본문으로 건너뛰기

Gensyn의 Judge: 비트 단위의 정확한 재현성이 불투명한 AI API 시대를 끝내는 방법

· 약 18 분
Dora Noda
Software Engineer

ChatGPT, Claude 또는 Gemini를 쿼리할 때마다 사용자는 보이지 않는 블랙박스를 신뢰하게 됩니다. 모델 버전은? 알 수 없습니다. 정확한 가중치(weights)는? 비공개입니다. 출력이 사용자가 생각하는 모델에 의해 생성되었는지, 아니면 조용히 업데이트된 변형인지 여부? 확인이 불가능합니다. 레시피나 상식을 묻는 일반 사용자에게 이러한 불투명함은 단순히 짜증 나는 일일 뿐입니다. 하지만 금융 거래 알고리즘, 의료 진단, 법률 계약 분석과 같은 고위험 AI 의사 결정에 있어 이는 근본적인 신뢰의 위기입니다.

2025년 말에 출시되어 2026년에 본격적인 운영을 시작하는 Gensyn's Judge는 혁신적인 대안을 제시합니다. 모든 추론을 비트 단위까지 재현할 수 있는 암호학적으로 검증 가능한 AI 평가입니다. OpenAI나 Anthropic이 올바른 모델을 제공한다고 믿는 대신, Judge는 특정하고 사전에 합의된 AI 모델이 실제 데이터에 대해 결정론적으로 실행되었음을 누구나 확인할 수 있게 하며, 암호화 증명을 통해 결과가 조작되지 않았음을 보장합니다.

기술적 돌파구는 AI 재현성의 골칫거리인 부동 소수점 비결정성 (floating-point nondeterminism)을 제거하는 Gensyn의 검증 시스템인 Verde입니다. Verde는 기기 간에 비트 단위로 정확한 연산을 강제함으로써, 런던의 NVIDIA A100과 도쿄의 AMD MI250에서 동일한 모델을 실행했을 때 온체인에서 증명 가능한 동일한 결과를 얻을 수 있도록 보장합니다. 이는 탈중앙화 금융 (DeFi), 자율 에이전트 및 투명성이 선택이 아닌 생존의 문제인 모든 애플리케이션에 검증 가능한 AI를 가능하게 합니다.

불투명한 API 문제: 검증 없는 신뢰

AI 산업은 API를 기반으로 운영됩니다. 개발자는 REST 엔드포인트를 통해 OpenAI의 GPT-4, Anthropic의 Claude 또는 Google의 Gemini를 통합하여 프롬프트를 보내고 응답을 받습니다. 하지만 이러한 API는 근본적으로 불투명합니다.

버전 불확실성: gpt-4를 호출할 때 정확히 어떤 버전을 사용하고 있습니까? GPT-4-0314인가요? GPT-4-0613인가요? 아니면 조용히 업데이트된 변형인가요? 제공업체는 공개 발표 없이 패치를 자주 배포하여 하룻밤 사이에 모델 동작을 변경합니다.

감사 추적 부재: API 응답에는 어떤 모델이 이를 생성했는지에 대한 암호화 증명이 포함되어 있지 않습니다. 만약 OpenAI가 특정 지역이나 고객에게 검열되거나 편향된 변형을 제공하더라도 사용자는 이를 감지할 방법이 없습니다.

조용한 성능 저하: 제공업체는 비용을 절감하기 위해 모델을 "로보토마이즈 (lobotomize)"하여 동일한 API 계약을 유지하면서 추론 품질을 낮출 수 있습니다. 사용자들은 GPT-4가 시간이 지남에 따라 "멍청해졌다"고 보고하지만, 투명한 버전 관리가 없으면 이러한 주장은 일화적인 수준에 머뭅니다.

비결정론적 출력: 온도 설정, 배치 처리 또는 하드웨어 수준의 부동 소수점 반올림 오류로 인해 동일한 입력으로 동일한 모델을 두 번 쿼리해도 다른 결과가 나올 수 있습니다. 이는 감사를 불가능하게 만듭니다. 출력이 재현 가능하지 않은데 어떻게 정확성을 검증할 수 있습니까?

