跳到主要内容

ZK 协处理器:突破区块链计算瓶颈的基础设施

· 阅读需 16 分钟
Dora Noda
Software Engineer

当以太坊处理交易时,每一次计算都发生在链上——可验证、安全且极其昂贵。这种根本性的限制多年来一直制约着开发者的创作空间。但一类新型基础设施正在改写规则:ZK 协处理器正为资源受限的区块链带来无限的计算能力,且无需牺牲去信任化。

到 2025 年 10 月,Brevis 网络(Brevis Network)的 ZK 协处理器已经生成了 1.25 亿个零知识证明,支持了超过 28 亿美元的总锁仓价值(TVL),并验证了超过 10 亿美元的交易量。这不再是实验性技术,而是生产级的基础设施,使以前在链上不可能实现的应用程序成为现实。

定义区块链的计算瓶颈

区块链面临着固有的三难困境:它们可以实现去中心化、安全或可扩展性——但同时实现这三者一直难以企及。以太坊上的智能合约为每一步计算支付 Gas 费,使得复杂的操作变得异常昂贵。想要分析用户的完整交易历史以确定其忠诚度等级?根据数百个链上动作计算个性化游戏奖励?为 DeFi 风险模型运行机器学习推理?

传统的智能合约无法经济地完成这些任务。读取历史区块链数据、处理复杂算法以及访问跨链信息都需要大量计算,如果这些计算在 Layer 1 上执行,大多数应用都会入不敷出。这就是为什么 DeFi 协议使用简化的逻辑,游戏依赖链下服务器,而 AI 集成很大程度上仍停留在概念阶段。

变通方法一直是一样的:将计算移至链下,并信任中心化的一方来正确执行。但这违背了区块链去信任化架构的初衷。

走进 ZK 协处理器:链下执行,链上验证

零知识协处理器通过引入一种新的计算范式来解决这个问题:“链下计算 + 链上验证”。它们允许智能合约将繁重的处理工作委托给专门的链下基础设施,然后使用零知识证明在链上验证结果——而无需信任任何中间方。

实际运作方式如下:

  1. 数据访问:协处理器读取历史区块链数据、跨链状态或外部信息,这些信息在链上访问的 Gas 成本极高。
  2. 链下计算:复杂算法在针对性能优化的专门环境中运行,不受 Gas 限制。
  3. 证明生成:生成零知识证明,证明计算是针对特定输入正确执行的。
  4. 链上验证:智能合约在毫秒内验证证明,无需重新执行计算或查看原始数据。

这种架构在经济上是可行的,因为在链下生成证明并在链上进行验证的成本远低于直接在 Layer 1 上执行计算。结果是:智能合约获得了无限的计算能力,同时保留了区块链的安全保障。

演进历程:从 zkRollups 到 ZK 协处理器

这项技术并非一蹴而就。零知识证明系统经历了不同的演进阶段:

L2 zkRollups 开创了“链下计算,链上验证”的模式,用于扩展交易吞吐量。zkSync 和 StarkNet 等项目打包成千上万条交易,在链下执行,并向以太坊提交一个有效性证明——在继承以太坊安全性的同时大幅提升容量。

zkVMs(零知识虚拟机) 推广了这一概念,使任意计算都能被证明是正确的。开发者不再局限于交易处理,可以编写任何程序并生成其执行的可验证证明。Brevis 的 Pico/Prism zkVM 在 64×RTX 5090 GPU 集群上实现了 6.9 秒的平均证明时间,使实时验证变得可行。

ZK 协处理器 代表了下一次演进:专门的基础设施,将 zkVMs 与数据协处理器结合,以处理历史和跨链数据访问。它们专门针对区块链应用的独特需求而构建——读取链上历史、跨多条链进行桥接,并为智能合约提供以前锁定在中心化 API 后面的能力。

Lagrange 在 2025 年推出了第一个基于 SQL 的 ZK 协处理器,使开发者能够直接从智能合约中证明对海量链上数据的自定义 SQL 查询。Brevis 紧随其后推出了多链架构,支持跨以太坊、Arbitrum、Optimism、Base 和其他网络的可验证计算。Axiom 专注于具有电路回调(circuit callbacks)的可验证历史查询,以实现可编程验证逻辑。

