算的失败,而是在训练的允许自由度内的操纵(比如将权重调整向一个触发短语)。检测这一点是机器学习安全领域的一个活跃研究问题。Gensyn 除了提交者可以在他们选择的测试集上评估最终模型这一事实外,没有特殊的模型投毒机制。一个精明的提交者应该总是测试返回的模型;如果他们发现它在某些输入上失败或有奇怪的行为,他们可能会对结果提出异议或拒绝支付。也许协议可以允许提交者指定某些接受标准(比如“模型必须在这个秘密测试集上达到至少 X 的准确率”),如果解决者的结果失败,解决者就得不到全额支付。这将阻止投毒,因为攻击者无法满足评估标准。然而,如果毒药不影响正常测试的准确性,它可能会溜走。Gensyn 中的验证者只检查计算完整性,而不是模型质量,所以他们不会发现故意的过拟合或木马,只要训练日志看起来有效。所以,这仍然是一个任务层面的信任问题:提交者必须要么相信解决者不会毒害模型,要么使用像集成多个来自不同解决者的训练结果这样的方法来稀释任何单个解决者的影响。另一个角度是数据投毒:如果提交者提供训练数据,一个恶意的解决者可以忽略这些数据,而在别的东西上训练或添加垃圾数据。但这可能会降低准确性,提交者会在输出模型的性能中注意到这一点。解决者将因此得不到全额支付(因为据推测他们想达到一个性能目标)。所以降低性能的投毒对解决者的奖励是自取灭亡的。只有性能中性但恶意的毒药(后门)才是真正的危险,而这超出了典型区块链验证的范围——这是一个机器学习安全挑战。Gensyn 最好的缓解措施可能是社会性的:使用知名的信誉良好的模型,进行多次训练运行,使用开源工具。在推理任务上(如果 Gensyn 也用于推理工作),一个合谋的解决者可以返回不正确的输出,从而偏袒某个答案。但如果验证者运行相同的模型,他们会发现错误的输出,所以这与其说是投毒,不如说是作弊,欺诈证明可以解决这个问题。总而言之,Gensyn 保障过程,而不是意图。它确保训练/推理是正确完成的,但不能保证结果是好的或没有隐藏的恶意。这仍然是一个悬而未决的问题,Gensyn 的白皮书可能还没有完全解决这个问题(很少有能解决的)。

  • Cuckoo:由于 Cuckoo 目前专注于推理(服务现有模型),数据/模型投毒的风险相对局限于输出操纵内容投毒。一个恶意的矿工可能会试图篡改他们被给予运行的模型——例如,如果提供了一个 Stable Diffusion 检查点,他们可以用一个不同的模型替换它,这个模型可能会在每张图片中插入一些微妙的水印或广告。然而,协调者(模型所有者)通常会发送带有输出格式期望的任务;如果一个矿工持续返回不符合规格的输出,协调者会标记并禁止该矿工。此外,矿工在不显著影响其输出的情况下很难修改模型。另一种情景是,如果 Cuckoo 引入社区训练的模型:那么矿工或数据提供者可能会试图毒害训练数据(例如,输入大量错误的标签或有偏见的文本)。Cuckoo 将需要实施对众包数据的验证或对贡献者进行加权。这还不是一个功能,但团队对个性化 AI 的兴趣(比如他们提到的 AI 生活教练或学习应用)意味着他们最终可能会处理用户提供的训练数据,这将需要仔细的检查。在内容安全方面,由于 Cuckoo 矿工执行推理,人们可能会担心他们会输出有害内容,即使模型通常不会。但矿工没有动机任意改变输出——他们为正确的计算获得报酬,而不是创造力。如果说有什么的话,一个恶意的矿工可能会为了节省时间而跳过完整的计算(例如,返回一张模糊的图片或一个通用的响应)。协调者或用户会看到这一点并给该矿工差评(并且很可能不会为该任务付费)。隐私是另一个方面:一个恶意的矿工可能会泄露或记录用户数据(比如用户输入了敏感的文本或图片)。这不是投毒,而是对机密性的攻击。Cuckoo 的隐私立场是,它正在探索保护隐私的方法(生态系统中提到一个保护隐私的 VPN 表明了未来的重点)。他们可以结合像安全区域或分割推理这样的技术来保护数据不被矿工看到。尚未实现,但这是一个已知的考虑因素。 最后,Cuckoo 的博客强调有效验证模型输出并确保安全的去中心化模型操作是使模型代币化可行的关键。这表明他们意识到,要真正去中心化 AI,必须防范像有毒输出或功能失常的模型这样的事情。可能他们打算结合使用加密经济激励(对不良行为者进行质押罚没)和用户评级系统(用户可以标记不良输出,那些矿工会失去声誉)。声誉系统在这里可以发挥作用:如果一个矿工返回哪怕一个明显恶意或不正确的结果,用户/协调者可以给他们差评,严重影响他们未来的赚钱能力。知道这一点,矿工就有动力保持一贯的正确性,而不是掺入任何毒药。 本质上,Cuckoo 依赖于信任但验证:它更传统,如果有人行为不端,你识别并移除他们(以失去质押作为惩罚)。它还没有针对微妙模型投毒的专门防御措施,但有特定的应用所有者(协调者)负责的结构增加了一层监督——这些所有者会有动力确保没有任何东西损害他们模型的完整性,因为他们自己的收入和声誉都依赖于此。

总而言之,虽然去中心化 AI 网络引入了新的攻击面,但它们也部署了一系列密码学、博弈论和社区治理的防御措施女巫抵抗主要通过要求参与者投入经济质押来处理。合谋抵抗来自于激励的一致性(诚实行为更有利可图)和限制小合谋团体影响的共识机制。防止搭便车是通过将奖励与实际有用的工作紧密联系,并惩罚或淘汰那些没有贡献的人来实现的。投毒及相关攻击仍然具有挑战性,但系统通过持续评估和罚没或驱逐恶意行为者的能力来减轻公然的案例。这些平台正在积极研究和迭代这些设计——正如 Bittensor 对 Yuma 和 dTAO 的持续调整,以及 Cuckoo 在代币经济学上的转变所证明的那样——以确保一个安全、自我维持的去中心化 AI 生态系统。

对比评估

为了突出 Bittensor、Gensyn 和 Cuckoo AI 的异同,下表从关键维度对它们进行了并排比较:

维度Bittensor (TAO)GensynCuckoo AI (CAI)
技术栈自定义 L1 (基于 Substrate 的 Subtensor 链),拥有 93+ 个专业 AI 子网。近期升级后,在其自有链上实现 EVM 兼容。基于以太坊的 rollup (最初计划为 L1,现为 ETH rollup)。链下计算,链上验证。作为 Arbitrum Orbit Layer-2 链 (EVM rollup) 启动。全栈平台 (自有链 + 计算 + 应用 UI)。正从自定义 L1 迁移到以太坊共享安全 (rollup/AVS)。
主要焦点去中心化 AI 网络,由模型组成的“神经互联网”。节点为跨任务(LLM、视觉等)的集体模型推理和训练做出贡献。去中心化的 ML 计算市场。重点是通过全球 GPU 进行链下模型训练和推理,并通过区块链验证工作。去中心化 AI 服务平台。专注于使用分布式 GPU 矿工进行模型服务/推理(例如生成艺术、LLM API)。将终端用户应用与后端 GPU 市场集成。
关键角色子网所有者: 定义子网中的任务和验证(赚取 18% 奖励)。
矿工: 运行 AI 模型(推理/训练),提供答案。
验证者: 提出查询并对矿工的输出进行评分(策划质量)。
委托人: 将 TAO 质押给矿工/验证者以增强其影响力并赚取份额。
提交者(开发者): 发布 ML 作业(附带模型/数据)和支付。
解决者: 在其硬件上计算任务,提交结果。
验证者(观察者): 检查解决者的结果;如果错误,可通过欺诈证明提出挑战。
(没有明确的“所有者”角色,因为提交者提供模型;治理角色通过代币持有者实现)。
AI 应用构建者(协调者): 部署 AI 模型服务,质押 CAI,管理分配给矿工的任务。
矿工(GPU/CPU 提供者): 质押 CAI,执行分配的推理任务,返回结果。
终端用户: 使用 AI 应用(用加密货币支付或贡献资源)。
质押者(委托人): 在协调者/矿工上质押,参与治理投票,赚取奖励份额。
共识与验证Yuma 共识: 自定义的“智能证明”——验证者对 AI 输出的评分被聚合(权益加权中位数)以确定矿工奖励。底层链共识类似于 PoS (Substrate) 用于区块,但区块有效性取决于每个周期的 AI 共识。能抵抗高达 50% 的离群评分和合谋。乐观验证(类 Truebit): 假设解决者的结果是正确的,除非有验证者提出挑战。使用交互式链上欺诈证明来精确定位任何不正确的步骤。同时也在实施计算的密码学证明(学习证明)以在不重新执行的情况下验证训练进度。以太坊为交易提供基础共识。权益证明链 + 协调者任务验证: Cuckoo 链使用 PoS 验证者进行区块生产(最初,矿工也帮助保护区块)。AI 任务结果由协调者节点验证(他们根据预期的模型行为检查矿工输出)。尚无专门的加密证明——依赖于质押和声誉(其无需信任的程度在于,不当行为会导致罚没或被差评,而不是自动的数学证明检测)。正在向以太坊共识(rollup)过渡以保障账本安全。
代币与效用TAO 代币: Subtensor 上的原生货币。用于质押(注册和影响共识所需)、交易费/支付(例如支付 AI 查询)以及作为贡献的奖励(挖矿/验证)。TAO 有持续的通货膨胀(每 12 秒一个区块 1 TAO),这驱动了奖励机制。也用于治理(dTAO 质押到子网)。Gensyn 代币(ERC-20,名称待定): 协议的支付单位(开发者用它支付给解决者)。作为质押抵押品(解决者/验证者绑定代币,因过错被罚没)。将用于治理(通过 Gensyn 基金会的 DAO 对协议升级进行投票)。供应细节尚未公布;可能有一部分用于激励早期采用(测试网等)。CAI 代币(ERC-20): Cuckoo 链的原生代币(10 亿固定供应)。多用途:Cuckoo 链上交易的燃料费,网络角色的质押(矿工、协调者必须锁定 CAI),协议决策的治理投票,以及贡献的奖励(挖矿/质押奖励来自初始分配)。也具有 meme 吸引力(社区代币方面)。
资产代币化计算:是——AI 计算工作通过 TAO 奖励被代币化(可将 TAO 视为智能的“燃料”)。模型:间接——模型根据性能赚取 TAO,但模型/权重本身不是链上资产(没有模型的 NFT)。子网所有权被代币化(子网所有者 NFT + alpha 代币)以代表模型市场的份额。数据:未代币化(数据在链下;Bittensor 专注于模型输出而非数据集)。计算:是——闲置计算成为链上商品,在作业市场中用代币交易。模型:不明确——模型由开发者在链下提供,结果返回;没有内置的模型代币(尽管如果各方设置,协议可以促进许可)。数据:否——数据集在提交者和解决者之间在链下处理(可以加密或保护,但不表示为链上资产)。Gensyn 的愿景包括可能像计算一样交易算法或数据,但核心实现以计算为中心。计算:是——GPU 时间通过每日 CAI 支付和任务赏金被代币化。网络将计算能力视为矿工“出售”以换取 CAI 的资源。模型:部分——平台将模型作为服务集成;然而,模型本身并未铸造成 NFT。模型的价值体现在协调者从使用它的用户那里赚取 CAI 的能力上。未来计划暗示社区拥有的模型,但目前模型 IP 在链下(由运行协调者的人拥有)。数据:没有通用的数据代币化。用户输入/输出是短暂的。(Cuckoo 与 Beancount 等应用合作,但数据并未在链上由代币表示。)
治理去中心化,代币持有者驱动 (dTAO): 最初有 64 个选举产生的验证者运行根共识;现在治理是开放的——TAO 持有者向子网质押以引导发行(基于市场的资源分配)。协议升级和变更通过链上提案决定(TAO 投票,由 Bittensor 基金会/理事会协助)。目标是完全由社区治理,基金会逐渐交出控制权。渐进式去中心化: Gensyn 基金会 + 选举产生的理事会管理早期决策。代币发行后,治理将过渡到一个 DAO,代币持有者对提案进行投票(类似于许多 DeFi 项目)。以太坊的共享安全环境意味着重大变更涉及社区和潜在的 Layer-1 治理。治理范围包括经济参数、合约升级(需经安全审计)。尚未上线,但在白皮书中为主网上线后规划。社区与基金会混合: Cuckoo 以“公平启动”理念启动(没有为内部人员预挖)。计划建立一个社区 DAO,由 CAI 对关键决策和协议升级进行投票。实际上,核心团队(Cuckoo Network 开发者)主导了重大决策(如链的弃用),但他们透明地分享理由并将其定位为为社区利益的演变。链上治理功能(提案、投票)很可能在新的 rollup 就位后推出。质押也通过声誉系统非正式地赋予治理影响力(对受信任节点的权益加权投票)。
激励模型与贡献挂钩的通胀奖励: 每个区块约 1 TAO 根据表现分配给参与者。质量越高 = 奖励越多。矿工和验证者持续获得收益(逐块),加上委托人也获得一份。终端用户也使用 TAO 支付服务(为代币创造需求方)。代币经济旨在鼓励长期参与(质押)和模型的不断改进,类似于比特币的矿工,但“挖掘 AI”。潜在问题(质押集中导致奖励错位)正在通过激励调整来解决。市场驱动,按结果付费: 没有持续的通胀收益(除了可能的早期激励);解决者只有在成功完成工作时才获得报酬。验证者只有在抓住欺诈时才获得报酬(大奖激励)。这创造了一个直接的经济体:开发者的支出 = 提供者的收入。代币价值与实际的计算需求挂钩。为了引导,Gensyn 可能会在启动时奖励测试网用户(一次性分配),但在稳定状态下,它是基于使用的。这使得激励与网络效用紧密结合(如果 AI 作业增加,代币使用增加,所有持有者都受益)。混合型(从通胀转向使用费): 最初,来自 51% 社区池的挖矿和质押分配奖励 GPU 矿工(供应量的 30%)和质押者(11%),无论外部使用情况如何——这是为了启动网络效应。随着时间的推移,特别是在 L1 弃用后,重点转向收入分成:矿工和应用开发者从实际用户支付中赚钱(例如,分摊图像生成的费用)。质押者的收益将来自真实使用的一部分,或进行调整以鼓励只支持生产性节点。所以早期的激励是“发展网络”(高 APY、空投),后来是“网络只有在真正有用时才会增长”(来自客户的收入)。这种过渡旨在淘汰搭便车者并确保可持续性。
安全与攻击缓解女巫攻击: 昂贵的注册(TAO 质押)阻止了女巫。合谋: 中位数共识能抵抗高达 50% 质押的合谋;dTAO 通过赋予代币持有者投票权打破了验证者寡头。不诚实: 偏离共识的验证者会失去奖励份额(激励诚实评分)。如果质押高度集中,51% 攻击是可能的——研究建议增加质押上限和性能罚没来缓解。模型攻击: 差或恶意的模型输出会因低分而受到惩罚。没有单点故障——网络是全球去中心化的(TAO 矿工遍布世界,伪匿名)。女巫攻击: 参与需要经济质押;没有质押/工作的虚假节点一无所获。验证: 至少需要一个诚实的验证者——如果是这样,任何错误的结果都会被发现并受到惩罚。使用加密经济激励使作弊得不偿失(解决者失去押金,验证者获得)。合谋: 只要不是所有方都合谋,就是安全的——一个诚实者通过揭露欺诈打破了该计划。信任: 不依赖于对硬件或公司的信任,只依赖于经济博弈论和密码学。攻击: 难以审查或 DoS,因为任务是分布式的;攻击者需要出价高于诚实节点或持续击败欺诈证明(没有多数控制不太可能)。然而,微妙的模型后门可能会逃避检测,这是一个已知的挑战(通过用户测试和未来可能超越正确执行的审计来缓解)。总体安全性类似于用于计算的乐观 rollup。女巫攻击: 所有参与者都必须质押 CAI,提高了女巫的门槛。加上一个声誉系统(质押 + 投票)意味着没有声誉的女巫身份不会得到任务。节点不当行为: 协调者可以放弃表现不佳或可疑的矿工;质押者可以撤回支持。协议可以对已证实的欺诈进行质押罚没(L1 有共识的罚没条件;类似的可适用于任务欺诈)。合谋: 部分基于信任——依赖于公开竞争和社区监督来防止合谋占主导。由于任务和支付在链上是公开的,公然的合谋可以被识别并通过社会或治理方式惩罚。用户保护: 如果一个提供商被审查或损坏,用户可以切换提供商,确保没有单点控制。投毒/内容: 设计上,矿工按原样运行提供的模型;如果他们恶意改变输出,他们会失去声誉和奖励。该系统押注于理性行为者:因为每个人都有质押价值和未来的赚钱潜力,他们没有动机进行会破坏网络信任的攻击(从他们 L1 实验中关于将激励与效用对齐的沉重教训中得到加强)。