일반적인 애플리케이션의 경우 이러한 문제는 불편함에 불과합니다. 하지만 고위험 의사 결정에서는 치명적인 장애물입니다. 다음을 고려해 보십시오.

알고리즘 트레이딩: 헤지 펀드가 DeFi 포지션에서 5,000만 달러를 관리하는 AI 에이전트를 배치합니다. 에이전트는 X (구 트위터) 게시물에서 시장 심리를 분석하기 위해 GPT-4에 의존합니다. 거래 세션 도중 모델이 조용히 업데이트되면 심리 점수가 예기치 않게 바뀌어 의도치 않은 청산이 발생할 수 있습니다. 펀드는 모델이 오작동했다는 증거가 없으며, OpenAI의 로그는 공개적으로 감사할 수 없습니다.

의료 진단: 병원에서 암 치료법을 추천하기 위해 AI 모델을 사용합니다. 규정에 따라 의사는 의사 결정 과정을 문서화해야 합니다. 그러나 AI 모델 버전을 확인할 수 없다면 감사 추적은 불완전합니다. 의료 과실 소송은 어떤 모델이 추천을 생성했는지 입증하는 데 달려 있을 수 있지만, 불투명한 API로는 불가능합니다.

DAO 거버넌스: 탈중앙화 자율 조직이 금고 제안에 투표하기 위해 AI 에이전트를 사용합니다. 커뮤니티 구성원들은 에이전트가 특정 결과에 유리하도록 조작된 변형이 아니라 승인된 모델을 사용했다는 증거를 요구합니다. 암호화 검증이 없으면 투표는 정당성을 잃게 됩니다.

이것이 바로 Gensyn이 목표로 하는 신뢰의 간극입니다. AI가 중요한 의사 결정에 내장됨에 따라 모델의 진위와 동작을 확인할 수 없는 능력은 "고위험 환경에서 에이전틱 (agentic) AI를 배포하는 데 근본적인 차단 요소"가 됩니다.

Judge: 검증 가능한 AI 평가 프로토콜

Judge는 사전에 합의된 결정론적 AI 모델을 실제 입력에 대해 실행하고 그 결과를 누구나 이의를 제기할 수 있는 블록체인에 기록함으로써 불투명성 문제를 해결합니다. 프로토콜의 작동 방식은 다음과 같습니다.

1. 모델 커밋 (Model commitment): 참여자들은 AI 모델의 아키텍처, 가중치 및 추론 구성에 합의합니다. 이 모델은 해싱되어 온체인에 기록됩니다. 해시는 암호학적 지문 역할을 합니다. 합의된 모델에서 조금이라도 벗어나면 다른 해시가 생성됩니다.

2. 결정론적 실행 (Deterministic execution): Judge는 기기 간에 비트 단위로 정확한 재현성을 보장하는 Gensyn's Reproducible Runtime을 사용하여 모델을 실행합니다. 이는 잠시 후에 살펴볼 중요한 혁신인 부동 소수점 비결정성을 제거합니다.

3. 공개 커밋 (Public commitment): 추론 후, Judge는 출력물 (또는 그 해시)을 온체인에 게시합니다. 이는 특정 입력에 대해 모델이 생성한 결과에 대한 영구적이고 감사 가능한 기록을 생성합니다.

4. 이의 제기 기간 (Challenge period): 누구나 모델을 독립적으로 다시 실행하여 결과에 이의를 제기할 수 있습니다. 출력이 다를 경우 사기 증명 (fraud proof)을 제출합니다. Verde의 심판 위임 메커니즘 (refereed delegation mechanism)은 결과가 갈라지는 연산 그래프상의 정확한 연산자를 찾아냅니다.

5. 사기에 대한 슬래싱 (Slashing for fraud): 이의 제기자가 Judge가 잘못된 결과를 생성했음을 증명하면, 원래 실행자는 처벌을 받습니다 (스테이킹된 토큰 슬래싱). 이는 경제적 인센티브를 일치시킵니다. 실행자는 모델을 올바르게 실행함으로써 수익을 극대화합니다.