ZK 协处理器与替代方案的比较

了解 ZK 协处理器的定位,需要将其与相邻技术进行比较:

ZK 协处理器 vs. zkML

零知识机器学习 (zkML) 使用类似的证明系统,但针对的是不同的问题:证明 AI 模型产生了特定的输出,而不泄露模型权重或输入数据。zkML 主要侧重于推理验证——确认神经网络得到了诚实的评估。

关键区别在于工作流程。使用 ZK 协处理器,开发者编写明确的实现逻辑,确保电路正确性,并为确定性计算生成证明。而在 zkML 中,过程始于数据探索和模型训练,然后才创建电路以验证推理。ZK 协处理器处理通用逻辑;zkML 则专门用于让 AI 在链上可验证。

这两种技术共享相同的验证范式:计算在链下运行,同时产生结果和零知识证明。区块链在几毫秒内验证证明,而无需查看原始输入或重新执行计算。但 zkML 电路针对张量运算和神经网络架构进行了优化,而协处理器电路则处理数据库查询、状态转换和跨链数据聚合。

ZK 协处理器 vs. Optimistic Rollups

Optimistic Rollups 和 ZK Rollups 都通过将执行转移到链下来扩展区块链,但它们的信任模型有本质区别。

Optimistic Rollups 默认假设交易是有效的。验证者提交不带证明的交易批次,任何人都可以在争议期(通常为 7 天)内对无效批次提出挑战。这种延迟的最终性意味着从 Optimism 或 Arbitrum 提取资金需要等待一周——这对于扩展性来说是可以接受的,但对于许多应用来说则存在问题。

ZK 协处理器 立即证明正确性。每个批次都包含一个在接受前经过链上验证的有效性证明。没有争议期,没有欺诈假设,也没有长达一周的提款延迟。交易实现了即时最终性。

历史上的权衡在于复杂性和成本。生成零知识证明需要专门的硬件和复杂的密码学,这使得 ZK 基础设施的运行成本更高。但硬件加速正在改变这一经济格局。Brevis 的 Pico Prism 实现了 96.8% 的实时证明覆盖,这意味着证明生成速度快到足以跟上交易流——消除了曾让乐观方案更具优势的性能差距。

在当前市场中,像 Arbitrum 和 Optimism 这样的 Optimistic Rollups 仍然在总锁仓价值 (TVL) 中占据主导地位。它们的 EVM 兼容性和更简单的架构使其更容易大规模部署。但随着 ZK 技术的成熟,有效性证明的即时最终性和更强的安全保障正在改变势头。Layer 2 扩展只是一个用例;ZK 协处理器解锁了一个更广泛的类别——适用于任何链上应用的可验证计算。

现实应用:从 DeFi 到游戏

该基础设施实现了以前不可能或需要中心化信任的用例:

DeFi:动态费用结构和忠诚度计划

去中心化交易所难以实施复杂的忠诚度计划,因为在链上计算用户的历史交易量极其昂贵。通过 ZK 协处理器,DEX 可以跟踪跨多条链的终生交易量,计算 VIP 等级,并动态调整交易费用——所有这些都可以在链上验证。

构建在 Brevis zkCoprocessor 之上的 Incentra,在不暴露敏感用户数据的情况下,根据验证后的链上活动发放奖励。协议现在可以根据过去的还款行为实施信贷额度,利用预定义算法进行主动流动性头寸管理,以及动态清算偏好——所有这些都由密码学证明支持,而不是受信任的中间机构。

游戏:无需中心化服务器的个性化体验

区块链游戏面临 UX 困境:在链上记录玩家的每一次操作非常昂贵,但将游戏逻辑转移到链下又需要信任中心化服务器。ZK 协处理器开启了第三条道路。

智能合约现在可以回答复杂的查询,例如“哪些钱包在过去一周内赢得了这场比赛,铸造了我收藏的 NFT,并且至少登录了两小时的游戏时间?”这为个性化的 LiveOps 提供了动力——根据验证后的链上历史记录而非中心化分析,动态提供游戏内购买、匹配对手、触发奖励活动。