表格: Bittensor、Gensyn 和 Cuckoo AI 在架构、焦点、角色、共识、代币、资产代币化、治理、激励和安全方面的功能比较。

可验证 AI 动态:Lagrange Labs 的动态 zk-SNARKs 实现持续信任

· 阅读需 5 分钟
Dora Noda
Software Engineer

在人工智能与区块链快速融合的时代,对信任与透明度的需求前所未有。我们如何确保 AI 模型的输出准确且未被篡改?我们又如何在不牺牲安全性或可扩展性的前提下,对海量链上数据执行复杂计算?Lagrange Labs 正在通过其零知识(ZK)基础设施套件正面回应这些问题,致力于构建“可证明的 AI”。本文客观概述其使命、技术以及近期突破,重点聚焦其最新的动态 zk‑SNARKs 论文。

1. 团队与使命

Lagrange Labs 正在构建基础设施,为任何 AI 推理或链上应用生成密码学证明。其目标是让计算可验证,为数字世界注入全新信任层。生态系统围绕三大核心产品线:

  • ZK Prover Network:由超过 85 个证明节点组成的去中心化网络,提供从 AI、Rollup 到去中心化应用(dApp)等多种证明任务所需的计算能力。
  • DeepProve(zkML):专用于生成神经网络推理的 ZK 证明。Lagrange 声称其速度比竞争方案快 158 倍,让可验证 AI 成为可落地的现实。
  • ZK Coprocessor 1.0:首个基于 SQL 的 ZK 协处理器,允许开发者对海量链上数据执行自定义查询,并获得可验证的准确结果。