Judge는 AI 평가를 "API 제공업체를 신뢰하라"에서 "암호화 증명을 검증하라"로 전환합니다. 모델의 동작은 공개적이고 감사 가능하며 집행 가능해지며, 더 이상 독점적인 엔드포인트 뒤에 숨겨지지 않습니다.

Verde : 부동 소수점 비결정론 제거

검증 가능한 AI 의 핵심 기술적 과제는 결정론 (determinism) 입니다. 신경망은 추론 과정에서 수십억 개의 부동 소수점 연산을 수행합니다. 현대적인 GPU 에서 이러한 연산은 완벽하게 재현되지 않습니다.

비결합성 (Non-associativity) : 부동 소수점 덧셈은 결합 법칙이 성립하지 않습니다. 반올림 오차로 인해 (a + b) + ca + (b + c) 와 다른 결과를 낼 수 있습니다. GPU 는 수천 개의 코어에서 부분 합을 병렬로 처리하며, 부분 합이 누적되는 순서는 하드웨어 및 드라이버 버전에 따라 달라집니다.

커널 스케줄링 변동성 (Kernel scheduling variability) : GPU 커널 (행렬 곱셈이나 어텐션 등) 은 작업 부하, 드라이버 최적화 또는 하드웨어 아키텍처에 따라 다른 순서로 실행될 수 있습니다. 동일한 모델을 동일한 GPU 에서 두 번 실행하더라도 커널 스케줄링이 다르면 다른 결과가 나올 수 있습니다.

배치 크기 의존성 (Batch-size dependency) : 연구에 따르면 LLM 추론은 시스템 수준에서 비결정론적 인데, 이는 출력이 배치 크기에 따라 달라지기 때문입니다. 많은 커널 (matmul, RMSNorm, 어텐션) 은 얼마나 많은 샘플이 함께 처리되는지에 따라 수치 출력을 변경합니다. 배치 크기 1 로 추론하면 배치 크기 8 로 처리된 동일한 입력과는 다른 값이 생성됩니다.

이러한 문제들로 인해 표준 AI 모델은 블록체인 검증에 적합하지 않습니다. 두 명의 검증자가 동일한 추론을 다시 실행하여 약간 다른 출력을 얻는다면, 누구의 말이 맞을까요? 결정론이 없다면 합의는 불가능합니다.

Verde 는 모든 장치에서 부동 소수점 연산의 순서를 제어하여 하드웨어 비결정론을 제거하는 라이브러리인 RepOps (Reproducible Operators, 재현 가능한 연산자) 를 통해 이 문제를 해결합니다. 작동 방식은 다음과 같습니다.

정형화된 리덕션 순서 (Canonical reduction orders) : RepOps 는 행렬 곱셈과 같은 연산에서 부분 결과를 합산할 때 결정론적인 순서를 강제합니다. GPU 스케줄러가 결정하게 두는 대신, RepOps 는 모든 하드웨어에서 "0번 열을 더하고, 그다음 1번 열, 그다음 2번 열..." 과 같이 명시적으로 순서를 지정합니다. 이를 통해 (a + b) + c 가 항상 동일한 시퀀스로 계산되도록 보장합니다.

커스텀 CUDA 커널 (Custom CUDA kernels) : Gensyn 은 순수 속도보다 재현성을 우선시하는 최적화된 커널을 개발했습니다. RepOps 행렬 곱셈은 표준 cuBLAS 에 비해 오버헤드가 30% 미만 인데, 이는 결정론을 위한 합리적인 절충안입니다.

드라이버 및 버전 고정 (Driver and version pinning) : Verde 는 버전이 고정된 GPU 드라이버와 정형화된 구성을 사용하여, 서로 다른 하드웨어에서 실행되는 동일한 모델이 비트 단위까지 동일한 출력을 생성하도록 보장합니다. 한 데이터 센터의 NVIDIA A100 에서 실행되는 모델의 출력은 다른 데이터 센터의 AMD MI250 에서 나오는 출력과 비트 단위로 일치합니다.

이것이 Judge 의 검증을 가능하게 하는 획기적인 기술입니다. 비트 단위로 정확한 재현성 은 검증자가 실행자를 신뢰하지 않고도 독립적으로 결과를 확인할 수 있음을 의미합니다. 해시가 일치하면 추론은 올바른 것이며, 이는 수학적으로 증명 가능합니다.