玩家获得个性化体验。开发者保留去信任的基础设施。游戏状态保持可验证。

跨链应用:无需跨链桥的统一状态

从另一个区块链读取数据传统上需要跨链桥——受信任的中间机构,它们将资产锁定在一条链上并在另一条链上铸造资产代表。ZK 协处理器通过密码学证明直接验证跨链状态。

以太坊上的智能合约可以查询用户在 Polygon 上的 NFT 持有量、在 Arbitrum 上的 DeFi 头寸以及在 Optimism 上的治理投票——所有这些都无需信任跨链桥运营商。这解锁了跨链信用评分、统一身份系统和多链声誉协议。

竞争格局:谁在构建什么

ZK 协处理器领域已经围绕几个关键参与者形成了格局,每个参与者都有独特的架构方案:

Brevis Network 在 “ZK 数据协处理器 + 通用 zkVM” 的融合方面处于领先地位。其 zkCoprocessor 处理历史数据读取和跨链查询,而 Pico/Prism zkVM 则为任意逻辑提供可编程计算。Brevis 在种子代币轮融资中筹集了 750 万美元,并已在 Ethereum、Arbitrum、Base、Optimism、BSC 等网络上部署。随着 2026 年的到来,其 BREV 代币在交易所的势头正日益强劲。

Lagrange 通过 ZK Coprocessor 1.0 开创了基于 SQL 的查询,使链上数据可以通过熟悉的数据库接口进行访问。开发者可以直接从智能合约中证明自定义 SQL 查询,大大降低了构建数据密集型应用的技能门槛。Azuki、Gearbox 等协议使用 Lagrange 进行可验证的历史分析。

Axiom 专注于带有电路回调(circuit callbacks)的可验证查询,允许智能合约请求特定的历史数据点并接收正确性的加密证明。其架构针对应用需要精确的区块链历史切片而非通用计算的场景进行了优化。

Space and Time 将可验证数据库与 SQL 查询相结合,目标是需要链上验证和传统数据库功能的企业级用例。其方法吸引了正在将现有系统迁移到区块链基础设施的机构。

市场正在迅速演变,2026 年被广泛视为 “ZK 基础设施元年”。随着证明生成速度的加快、硬件加速的改进以及开发者工具的成熟,ZK 协处理器正从实验性技术转型为关键的生产基础设施。

技术挑战:为什么这很困难

尽管取得了进展,但重大障碍仍然存在。

证明生成速度 瓶颈限制了许多应用。即使使用 GPU 集群,复杂的计算可能也需要几秒或几分钟来生成证明——这对于某些用例是可以接受的,但对于高频交易或实时游戏则存在问题。Brevis 6.9 秒的平均处理时间代表了尖端性能,但要实现所有工作负载的亚秒级证明,还需要进一步的硬件创新。

电路开发复杂性 造成了开发者摩擦。编写零知识电路需要专业的密码学知识,而大多数区块链开发者并不具备这些知识。虽然 zkVM 通过让开发者使用熟悉的语言编写代码来抽象掉一些复杂性,但为了性能而优化电路仍然需要专业知识。工具的改进正在缩小这一差距,但这仍然是主流采用的一个障碍。

数据可用性 带来了协调挑战。协处理器必须维护跨多条链的区块链状态同步视图,处理重组(reorgs)、最终性(finality)和共识差异。确保证明引用规范链状态需要复杂的基础设施——特别是对于不同网络具有不同最终性保证的跨链应用。

经济可持续性 仍不确定。运营证明生成基础设施是资本密集型的,需要专门的 GPU 和持续的运营成本。协处理器网络必须平衡证明成本、用户费用和代币激励,以创建可持续的业务模式。早期项目正在补贴成本以引导采用,但长期生存能力取决于能否在大规模应用中证明单位经济效益。