2. 可验证 AI 的路线图

Lagrange 按部就班执行路线图,逐步解决 AI 可验证性难题。

  • 2024 年 Q3:ZK Coprocessor 1.0 发布:引入超并行递归电路,平均提升约 2 倍。Azuki、Gearbox 等项目已在链上数据需求中 使用该协处理器
  • 2025 年 Q1:DeepProve 正式亮相:Lagrange 宣布推出针对零知识机器学习(zkML)的 DeepProve,支持 MLP、CNN 等主流网络结构。系统在一次性设置、证明生成、验证三个关键阶段均实现数量级加速,最高可达 158 倍
  • 2025 年 Q2:动态 zk‑SNARKs 论文(最新里程碑):该论文提出突破性的 “update” 算法。无需每次数据或计算变更时重新生成完整证明,而是将旧证明 (π) 打补丁 成新证明 (π'),复杂度仅为 O(√n log³n),大幅优于全量重算。此创新尤为适用于持续学习的 AI 模型、实时游戏逻辑以及可演化的智能合约。

3. 动态 zk‑SNARKs 的意义

可更新证明的出现标志着零知识技术成本模型的根本转变。

  • 全新成本范式:行业从“每次都全量重算”转向“基于变更规模的增量证明”,显著降低频繁小幅更新应用的计算与费用开支。

  • 对 AI 的影响

    • 持续微调:当模型参数微调幅度低于 1% 时,证明生成时间几乎与变更参数数量 (Δ 参数) 成线性关系,而非与模型整体规模成正比。
    • 流式推理:这 使得证明生成可以与推理过程同步进行,大幅压缩 AI 决策到链上结算并验证的延迟,开启链上 AI 服务、Rollup 压缩证明等新用例。
  • 对链上应用的影响

    • 动态 zk‑SNARKs 为频繁小幅状态变更的场景(如 DEX 订单簿、演化游戏状态、频繁增删的账本)带来巨大的 Gas 与时间优化。

4. 技术栈概览

Lagrange 的强大基础设施基于以下集成技术栈:

  • 电路设计:系统灵活,可直接在电路中嵌入 ONNX(开放神经网络交换)模型、SQL 解析器以及自定义算子。
  • 递归与并行:ZK Prover Network 支持分布式递归证明,ZK Coprocessor 通过 “微电路” 分片实现任务并行执行,最大化效率。
  • 经济激励:Lagrange 计划发行原生代币 LA,并将其纳入 双拍卖递归拍卖(DARA) 机制,构建完善的计算竞价市场,配套激励与惩罚以确保网络完整性。

5. 生态与真实落地

Lagrange 的技术已被多个项目在不同领域采纳:

  • AI 与 ML:如 0G LabsStory Protocol 等使用 DeepProve 验证 AI 输出,确保来源可信。
  • Rollup 与基础设施EigenLayerBaseArbitrum 等作为验证节点或集成伙伴加入 ZK Prover Network,提升网络安全与算力。
  • NFT 与 DeFiAzukiGearbox 等项目利用 ZK Coprocessor 增强数据查询可信度与奖励分配的公正性。

6. 挑战与前路

尽管进展显著,Lagrange Labs 与整个 ZK 领域仍面临若干障碍:

  • 硬件瓶颈:即便拥有分布式网络,可更新 SNARK 仍需高带宽,并依赖 GPU 友好的密码曲线以实现高效运算。
  • 标准化缺失:将 ONNX、PyTorch 等 AI 框架映射到 ZK 电路的过程尚未形成统一接口,导致开发者摩擦。
  • 竞争激烈:zkVM 与通用 zkCompute 平台的竞争日趋白热化,Risc‑Zero、Succinct 等竞争者亦在快速迭代。最终的胜者或许是最先实现商业化、开发者友好、社区驱动的完整工具链者。

7. 结论

Lagrange Labs 正在通过 可验证性 的视角系统性重塑 AI 与区块链的交叉领域。其整体解决方案包括:

  • DeepProve:解决 可信推理 的难题。
  • ZK Coprocessor:解决 可信数据 的难题。
  • 动态 zk‑SNARKs:将 持续更新 的真实需求直接嵌入证明系统。

只要 Lagrange 能保持性能优势、突破标准化瓶颈并继续壮大其网络,它有望成为新兴 “AI + ZK 基础设施” 领域的基石玩家。

Camp Network:应对 AI 数十亿美元知识产权问题的区块链 🏕️

· 阅读需 5 分钟
Dora Noda
Software Engineer

生成式 AI 的崛起堪称爆炸式增长。从惊艳的数字艺术到类人文本,AI 正以前所未有的规模创作内容。但这股热潮也有阴暗面:AI 的训练数据来自何处?往往是来自互联网上的海量艺术、音乐和文字作品,而这些作品的创作者往往得不到任何署名或报酬。

Camp Network 正是为了解决这一根本问题而诞生的新区块链项目。它不仅是另一个加密平台,而是一个专为 AI 时代设计的“自主知识产权层”,旨在赋予创作者对其作品的所有权和控制权。下面让我们一起了解为何 Camp Network 值得关注。


核心理念是什么?

Camp Network 本质上是一个全球可验证的知识产权(IP)登记链。其使命是让任何人——从独立艺术家到社交媒体用户——都能在链上注册自己的内容,形成永久、不可篡改的所有权与来源记录。

这为何重要?当 AI 模型使用已在 Camp 上登记的内容时,网络的智能合约可以自动执行许可条款。原始创作者因此能够即时获得署名,甚至收到版税。Camp 的愿景是构建一个全新的创作者经济,报酬不再是事后补偿,而是直接写入协议。


技术栈概览

Camp 不只是概念,它背后有一套为高性能和开发者友好而打造的技术。

  • 模块化架构:Camp 采用 Celestia 作为数据可用性层,构建为主权 Rollup。该设计使其能够实现极高的吞吐量(目标 50,000 TPS)和低成本,同时完全集成以太坊工具(EVM)。
  • 来源证明(PoP):这是 Camp 独有的共识机制。网络安全性不依赖高能耗挖矿,而是通过验证内容来源来实现。每笔交易都在网络上强化 IP 的来源,使所有权“设计即可执行”。
  • 双 VM 策略:为提升性能,Camp 同时集成 Solana 虚拟机(SVM) 与 EVM 兼容层。开发者可根据应用需求选择最佳运行环境,尤其适用于实时 AI 交互等高吞吐场景。
  • 创作者与 AI 工具包:Camp 提供两大框架:
    • Origin Framework:面向创作者的友好系统,用于登记 IP、将其代币化(NFT),并嵌入许可规则。
    • mAItrix Framework:为开发者提供的工具包,帮助构建并部署能够安全、受权限控制地与链上 IP 交互的 AI 代理。