중재된 위임 (Refereed Delegation) : 전체 재계산 없는 효율적인 검증

결정론적 실행이 가능하더라도, AI 추론을 그대로 검증하는 것은 비용이 많이 듭니다. 700억 개의 파라미터를 가진 모델이 1,000개의 토큰을 생성하는 데 10 GPU 시간이 걸릴 수 있습니다. 검증자가 정확성을 확인하기 위해 모든 추론을 다시 실행해야 한다면, 검증 비용이 실행 비용과 같아져 탈중앙화의 목적이 퇴색됩니다.

Verde 의 중재된 위임 메커니즘 (refereed delegation mechanism) 은 검증 비용을 기하급수적으로 낮춥니다.

여러 명의 신뢰할 수 없는 실행자 : 하나의 실행자 대신, Judge 는 여러 독립적인 제공자에게 작업을 할당합니다. 각 제공자는 동일한 추론을 실행하고 결과를 제출합니다.

불일치 시 조사 시작 : 모든 실행자가 동의하면 결과가 수락되며 추가 검증은 필요하지 않습니다. 출력이 다를 경우 Verde 는 챌린지 게임 (challenge game) 을 시작합니다.

계산 그래프에 대한 이진 탐색 : Verde 는 전체 추론을 다시 실행하지 않습니다. 대신 모델의 계산 그래프에 대해 이진 탐색을 수행하여 결과가 갈라지는 첫 번째 연산자를 찾습니다. 이를 통해 불일치를 일으키는 정확한 레이어 (예 : "어텐션 레이어 47, 헤드 8") 를 핀포인트로 찾아냅니다.

최소한의 중재자 계산 : 중재자 (제한된 컴퓨팅 파워를 가진 스마트 컨트랙트 또는 검증자일 수 있음) 는 전체 순전파가 아닌 논란이 된 연산자만 확인합니다. 80개 레이어가 있는 70B 파라미터 모델의 경우, 최악의 상황에서도 약 7개 레이어 (log₂ 80) 만 확인하면 됩니다.

이 접근 방식은 단순 복제 방식보다 1,350% 이상 더 효율적 입니다 (모든 검증자가 모든 것을 다시 실행하는 경우 대비). Gensyn 은 암호화 증명, 게임 이론 및 최적화된 프로세스를 결합하여 중복 계산 없이 올바른 실행을 보장합니다.

그 결과, Judge 는 AI 워크로드를 대규모로 검증할 수 있으며, 수천 개의 신뢰할 수 없는 노드가 컴퓨팅에 기여하고 정직하지 않은 실행자는 적발되어 처벌받는 탈중앙화 추론 네트워크를 가능하게 합니다.

중요한 AI 의사결정 : 투명성이 중요한 이유

Judge 의 타겟 시장은 일반적인 챗봇이 아닙니다. 검증 가능성이 '있으면 좋은 것' 이 아니라 규제적 또는 경제적 요구 사항인 애플리케이션입니다. 불투명한 API 가 치명적으로 실패하는 시나리오는 다음과 같습니다.

탈중앙화 금융 (DeFi) : 자율 거래 에이전트는 수십억 달러의 자산을 관리합니다. 에이전트가 포트폴리오 리밸런싱 시점을 결정하기 위해 AI 모델을 사용하는 경우, 사용자는 모델이 조작되지 않았다는 증거가 필요합니다. Judge 는 온체인 검증을 지원합니다. 에이전트는 특정 모델 해시를 약속하고, 그 출력에 따라 거래를 실행하며, 누구나 결정 로직에 이의를 제기할 수 있습니다. 이러한 투명성은 악의적인 에이전트가 증거 없이 "AI 가 청산하라고 했다" 고 주장하며 자금을 탈취하는 (rug pull) 것을 방지합니다.