基础设施论点:计算作为可验证的服务层

ZK 协处理器正在作为 “可验证服务层” 出现——即提供功能且无需信任的区块链原生 API。这反映了云计算的演进过程:开发者不再构建自己的服务器,而是使用 AWS API。同样地,智能合约开发者不应该需要重新实现历史数据查询或跨链状态验证——他们应该调用经过验证的基础设施。

这种范式转变虽微妙但深远。问题不再是 “这个区块链能做什么?”,而是 “这个智能合约可以访问哪些可验证服务?” 区块链提供结算和验证;协处理器提供无限的计算。它们共同解锁了既需要去信任化又需要复杂性的应用程序。

这不仅限于 DeFi 和游戏。现实世界资产(RWA)代币化需要关于财产所有权、大宗商品价格和监管合规性的经过验证的链下数据。去中心化身份需要聚合多个区块链上的凭证并验证撤销状态。AI 代理需要证明其决策过程而不暴露专有模型。所有这些都需要可验证计算——这正是 ZK 协处理器提供的核心能力。

这种基础设施还改变了开发者思考区块链限制的方式。多年来,准则一直是 “针对 Gas 效率进行优化”。有了协处理器,开发者可以像 Gas 限制不存在一样编写逻辑,然后将昂贵的操作卸载到可验证的基础设施中。这种心态转变——从受限的智能合约到拥有无限算力的智能合约——将重塑链上构建的内容。

2026 年展望:从研究走向生产

多种趋势正在汇聚,使 2026 年成为 ZK 协处理器采用的拐点。

硬件加速 正在大幅提高证明生成性能。像 Cysic 这样的公司正在为零知识证明构建专用 ASIC,类似于比特币挖矿从 CPU 演变到 GPU 再到 ASIC 的过程。当证明生成变得快 10-100 倍且成本更低时,经济壁垒将彻底瓦解。

开发者工具 正在抽象化复杂性。早期的 zkVM 开发需要电路设计专业知识;现代框架让开发者编写 Rust 或 Solidity,并自动编译为可证明电路。随着这些工具的成熟,开发体验将接近编写标准智能合约 —— 可验证计算将成为默认选项,而非例外。

机构采用 正在推动对可验证基础设施的需求。随着贝莱德 (BlackRock) 将资产代币化以及传统银行推出稳定币结算系统,他们需要可验证的离链计算来进行合规、审计和监管报告。ZK 协处理器提供了实现这种去信任化的基础设施。

跨链碎片化 产生了对统一状态验证的紧迫需求。随着数百个 Layer 2 导致流动性和用户体验碎片化,应用程序需要一种方法来聚合跨链状态,而无需依赖桥接中间件。协处理器提供了唯一的去信任解决方案。

生存下来的项目可能会围绕特定的垂直领域进行整合:Brevis 用于通用多链基础设施,Lagrange 用于数据密集型应用,Axiom 用于历史查询优化。与云提供商一样,大多数开发者不会运行自己的证明基础设施 —— 他们将消费协处理器 API,并为“验证即服务”付费。

大局观:无限计算与区块链安全的碰撞

ZK 协处理器解决了区块链最基本的限制之一:你可以在去信任安全或复杂计算中二选一,但不能兼得。通过将执行与验证解耦,它们使这种权衡变得过时。

这将开启下一波区块链应用 —— 那些在旧约束下无法存在的应用。具有传统金融级风险管理的 DeFi 协议。在可验证基础设施上运行的具有 AAA 级制作价值的游戏。自主运行并带有决策过程加密证明的 AI 代理。感觉像单一统一平台的跨链应用。

基础设施已经就绪。证明速度已经足够快。开发者工具正在趋于成熟。剩下的就是构建那些以前不可能实现的应用 —— 并见证一个行业意识到,区块链的计算限制从来不是永久性的,只是在等待合适的基础设施来实现突破。

BlockEden.xyz 在正在构建 ZK 协处理器应用的区块链上提供企业级 RPC 基础设施 —— 从 Ethereum 和 Arbitrum 到 Base、Optimism 等。探索我们的 API 市场 以访问同样可靠的节点基础设施,为下一代可验证计算提供动力。