团队、合作伙伴与进展

一个想法的价值取决于执行力,Camp 在这方面表现出色。

团队与融资

项目由一支兼具 Raine Group(媒体与 IP 交易)、Goldman SachsFigmaCoinList 背景的团队领衔。凭借金融、产品技术与加密工程的复合经验,他们已获得 3000 万美元的融资,投资方包括 1kxBlockchain CapitalMaven 11 等顶级风投。

生态布局

Camp 积极构建合作网络。最重要的合作是对 KOR Protocol 的战略持股——该平台专注于音乐 IP 代币化,合作艺人包括 Deadmau5,并与 Black Mirror 等知名品牌合作。此举为 Camp 注入了庞大的高质量、已清晰版权的内容库。其他关键合作伙伴包括:

  • RewardedTV:使用 Camp 实现链上内容版权的去中心化视频流平台。
  • Rarible:集成的 NFT 市场,用于交易 IP 资产。
  • LayerZero:跨链协议,确保与其他区块链的互操作性。

路线图与社区

在成功的激励测试网活动吸引了数万用户(奖励积分可兑换代币)后,Camp 计划于 2025 年第三季度 推出 主网。同时将进行原生代币 $CAMP 的代币生成事件,用于支付 Gas 费、质押及治理。项目已培养出一支热情社区,成员愿意从第一天起即在平台上构建与使用。


与竞争项目的比较

Camp Network 并非唯一的 IP 区块链项目。它面临 a16z 支持的 Story Protocol 与索尼关联的 Soneium 等强劲竞争者。然而,Camp 在以下几个关键方面实现差异化:

  1. 自下而上:竞争者多聚焦大型企业 IP 持有者,Camp 则致力于 赋能独立创作者和加密社区,通过代币激励实现价值分配。
  2. 全链解决方案:从 IP 注册到 AI 代理框架,一站式提供完整工具套件。
  3. 性能与可扩展性:模块化架构与双 VM 支持专为 AI 与媒体的高吞吐需求而设计。

总结

Camp Network 正在为 Web3 时代的知识产权构建基础层。凭借创新技术、强大团队、战略合作以及社区优先的理念,它为生成式 AI 带来的最紧迫问题提供了可落地的解决方案。

真正的考验将在主网发布及实际采用时到来。但截至目前,Camp 已展现出清晰的愿景与卓越的执行力,毫无疑问是值得持续关注的关键项目,致力于为数字创作者打造更公平的未来。

认识 BeFreed.ai – 为 BlockEden.xyz 构建者提供学习燃料

· 阅读需 4 分钟
Dora Noda
Software Engineer

为什么 BlockEden.xyz 在乎

在快节奏的 Web3 世界里,速度就是一切。交付生产级 RPC 和质押基础设施需要我们的团队和社区时刻站在创新前沿。这意味着要紧跟密集的协议、突破性的密码学论文以及快速演进的治理讨论。社区吸收并理解新理念的速度越快,就能越快构建下一代去中心化应用。这正是 BeFreed.ai 发挥作用的地方。

BeFreed.ai 是什么

BeFreed.ai 是一家总部位于旧金山的初创公司,使命简单而强大:在 AI 时代让学习变得愉快且个性化。他们打造了一款智能微学习伴侣,专为构建者和创作者的高强度生活方式而设计。

核心要素:

  • 多种格式 → 一键完成: BeFreed.ai 能处理从厚重书籍、详细视频到复杂技术文档的各种内容,瞬间转化为简短摘要、抽认卡、深度笔记,甚至是播客式音频。
  • 自适应引擎: 平台会随你一起学习,关注你的学习节奏和兴趣,优先呈现最相关的信息,而不是强行推送千篇一律的课程。
  • 内置聊天 & “为何如此” 解释器: 有问题吗?直接提问。BeFreed.ai 支持即时查询,帮助澄清复杂概念,并提供将新洞见与整体目标关联的解释,使学习更有意义。
  • 4.3 万人的学习社区: 学习往往是群体行为。BeFreed.ai 拥有超过 43,000 名学习者的活跃社区,大家分享进度、对有价值的内容作出反馈、提炼关键要点,保持高昂的动力和持续的势头。

为什么对 BlockEden.xyz 构建者重要

对于 BlockEden.xyz 生态中的专注构建者而言,BeFreed.ai 不仅是学习工具,更是战略优势。它可以这样提升你的竞争力:

  • 时间杠杆: 将 300 页的白皮书浓缩为 10 分钟的音频简报,便于在关键治理投票前快速聆听。
  • 上下文保持: 使用抽认卡和思维导图巩固协议细节,帮助你在编写智能合约索引时快速检索。
  • 跨技能成长: 在不离开开发环境的情况下扩展技能。学习设计思维基础、了解增长循环,或在空闲时获取 Go 并发编程技巧。
  • 共享词汇表: 为团队创建统一的学习播放列表,确保每位贡献者都从同一套精炼且一致的信息源学习,促进更好的协作与对齐。

在 BlockEden.xyz 工作流中使用 BeFreed

将 BeFreed.ai 融入现有开发流程轻松且立竿见影:

  1. 投放规格: 将最新的代币经济学 PDF 链接或 YouTube 开发者会议链接粘贴到 BeFreed,即可获得即时、易于消化的摘要。
  2. 导出抽认卡: 在 CI 运行期间复习关键概念。这种重复远比不断切换上下文导致的精神疲劳更有效。
  3. 文档中链接: 在每个 API 参考旁嵌入 BeFreed 摘要链接,帮助新成员更快上手。
  4. 保持最新: 在 BeFreed 上设置每周新兴 L2 汇总,并立即将所学运用到 BlockEden.xyz 的多链 RPC 服务原型中。

开始使用

BeFreed.ai 已在 iOS、Android 和网页端上线。我们鼓励你在下一个 BlockEden.xyz 项目冲刺中尝试它,感受它如何提升你的学习与构建速度。我们的团队已经在探索更紧密的集成——想象一下,未来的 webhook 能自动将每个合并的 PR 描述转化为完整的学习集。

通过 MCP 连接 AI 与 Web3:全景分析

· 阅读需 19 分钟
Dora Noda
Software Engineer

引言

AI 与 Web3 正在以强大的方式融合,AI 通用接口如今被设想为去中心化网络的连接组织。在这种融合中出现的一个关键概念是 MCP,它可以是“模型上下文协议”(Model Context Protocol,由 Anthropic 提出),或在更广泛的讨论中被粗略地描述为元宇宙连接协议(Metaverse Connection Protocol)。本质上,MCP 是一个标准化的框架,让 AI 系统能够以自然、安全的方式与外部工具和网络进行交互——这有可能将 AI 代理“接入”到 Web3 生态系统的每一个角落。本报告将全面分析 AI 通用接口(如大型语言模型代理和神经符号系统)如何通过 MCP 连接 Web3 世界中的一切,涵盖其历史背景、技术架构、行业格局、风险及未来潜力。

1. 发展背景

1.1 Web3 的演变与未竟的承诺

“Web3”一词于 2014 年左右被创造出来,用以描述一个由区块链驱动的去中心化网络。其愿景雄心勃勃:一个以用户所有权为中心的无许可互联网。爱好者们曾想象用基于区块链的替代方案取代 Web2 的中心化基础设施——例如,用以太坊域名服务(ENS)替代 DNS,用 Filecoin 或 IPFS 替代存储,用 DeFi 替代金融轨道。理论上,这将从大型科技平台手中夺回控制权,并赋予个人对数据、身份和资产的自我主权。

但现实未能如愿。尽管经过多年的发展和炒作,Web3 的主流影响力仍然微乎其微。普通互联网用户并未涌向去中心化的社交媒体,也没有开始管理自己的私钥。主要原因包括用户体验差、交易缓慢且昂贵、备受瞩目的骗局以及监管不确定性。这个去中心化的“所有权网络”在很大程度上**“未能实现”**,仅限于一个小众社区。到 2020 年代中期,即使是加密货币的支持者也承认,Web3 并未为普通用户带来范式转变。

与此同时,AI 正在经历一场革命。随着资本和开发者人才从加密领域转向 AI,深度学习和基础模型(GPT-3、GPT-4 等)的变革性进展吸引了公众的想象力。生成式 AI 展示了清晰的实用性——生成内容、代码和决策——这是加密应用一直难以做到的。事实上,大型语言模型在短短几年内的影响力,远远超过了区块链十年的用户采用速度。这种对比让一些人调侃道,“Web3 浪费在了加密货币上”,而真正的 Web 3.0 正在从 AI 浪潮中崛起。

1.2 AI 通用接口的兴起

几十年来,用户界面从静态网页(Web1.0)演变为交互式应用(Web2.0)——但始终局限于点击按钮和填写表单。随着现代 AI,尤其是大型语言模型(LLM)的出现,一种新的界面范式已经到来:自然语言。用户只需用通俗的语言表达意图,AI 系统就能跨多个领域执行复杂的操作。这一转变是如此深刻,以至于一些人建议将“Web 3.0”重新定义为 AI 驱动代理的时代(“代理网络”,The Agentic Web),而不是早期以区块链为中心的定义。

然而,早期对自主 AI 代理的实验暴露了一个关键瓶颈。这些代理——例如像 AutoGPT 这样的原型——可以生成文本或代码,但它们缺乏一种稳健的方式来与外部系统和彼此进行通信。当时*“没有通用的 AI 原生语言”*来实现互操作性。每一次与工具或数据源的集成都是一次定制化的修补,而 AI 之间的交互也没有标准协议。实际上,一个 AI 代理可能拥有强大的推理能力,但在执行需要使用 Web 应用或链上服务的任务时却会失败,仅仅因为它不知道如何与这些系统“对话”。这种强大的大脑与原始的输入/输出(I/O)之间的不匹配,就好比一个超级智能的软件被困在一个笨拙的图形用户界面(GUI)之后。

1.3 融合与 MCP 的出现

到 2024 年,情况变得明朗:要让 AI 发挥其全部潜力(并让 Web3 实现其承诺),需要一次融合:AI 代理需要无缝访问 Web3 的能力(去中心化应用、合约、数据),而 Web3 需要更多的智能和可用性,这正是 AI 可以提供的。MCP(模型上下文协议)正是在这样的背景下诞生的。MCP 由 Anthropic 在 2024 年末推出,是一个开放的 AI-工具通信标准,对 LLM 来说感觉很自然。它为 AI“宿主”(如 ChatGPT、Claude 等)提供了一种结构化、可发现的方式,通过 MCP 服务器来查找和使用各种外部工具和资源。换句话说,MCP 是一个通用的接口层,使 AI 代理能够接入 Web 服务、API 甚至区块链功能,而无需为每次集成编写定制代码。

可以把 MCP 想象成**“AI 接口的 USB-C”。就像 USB-C 标准化了设备的连接方式(这样你就不需要为每个设备准备不同的线缆),MCP 标准化了 AI 代理与工具和数据的连接方式。开发者无需为每个服务(Slack、Gmail、以太坊节点等)硬编码不同的 API 调用,只需实现一次 MCP 规范,任何兼容 MCP 的 AI 都能理解如何使用该服务。主要的 AI 参与者很快看到了其重要性:Anthropic 开源了 MCP,像 OpenAI 和 Google 这样的公司正在其模型中构建对它的支持。这一势头表明,MCP(或类似的“元连接协议”**)可能成为最终以可扩展的方式连接 AI 和 Web3 的支柱。

值得注意的是,一些技术专家认为,这种以 AI 为中心的连接才是 Web3.0 的真正实现。用 Simba Khadder 的话来说,“MCP 旨在标准化 LLM 与应用程序之间的 API”,类似于 REST API 如何促成了 Web 2.0——这意味着 Web3 的下一个时代可能由智能代理接口定义,而不仅仅是区块链。与为去中心化而中心化不同,与 AI 的融合可以通过将复杂性隐藏在自然语言和自主代理之后,使去中心化变得有用。本报告的其余部分将深入探讨 AI 通用接口(通过像 MCP 这样的协议)在技术上和实践上如何连接 Web3 世界中的一切

2. 技术架构:连接 Web3 技术的 AI 接口

将 AI 代理嵌入 Web3 技术栈需要在多个层面进行集成:区块链网络和智能合约、去中心化存储、身份系统以及基于代币的经济体。AI 通用接口——从大型基础模型到混合神经符号系统——可以作为连接这些组件的**“通用适配器”**。下面,我们分析这种集成的架构:

图:MCP 架构的概念图,展示了 AI 宿主(如 Claude 或 ChatGPT 等基于 LLM 的应用)如何使用 MCP 客户端接入各种 MCP 服务器。每个服务器都提供一个通往外部工具或服务(如 Slack、Gmail、日历或本地数据)的桥梁,类似于通过一个通用集线器连接的外围设备。这种标准化的 MCP 接口让 AI 代理可以通过一个通用协议访问远程服务和链上资源。

2.1 作为 Web3 客户端的 AI 代理(与区块链集成)

Web3 的核心是区块链和智能合约——能够以无需信任的方式强制执行逻辑的去中心化状态机。AI 接口如何与它们互动?可以从两个方向考虑:

  • AI 从区块链读取数据: AI 代理可能需要链上数据(如代币价格、用户资产余额、DAO 提案)作为其决策的上下文。传统上,检索区块链数据需要与节点 RPC API 或子图数据库进行交互。有了像 MCP 这样的框架,AI 可以查询一个标准化的*“区块链数据”* MCP 服务器来获取实时的链上信息。例如,一个支持 MCP 的代理可以请求某个代币的最新交易量,或某个智能合约的状态,而 MCP 服务器将处理连接到区块链的底层细节,并以 AI 可以使用的格式返回数据。这通过将 AI 与任何特定区块链的 API 格式解耦,提高了互操作性。

  • AI 向区块链写入数据: 更强大的是,AI 代理可以通过 Web3 集成执行智能合约调用或交易。例如,如果满足某些条件,AI 可以自主地在去中心化交易所执行一笔交易,或调整智能合约中的参数。这是通过 AI 调用一个封装了区块链交易功能的 MCP 服务器来实现的。一个具体的例子是用于 EVM 链的 thirdweb MCP 服务器,它允许任何兼容 MCP 的 AI 客户端通过抽象掉特定链的机制来与以太坊、Polygon、BSC 等进行交互。使用这样的工具,AI 代理可以*“无需人工干预”*地触发链上操作,从而实现自主的 dApp——例如,一个由 AI 驱动的 DeFi 金库,当市场条件变化时,通过签署交易来自我重新平衡

在底层,这些交互仍然依赖于钱包、密钥和 Gas 费,但可以给予 AI 接口对钱包的受控访问权限(通过适当的安全沙箱)来执行交易。预言机和跨链桥也发挥了作用:像 Chainlink 这样的预言机网络充当了 AI 与区块链之间的桥梁,允许 AI 的输出以可信的方式被输入到链上。例如,Chainlink 的跨链互操作性协议(CCIP)可以使一个被认为是可靠的 AI 模型代表用户同时在不同链上触发多个合约。总而言之,AI 通用接口可以作为一种新型的 Web3 客户端——一种既能消费区块链数据,又能通过标准化协议产生区块链交易的客户端。

2.2 神经符号协同:结合 AI 推理与智能合约

AI-Web3 集成的一个有趣方面是神经符号架构的潜力,它结合了 AI 的学习能力(神经网络)与智能合约的严谨逻辑(符号规则)。在实践中,这可能意味着 AI 代理处理非结构化的决策,并将某些任务交给智能合约进行可验证的执行。例如,AI 可能会分析市场情绪(一个模糊的任务),然后通过一个遵循预设风险规则的确定性智能合约来执行交易。MCP 框架及相关标准通过为 AI 提供一个通用接口来调用合约函数或在行动前查询 DAO 的规则,使这种交接成为可能。

一个具体的例子是 SingularityNET 的 AI-DSL(AI 领域特定语言),它旨在标准化其去中心化网络上 AI 代理之间的通信。这可以被看作是迈向神经符号集成的一步:一种用于代理之间请求 AI 服务或数据的正式语言(符号)。同样,像 DeepMind 的 AlphaCode 或其他项目最终也可能被连接起来,以便智能合约可以调用 AI 模型进行链上问题解决。尽管今天直接在链上运行大型 AI 模型是不切实际的,但混合方法正在出现:例如,某些区块链允许通过零知识证明或可信执行来验证机器学习计算,从而实现在链上验证链下 AI 结果。总而言之,技术架构将 AI 系统和区块链智能合约设想为互补的组件,通过通用协议进行协调:AI 处理感知和开放式任务,而区块链提供完整性、记忆和对既定规则的执行。

2.3 用于 AI 的去中心化存储和数据

AI 依赖于数据,而 Web3 为数据存储和共享提供了新的范式。去中心化存储网络(如 IPFS/Filecoin、Arweave、Storj 等)既可以作为 AI 模型工件的存储库,也可以作为训练数据的来源,并带有基于区块链的访问控制。一个 AI 通用接口,通过 MCP 或类似协议,可以像从 Web2 API 那样轻松地从去中心化存储中获取文件或知识。例如,如果一个 AI 代理拥有适当的密钥或支付凭证,它可能会从 Ocean Protocol 的市场中提取一个数据集,或从分布式存储中获取一个加密文件。

Ocean Protocol 特别将自己定位为一个**“AI 数据经济”平台——使用区块链来将数据甚至 AI 服务代币化**。在 Ocean 中,数据集由数据代币(datatokens)表示,用于控制访问;一个 AI 代理可以获得一个数据代币(可能通过加密货币支付或某种访问权限),然后使用 Ocean MCP 服务器来检索实际数据进行分析。Ocean 的目标是为 AI 解锁“休眠数据”,在保护隐私的同时激励共享。因此,一个连接到 Web3 的 AI 可能会利用一个庞大的、去中心化的信息语料库——从个人数据保险库到开放的政府数据——这些数据以前是孤立的。区块链确保数据的使用是透明的,并且可以得到公平的回报,从而形成一个良性循环,即更多的数据可供 AI 使用,更多的 AI 贡献(如训练好的模型)可以被货币化。

去中心化身份系统在这里也扮演着一个角色(下一小节将详细讨论):它们可以帮助控制谁或什么被允许访问某些数据。例如,一个医疗 AI 代理可能需要出示一个可验证的凭证(链上证明其符合 HIPAA 或类似法规),然后才能从患者的个人 IPFS 存储中解密医疗数据集。通过这种方式,技术架构确保数据在适当的情况下流向 AI,但带有链上治理和审计跟踪来强制执行权限。

2.4 去中心化环境中的身份与代理管理

当自主 AI 代理在像 Web3 这样的开放生态系统中运行时,身份和信任变得至关重要。去中心化身份(DID)框架提供了一种为 AI 代理建立数字身份的方法,这些身份可以通过密码学进行验证。每个代理(或部署它的人/组织)都可以拥有一个 DID 和相关的可验证凭证,用于指定其属性和权限。例如,一个 AI 交易机器人可以持有一个由监管沙箱颁发的凭证,证明它可以在某些风险限制内操作,或者一个 AI 内容审核员可以证明它是由一个可信的组织创建的,并经过了偏见测试。

通过链上身份注册表和声誉系统,Web3 世界可以对 AI 的行为强制执行问责制。AI 代理执行的每一笔交易都可以追溯到其 ID,如果出现问题,凭证会告诉你是谁构建了它或谁对此负责。这解决了一个关键挑战:没有身份,恶意行为者可以创建虚假的 AI 代理来利用系统或传播错误信息,没有人能区分机器人和合法服务。去中心化身份通过实现强大的身份验证和区分真实的 AI 代理与欺骗性代理,帮助缓解了这一问题。

在实践中,一个与 Web3 集成的 AI 接口将使用身份协议来签署其操作和请求。例如,当一个 AI 代理调用 MCP 服务器使用工具时,它可能会包含一个与其去中心化身份绑定的令牌或签名,以便服务器可以验证该调用来自一个授权的代理。基于区块链的身份系统(如以太坊的 ERC-725 或锚定在账本上的 W3C DID)确保这种验证是无需信任且全球可验证的。新兴的**“AI 钱包”*概念与此相关——本质上是为 AI 代理提供与其身份相关联的加密货币钱包,这样它们就可以管理密钥、支付服务费用,或质押代币作为保证金(如果行为不当,可能会被罚没)。例如,ArcBlock 已经讨论过“AI 代理需要一个钱包”*和一个 DID 才能在去中心化环境中负责任地运作。

总而言之,技术架构预见到 AI 代理将成为 Web3 中的一等公民,每个代理都拥有链上身份,并可能在系统中持有股份,使用像 MCP 这样的协议进行交互。这创造了一个信任之网:智能合约可以在合作前要求 AI 的凭证,用户可以选择只将任务委托给那些满足某些链上认证的 AI。这是AI 能力与区块链信任保证的结合。

2.5 AI 的代币经济与激励机制

代币化是 Web3 的一个标志,它也延伸到了 AI 集成领域。通过代币引入经济激励,网络可以鼓励 AI 开发者和代理本身产生期望的行为。几种模式正在出现:

  • 服务付费: AI 模型和服务可以在链上进行货币化。SingularityNET 开创了这一模式,允许开发者部署 AI 服务,并为每次调用向用户收取原生代币(AGIX)。在支持 MCP 的未来,可以想象任何 AI 工具或模型都成为一个即插即用的服务,其使用通过代币或微支付来计量。例如,如果一个 AI 代理通过 MCP 使用第三方视觉 API,它可以通过将代币转移到服务提供商的智能合约来自动处理支付。Fetch.ai 同样设想了*“自主经济代理”*交易服务和数据的市场,其新的 Web3 LLM(ASI-1)可能会集成加密交易以进行价值交换。

  • 质押与声誉: 为确保质量和可靠性,一些项目要求开发者或代理质押代币。例如,DeMCP 项目(一个去中心化的 MCP 服务器市场)计划使用代币激励来奖励创建有用 MCP 服务器的开发者,并可能让他们质押代币作为对其服务器安全承诺的标志。声誉也可以与代币挂钩;例如,一个表现持续良好的代理可能会积累声誉代币或正面的链上评价,而行为不端的代理可能会失去质押或获得负面标记。这种代币化的声誉可以反馈到上面提到的身份系统中(智能合约或用户在信任代理前检查其链上声誉)。

  • 治理代币: 当 AI 服务成为去中心化平台的一部分时,治理代币允许社区引导其发展。像 SingularityNET 和 Ocean 这样的项目都有 DAO,代币持有者可以对协议变更或资助 AI 计划进行投票。在合并了 SingularityNET、Fetch.ai 和 Ocean Protocol 的新宣布的人工超级智能(ASI)联盟中,一个统一的代币(ASI)将用于治理一个联合的 AI+区块链生态系统的方向。这样的治理代币可以决定采用何种标准(例如,支持 MCP 或 A2A 协议)、孵化哪些 AI 项目,或如何处理 AI 代理的道德准则等政策。

  • 访问与效用: 代币不仅可以控制对数据的访问(如 Ocean 的数据代币),还可以控制对 AI 模型的使用。一种可能的情景是*“模型 NFT”*或类似的东西,其中拥有一个代币可以授予你对 AI 模型输出的权利或其利润的一部分。这可以支撑去中心化的 AI 市场:想象一个代表高性能模型部分所有权的 NFT;每当该模型被用于推理任务时,所有者共同赚取收益,并且他们可以投票决定对其进行微调。虽然这还处于实验阶段,但这与 Web3 将共享所有权理念应用于 AI 资产的精神是一致的。

在技术上,集成代币意味着 AI 代理需要钱包功能(如前所述,许多代理将拥有自己的加密钱包)。通过 MCP,一个 AI 可以拥有一个*“钱包工具”*,让它检查余额、发送代币或调用 DeFi 协议(也许是为了将一种代币换成另一种来支付服务费用)。例如,如果一个在以太坊上运行的 AI 代理需要一些 Ocean 代币来购买数据集,它可能会通过一个 DEX 使用 MCP 插件自动将一些 ETH 换成 $OCEAN,然后继续购买——所有这些都在其所有者设定的策略指导下,无需人工干预。

总的来说,代币经济在 AI-Web3 架构中提供了激励层,确保贡献者(无论是提供数据、模型代码、计算能力还是安全审计)得到回报,并确保 AI 代理有*“切身利益”*,这在某种程度上使它们与人类的意图保持一致。

3. 行业格局

AI 与 Web3 的融合催生了一个充满活力的生态系统,包括项目、公司和联盟。下面我们调查了推动这一领域的关键参与者和倡议,以及新兴的用例。表 1 概述了著名项目及其在 AI-Web3 格局中的角色:

**