규제 준수 : 신용 점수 산정, 사기 탐지 또는 자금 세탁 방지 (AML) 를 위해 AI 를 도입하는 금융 기관은 감사를 받습니다. 규제 기관은 "모델이 왜 이 거래를 의심스러운 것으로 표시했는가?" 에 대한 설명을 요구합니다. 불투명한 API 는 감사 추적을 제공하지 않습니다. Judge 는 모델 버전, 입력 및 출력에 대한 불변의 기록을 생성하여 규제 요구 사항을 충족합니다.

알고리즘 거버넌스 : 탈중앙화 자율 조직 (DAO) 은 AI 에이전트를 사용하여 거버넌스 결정을 제안하거나 투표합니다. 커뮤니티 구성원은 에이전트가 해킹된 변종이 아닌 승인된 모델을 사용했는지 확인해야 합니다. Judge 를 사용하면 DAO 는 스마트 컨트랙트에 모델 해시를 인코딩하고, 모든 결정에 정확성에 대한 암호화 증명을 포함할 수 있습니다.

의료 및 법률 AI : 의료 및 법률 시스템은 책임 소재를 명확히 해야 합니다. AI 의 도움을 받아 암을 진단하는 의사는 사용된 정확한 모델 버전을 문서화해야 합니다. AI 로 계약서를 작성하는 변호사는 출력이 검증되고 편향되지 않은 모델에서 나왔음을 증명해야 합니다. Judge 의 온체인 감사 추적은 이러한 증거를 제공합니다.

예측 시장 및 오라클 : Polymarket 과 같은 프로젝트는 베팅 결과 (예 : "이 이벤트가 발생할 것인가?") 를 결정하기 위해 AI 를 사용합니다. 결정이 뉴스 기사를 분석하는 AI 모델에 달려 있다면, 참여자들은 모델이 조작되지 않았다는 증거가 필요합니다. Judge 는 오라클의 AI 추론을 검증하여 분쟁을 방지합니다.

각 사례의 공통된 주제는 투명성 없는 신뢰는 불충분하다 는 것입니다. VeritasChain 이 언급했듯이, AI 시스템에는 분쟁 발생 시 어떤 일이 일어났는지 증명하는 불변의 로그 인 "암호화된 비행 기록 장치 (cryptographic flight recorders)" 가 필요합니다.

영지식 증명 대안: Verde와 ZKML의 비교

Judge는 검증 가능한 AI를 위한 유일한 접근 방식이 아닙니다. 영지식 기계 학습 (ZKML)은 입력을 공개하거나 가중치를 밝히지 않고도 계산이 올바르게 수행되었음을 증명하는 암호학적 증명인 zk-SNARKs를 사용하여 유사한 목표를 달성합니다.

Verde는 ZKML과 어떻게 비교될까요?

검증 비용: ZKML은 증명을 생성하기 위해 원래 추론보다 약 1,000배 더 많은 계산이 필요합니다 (연구 추정치). 추론에 10 GPU 시간이 필요한 700억 개 파라미터 모델을 증명하려면 10,000 GPU 시간이 필요할 수 있습니다. Verde의 중재된 위임 (refereed delegation)은 로그 (logarithmic) 방식입니다. 80개 레이어 대신 약 7개 레이어를 확인하는 것은 1,000배가 아닌 10배의 감소를 의미합니다.

증명자 복잡성: ZKML은 증명을 효율적으로 생성하기 위해 특수 하드웨어 (예: zk-SNARK 회로용 맞춤형 ASIC)를 요구합니다. Verde는 일반 소매용 GPU에서 작동하므로, 게이밍 PC를 가진 채굴자라면 누구나 참여할 수 있습니다.

프라이버시 트레이드오프: ZKML의 강점은 프라이버시입니다. 증명은 입력값이나 모델 가중치에 대해 아무것도 드러내지 않습니다. Verde의 결정론적 실행은 투명합니다. 입력과 출력은 공개됩니다 (가중치는 암호화될 수 있음). 중대한 의사결정의 경우 투명성이 선호되는 경우가 많습니다. 재고 할당에 대해 투표하는 DAO는 숨겨진 증명이 아니라 공개된 감사 추적을 원합니다.

증명 범위: ZKML은 현재의 계산 비용으로 인해 학습을 증명하는 것이 불가능하므로 실질적으로 추론에 국한됩니다. Verde는 추론과 학습 검증을 모두 지원합니다 (Gensyn의 더 넓은 프로토콜은 분산 학습을 검증합니다).

실제 도입: Modulus Labs와 같은 ZKML 프로젝트는 온체인에서 1,800만 개 파라미터 모델을 검증하는 등 획기적인 성과를 거두었지만, 여전히 소규모 모델에 국한되어 있습니다. Verde의 결정론적 런타임은 실제 운영 환경에서 700억 개 이상의 파라미터 모델을 처리합니다.

ZKML은 홍채 스캔을 노출하지 않고 생체 인식 인증을 확인하는 것 (Worldcoin)과 같이 프라이버시가 가장 중요한 분야에서 탁월합니다. Verde는 특정 공개 모델이 올바르게 실행되었음을 증명하는 것과 같이 투명성이 목표인 분야에서 탁월합니다. 두 접근 방식은 서로 경쟁하는 것이 아니라 상호 보완적입니다.

Gensyn 생태계: Judge에서 탈중앙화 학습까지

Judge는 머신러닝 컴퓨팅을 위한 탈중앙화 네트워크인 Gensyn의 원대한 비전의 한 구성 요소입니다. 이 프로토콜에는 다음이 포함됩니다:

실행 레이어: 다양한 이기종 하드웨어 (소비자용 GPU, 기업용 클러스터, 엣지 디바이스)에서 일관된 ML 실행을 제공합니다. Gensyn은 추론 및 학습 워크로드를 표준화하여 호환성을 보장합니다.

검증 레이어 (Verde): 중재된 위임을 사용한 무신뢰 검증입니다. 정직하지 않은 실행자는 감지되고 처벌받습니다.

P2P 통신: 중앙 집중식 조정 없이 디바이스 간에 워크로드를 분산합니다. 채굴자는 작업을 수신하고 실행하며 증명을 블록체인에 직접 제출합니다.

탈중앙화된 조율: 이더리움 롤업상의 스마트 컨트랙트가 참여자를 식별하고, 작업을 할당하며, 허가 없이 결제를 처리합니다.

Gensyn의 공개 테스트넷은 2025년 3월에 출시되었으며, 메인넷은 2026년으로 예정되어 있습니다. $AI 토큰 공개 판매는 2025년 12월에 이루어져 채굴자와 검증인을 위한 경제적 인센티브를 구축했습니다.

Judge는 이 생태계에서 평가 레이어로 적합합니다. Gensyn의 핵심 프로토콜이 학습과 추론을 처리하는 동안, Judge는 해당 출력이 검증 가능하도록 보장합니다. 이는 다음과 같은 플라이휠을 생성합니다:

개발자는 Gensyn의 탈중앙화 네트워크에서 모델을 학습시킵니다 (활용되지 않는 소비자용 GPU가 컴퓨팅을 제공하므로 AWS보다 저렴함).

모델은 Judge와 함께 배포되어 평가 무결성을 보장받습니다. 애플리케이션은 Gensyn의 API를 통해 추론을 사용하지만, OpenAI와 달리 모든 출력에는 암호학적 증명이 포함됩니다.

검증인은 증명을 확인하고 사기를 적발하여 수수료를 벌며, 경제적 인센티브를 네트워크 보안과 일치시킵니다.

신뢰는 확장됩니다. 더 많은 애플리케이션이 검증 가능한 AI를 채택함에 따라 중앙 집중식 제공업체에 대한 의존도가 낮아집니다.

최종 목표는 거대 IT 기업뿐만 아니라 누구나 접근할 수 있고, 증명 가능하며, 올바르고 탈중앙화된 AI 학습 및 추론 환경을 만드는 것입니다.

과제 및 남은 과제들

Judge의 접근 방식은 혁신적이지만 몇 가지 과제가 남아 있습니다:

성능 오버헤드: RepOps의 30% 속도 저하는 검증을 위해서는 수용 가능하지만, 모든 추론이 결정론적으로 실행되어야 한다면 지연 시간에 민감한 애플리케이션 (실시간 거래, 자율 주행 차량)은 더 빠르고 검증 불가능한 대안을 선호할 수 있습니다. Gensyn의 로드맵에는 RepOps를 더욱 최적화하는 것이 포함될 가능성이 높지만, 속도와 결정론 사이에는 근본적인 트레이드오프가 존재합니다.

드라이버 버전 파편화: Verde는 특정 버전으로 고정된 드라이버를 가정하지만, GPU 제조업체는 지속적으로 업데이트를 출시합니다. 일부 채굴자가 CUDA 12.4를 사용하고 다른 채굴자가 12.5를 사용하면 비트 단위 재현성이 깨집니다. Gensyn은 엄격한 버전 관리를 강제해야 하며, 이는 채굴자 온보딩을 복잡하게 만들 수 있습니다.

모델 가중치 비밀성: Judge의 투명성은 공개 모델에는 장점이지만 독점 모델에는 단점입니다. 헤지펀드가 가치 있는 거래 모델을 학습시키고 Judge에 배포하면 온체인 약속 (commitment)을 통해 경쟁자에게 가중치가 노출됩니다. 비밀 모델의 경우 ZKML 기반 대안이 선호될 수 있으며, 이는 Judge가 공개 또는 반공개 AI 애플리케이션을 타겟팅함을 시사합니다.

분쟁 해결 지연 시간: 도전자 (challenger)가 사기를 주장하는 경우, 이진 탐색을 통해 분쟁을 해결하려면 여러 번의 온체인 트랜잭션이 필요합니다 (각 라운드는 탐색 범위를 좁힙니다). 고빈도 애플리케이션은 최종 확정성 (finality)을 위해 몇 시간을 기다릴 수 없습니다. Gensyn은 지연 시간을 줄이기 위해 낙관적 검증 (일정 기간 내에 도전받지 않는 한 올바른 것으로 간주)을 도입할 수 있습니다.

중재된 위임의 시빌 저항성 (Sybil resistance): 여러 실행자가 합의해야 하는 경우, 단일 주체가 시빌 신원을 통해 모든 실행자를 통제하는 것을 어떻게 방지할 수 있을까요? Gensyn은 공모를 막기 위해 슬래싱 (slashing)과 함께 스테이킹 기반 선택 (평판이 높은 검증인이 우선적으로 선택됨)을 사용할 가능성이 높지만, 경제적 임계값을 신중하게 조정해야 합니다.

이것들은 해결 불가능한 문제가 아니라 엔지니어링 과제입니다. 핵심 혁신 (결정론적 AI + 암호학적 검증)은 견고합니다. 테스트넷이 메인넷으로 전환됨에 따라 실행 세부 사항은 더욱 성숙해질 것입니다.

검증 가능한 AI로 가는 길: 채택 경로와 시장 적합성

Judge의 성공은 채택에 달려 있습니다. 어떤 애플리케이션이 검증 가능한 AI를 가장 먼저 배포하게 될까요?

자율 에이전트가 포함된 DeFi 프로토콜: Aave, Compound 또는 Uniswap DAO는 재무 관리를 위해 Judge로 검증된 에이전트를 통합할 수 있습니다. 커뮤니티는 모델 해시를 승인하기 위해 투표하고, 모든 에이전트의 결정에는 증명이 포함됩니다. 이러한 투명성은 DeFi의 정당성에 중요한 신뢰를 구축합니다.

예측 시장 및 오라클: Polymarket이나 Chainlink와 같은 플랫폼은 Judge를 사용하여 베팅을 해결하거나 가격 피드를 제공할 수 있습니다. 감정, 뉴스 또는 온체인 활동을 분석하는 AI 모델은 검증 가능한 출력을 생성하여 오라클 조작에 대한 분쟁을 제거합니다.

탈중앙화 신원 증명 및 KYC: AI 기반 신원 확인 (셀카를 통한 연령 추정, 문서 진위 확인 등)이 필요한 프로젝트는 Judge의 감사 추적 (audit trail)의 이점을 누릴 수 있습니다. 규제 기관은 중앙화된 신원 제공자를 신뢰하지 않고도 규정 준수에 대한 암호학적 증명을 수용할 수 있습니다.

소셜 미디어를 위한 콘텐츠 중재: 탈중앙화 소셜 네트워크 (Farcaster, Lens Protocol)는 Judge로 검증된 AI 모더레이터를 배치할 수 있습니다. 커뮤니티 구성원은 중재 모델이 편향되거나 검열되지 않았음을 확인하여 플랫폼의 중립성을 보장할 수 있습니다.

AI-as-a-Service 플랫폼: AI 애플리케이션을 구축하는 개발자는 "검증 가능한 추론 (verifiable inference)"을 프리미엄 기능으로 제공할 수 있습니다. 사용자는 증명을 위해 추가 비용을 지불함으로써 불투명한 대안들과 서비스를 차별화합니다.

공통점: 규제, 탈중앙화 또는 높은 이해관계로 인해 신뢰 비용이 많이 들고, 확실성의 가치에 비해 검증 비용이 수용 가능한 애플리케이션들입니다.

Judge는 소비자용 챗봇에서 OpenAI를 대체하지는 않을 것입니다 — 사용자는 요리 레시피 아이디어를 물어볼 때 GPT-4가 검증 가능한지 여부에 신경 쓰지 않기 때문입니다. 하지만 금융 알고리즘, 의료 도구 및 거버넌스 시스템에 있어 검증 가능한 AI는 미래입니다.

새로운 표준으로서의 검증 가능성

Gensyn의 Judge는 패러다임의 전환을 의미합니다. AI 평가는 "제공자를 신뢰하는 것"에서 "증명을 검증하는 것"으로 이동하고 있습니다. Verde를 통한 비트 단위의 정확한 재현성 (bitwise-exact reproducibility), 심판된 위임 (refereed delegation)을 통한 효율적인 검증, 그리고 온체인 감사 추적이라는 기술적 토대는 이 전환을 단순한 열망이 아닌 현실로 만듭니다.

그 영향은 Gensyn을 훨씬 넘어 파급됩니다. 검증 가능한 AI가 표준이 된다면, 중앙화된 제공자들은 그들의 해자 (moat)를 잃게 됩니다. OpenAI의 가치 제안은 단순히 GPT-4의 성능만이 아니라, 인프라를 관리하지 않아도 되는 '편의성'에 있습니다. 하지만 Gensyn이 탈중앙화 AI가 중앙화된 성능에 '추가적인 검증 가능성'까지 갖출 수 있음을 증명한다면, 개발자들은 독점 API에 갇힐 이유가 없습니다.

경쟁은 시작되었습니다. ZKML 프로젝트 (Modulus Labs, Worldcoin의 생체 인식 시스템)는 영지식 증명 (zero-knowledge proofs)에 베팅하고 있습니다. 결정론적 런타임 (Gensyn의 Verde, EigenAI)은 재현성에 베팅하고 있습니다. 낙관적 접근 방식 (블록체인 AI 오라클)은 사기 증명 (fraud proofs)에 베팅하고 있습니다. 각 경로마다 트레이드오프가 있지만, 목적지는 동일합니다: 결과물이 단순히 그럴듯한 것이 아니라 증명 가능한 AI 시스템입니다.

높은 이해관계가 걸린 의사 결정에서 이것은 선택 사항이 아닙니다. 규제 기관은 금융, 의료 또는 법률 애플리케이션에서 AI 제공자의 "우리를 믿으라"는 말을 받아들이지 않을 것입니다. DAO는 재무 관리를 블랙박스 에이전트에게 위임하지 않을 것입니다. 그리고 자율 AI 시스템이 더욱 강력해짐에 따라 대중은 투명성을 요구할 것입니다.

Judge는 이러한 약속을 이행하는 최초의 프로덕션 준비 완료 시스템입니다. 테스트넷이 운영 중입니다. 암호학적 기반은 견고합니다. 270억 달러 규모의 AI 에이전트 암호화폐 시장, 알고리즘으로 관리되는 수십억 달러의 DeFi 자산, 그리고 거세지는 규제 압박 등 시장은 이미 준비되어 있습니다.

불투명한 AI API의 시대가 저물고 있습니다. 검증 가능한 지능의 시대가 시작되고 있습니다. 그리고 Gensyn의 Judge가 그 길을 밝히고 있습니다.


출처: