メインコンテンツまでスキップ

プライバシー インフラ 2026:Web3 の基盤を再構築する ZK vs FHE vs TEE の攻防

· 約 20 分
Dora Noda
Software Engineer

ブロックチェーン最大の脆弱性は技術的な欠陥ではなく、哲学的な欠陥だとしたらどうでしょうか? すべてのトランザクション、すべてのウォレット残高、すべてのスマートコントラクトのやり取りは、インターネット接続環境があれば誰でも閲覧可能なパブリックレジャー(公開台帳)上にさらされています。 機関投資家の資金が Web3 に流入し、規制当局の監視が強まるにつれ、この急進的な透明性は Web3 最大の負債となりつつあります。

プライバシー・インフラストラクチャの競争は、もはやイデオロギーの問題ではありません。 それは生存の問題です。 117 億ドルを超えるゼロ知識(Zero-Knowledge)プロジェクトの時価総額、完全準同型暗号(FHE)の画期的な進展、そして 50 以上のブロックチェーンプロジェクトを支える信頼実行環境(TEE)により、3 つの競合技術がブロックチェーンのプライバシー・パラドックスを解決するために収束しつつあります。 問いは、プライバシーが Web3 の基盤を再構築するかどうかではなく、どの技術が勝利するかということです。

プライバシーのトリレンマ:速度、セキュリティ、そして分散化

Web3 のプライバシーの課題は、スケーリングの問題を反映しています。 3 つの次元のうち 2 つを最適化することはできますが、3 つすべてを最適化できることは稀です。 ゼロ知識証明は数学的な確実性を提供しますが、計算上のオーバーヘッドを伴います。 完全準同型暗号は暗号化されたデータ上での計算を可能にしますが、パフォーマンスコストが極めて高くなります。 信頼実行環境はハードウェア固有のネイティブな速度を提供しますが、ハードウェアへの依存を通じて中央集権化のリスクを招きます。

それぞれの技術は、同じ問題に対して根本的に異なるアプローチを提示しています。 ZK 証明は、「なぜそうなるのかを明かさずに、それが真実であることを証明できるか?」と問いかけます。 FHE は、「データを見ることもなく、そのデータ上で計算ができるか?」と問いかけます。 TEE は、「既存のハードウェア内に侵入不可能なブラックボックスを作成できるか?」と問いかけます。

その答えによって、どのようなアプリケーションが可能になるかが決まります。 DeFi は高頻度取引のために速度を必要とします。 ヘルスケアやアイデンティティシステムは暗号学的な保証を必要とします。 エンタープライズアプリケーションはハードウェアレベルの隔離を必要とします。 単一の技術ですべてのユースケースを解決できるものはありません。 だからこそ、真のイノベーションはハイブリッド・アーキテクチャで起きているのです。

ゼロ知識証明:研究室から 117 億ドルのインフラへ

ゼロ知識証明は、暗号学的な好奇心の対象から本番環境のインフラへと進化しました。 117 億ドルのプロジェクト時価総額と 35 億ドルの 24 時間取引高を誇る ZK 技術は、現在、出金時間を大幅に短縮し、オンチェーンデータを 90% 圧縮し、プライバシーを保護するアイデンティティシステムを可能にする有効性ロールアップ(Validity Rollup)を支えています。

画期的な進展は、ZK が単純なトランザクションのプライバシーを超えたときに訪れました。 現代の ZK システムは、大規模な検証可能計算(Verifiable Computation)を可能にします。 zkEVM のような zkSync や Polygon zkEVM は、Ethereum のセキュリティを継承しながら、秒間数千のトランザクションを処理します。 ZK ロールアップは、レイヤー 1 に最小限のデータのみをポストし、数学的な正しさの確実性を維持しながら、ガス代を桁違いに削減します。

しかし、ZK の真の力は機密コンピューティング(Confidential Computing)で発揮されます。 Aztec のようなプロジェクトは、シールドされたトークン残高、機密取引、暗号化されたスマートコントラクトの状態など、プライベートな DeFi を可能にします。 ユーザーは、自分の純資産を明かすことなく、ローンに十分な担保があることを証明できます。 DAO は、個々のメンバーの好みをさらすことなく、提案に投票できます。 企業は、独自の機密データを公開することなく、規制遵守を検証できます。

計算コストは依然として ZK のアキレス腱です。 証明の生成には専用のハードウェアと多大な処理時間が必要です。 RISC Zero の Boundless のようなプロバー(証明者)ネットワークは、分散型市場を通じて証明生成をコモディティ化しようとしていますが、検証は依然として非対称です。 つまり、検証は容易ですが、生成にはコストがかかります。 これが、レイテンシに敏感なアプリケーションにとっての事実上の上限となっています。

ZK は検証レイヤーとして優れており、計算自体を明かすことなく、計算に関する声明を証明します。 数学的な保証と公開検証可能性を必要とするアプリケーションにとって、ZK は依然として無類です。 しかし、リアルタイムの機密コンピューティングにおいては、パフォーマンスの低下が大きな障壁となります。

完全準同型暗号:不可能を計算する

FHE は、プライバシー保護計算の「聖杯」を象徴しています。 それは、暗号化されたデータを一度も復号することなく、そのデータに対して任意の計算を行うことです。 数学的には非常に洗練されています。 データを暗号化して信頼できないサーバーに送り、暗号文のまま計算させ、暗号化された結果を受け取り、ローカルで復号します。 サーバーがプレーンテキスト(平文)のデータを見ることは一度もありません。

実際には、現実はもっと複雑です。 FHE の演算は、平文での計算よりも 100 ~ 1000 倍遅くなります。 暗号化されたデータ上での単純な加算でさえ、複雑な格子ベース暗号を必要とします。 乗算は指数関数的にさらに悪化します。 この計算オーバーヘッドにより、すべてのノードがすべてのトランザクションを処理する従来のブロックチェーン・アプリケーションにおいて、FHE は実用的ではないとされてきました。

Fhenix や Zama のようなプロジェクトは、この問題に多角的に取り組んでいます。 Fhenix の Decomposable BFV 技術は 2026 年初頭にブレイクスルーを達成し、現実世界のアプリケーション向けにパフォーマンスとスケーラビリティを向上させた正確な FHE スキームを可能にしました。 すべてのノードに FHE 演算を強制するのではなく、Fhenix は L2 として機能し、専門のコーディネーターノードが重い FHE 計算を処理し、その結果をメインネットにバッチ処理します。

Zama は、彼らの機密ブロックチェーン・プロトコル(Confidential Blockchain Protocol)で異なるアプローチを取っています。 モジュール式の FHE ライブラリを通じて、任意の L1 または L2 上で機密スマートコントラクトを実現します。 開発者は暗号化されたデータ上で動作する Solidity スマートコントラクトを記述でき、パブリックブロックチェーンでは以前は不可能だったユースケースを解禁できます。

その用途は多岐にわたります。 フロントランニングを防止する機密トークンスワップ、借り手の正体を隠す暗号化レンディングプロトコル、個々の選択を明かさずに投票集計が計算されるプライベートガバナンス、入札の覗き見を防止する機密オークションなどです。 Inco Network は、プログラム可能なアクセス制御を備えた暗号化スマートコントラクトの実行を実証しています。 データ所有者は、誰がどのような条件で自分のデータに対して計算を行えるかを指定できます。

しかし、FHE の計算負荷は根本的なトレードオフを生みます。 現在の実装では、強力なハードウェア、中央集権的な調整、あるいはスループットの低下を受け入れることが必要です。 技術は機能しますが、それを Ethereum のトランザクション量に合わせてスケーリングすることは、依然として未解決の課題です。 FHE をマルチパーティ計算(MPC)やゼロ知識証明と組み合わせるハイブリッドアプローチは、弱点を緩和しようとしています。 しきい値 FHE(Threshold FHE)スキームは、復号鍵を複数の当事者に分散させ、単一のエンティティが単独で復号できないようにします。

FHE は未来です。 ただし、それは数ヶ月単位ではなく、数年単位で測られる未来です。

信頼実行環境(TEE):ハードウェアの速度と中央集権化のリスク

ZK(ゼロ知識証明)や FHE(完全準同型暗号)が計算オーバーヘッドの問題に取り組む一方で、TEE(Trusted Execution Environments)は根本的に異なるアプローチをとっています。それは、既存のハードウェア セキュリティ機能を活用して、隔離された実行環境を構築するというものです。Intel SGX、AMD SEV、ARM TrustZone は、CPU 内に「セキュア エンクレーブ」を切り出し、オペレーティング システムやハイパーバイザからさえもコードとデータを秘匿します。

そのパフォーマンスの優位性は驚異的です。TEE は暗号学的な複雑な処理を行わないため、ネイティブなハードウェア速度で実行されます。TEE 上で動作するスマート コントラクトは、従来のソフトウェアと同じ速さでトランザクションを処理できます。これにより、機密性の高い DeFi トレード、暗号化されたオラクル ネットワーク、プライベートなクロスチェーン ブリッジなど、高スループットが求められるアプリケーションにおいて TEE は即座に実用的となります。

Chainlink の TEE 統合はこのアーキテクチャ パターンを象徴しています。機密性の高い計算をセキュア エンクレーブ内で実行し、正しい実行を証明する暗号化アテステーション(証明)を生成して、結果をパブリック ブロックチェーンにポストします。Chainlink のスタックは複数の技術を同時に調整します。TEE がネイティブ速度で複雑な計算を行い、同時にゼロ知識証明がエンクレーブの完全性を検証することで、ハードウェアのパフォーマンスと暗号学的な確実性を両立させています。

現在、50 以上のチームが TEE ベースのブロックチェーン プロジェクトを構築しています。TrustChain は、重量級の暗号アルゴリズムを使用せずにコードとユーザー データを保護するため、TEE とスマート コントラクトを組み合わせています。Arbitrum 上の iExec は、TEE ベースの機密コンピューティングをインフラとして提供しています。Flashbots は TEE を使用してトランザクション順序を最適化し、データ セキュリティを維持しながら MEV を削減しています。

しかし、TEE には議論の分かれるトレードオフがあります。それは「ハードウェアへの信頼」です。信頼の根拠が数学にある ZK や FHE とは異なり、TEE は Intel、AMD、または ARM が安全なプロセッサを構築することを信頼する必要があります。ハードウェアの脆弱性が発覚した場合はどうなるでしょうか? 政府がメーカーにバックドアの設置を強要したら? 予期せぬ脆弱性がエンクレーブのセキュリティを損なったらどうなるでしょうか?

Spectre や Meltdown といった脆弱性は、ハードウェア セキュリティが絶対ではないことを証明しました。TEE 推進派は、アテステーション メカニズムやリモート検証によって侵害されたエンクレーブからの被害を限定できると主張しますが、批判的な人々は、ハードウェア レイヤーが失敗すればセキュリティ モデル全体が崩壊すると指摘します。ZK の「数学を信じる」、FHE の「暗号化を信じる」とは異なり、TEE は「メーカーを信じる」ことを要求します。

この哲学的な違いがプライバシー コミュニティを二分しています。現実主義者は、製品レベルのパフォーマンスと引き換えにハードウェアへの信頼を受け入れます。純粋主義者は、いかなる中央集権的な信頼の仮定も Web3 の精神に反すると主張します。現実には、アプリケーションごとに信頼要件が異なるため、両方の視点が共存しています。

収束:ハイブリッド プライバシー アーキテクチャ

最も洗練されたプライバシー システムは、単一の技術を選択するのではなく、複数のアプローチを組み合わせてトレードオフのバランスを取ります。Chainlink の DECO は、計算のための TEE と検証のための ZK 証明を組み合わせています。一部のプロジェクトでは、データ暗号化のための FHE と、分散型キー管理のためのマルチパーティ計算(MPC)を階層化しています。未来は「ZK vs FHE vs TEE」ではなく、「ZK + FHE + TEE」なのです。

このアーキテクチャの収束は、より広範な Web3 のパターンを反映しています。モジュラー ブロックチェーンがコンセンサス、実行、データ可用性を専門のレイヤーに分離するように、プライバシー インフラもモジュール化が進んでいます。速度が重要な場合は TEE を、公開検証可能性が重要な場合は ZK を、データがエンドツーエンドで暗号化されたままである必要がある場合は FHE を使用します。勝者となるプロトコルは、これらの技術をシームレスに調整できるものでしょう。

分散型機密コンピューティングに関する Messari の調査はこの傾向を強調しています。2 者間計算のためのガーブル回路(Garbled Circuits)、分散キー管理のためのマルチパーティ計算、検証のための ZK 証明、暗号化された計算のための FHE、ハードウェア隔離のための TEE。それぞれの技術が特定の課題を解決します。未来のプライバシー レイヤーは、これらすべてを統合したものになります。

これが、ZK プロジェクトに 117 億ドル以上が流れ込み、FHE スタートアップが数億ドルを調達し、TEE の採用が加速している理由です。市場は単一の勝者に賭けているのではなく、複数の技術が相互運用されるエコシステムに投資しているのです。プライバシー スタックは、ブロックチェーン スタックと同様にモジュール化されつつあります。

機能ではなくインフラとしてのプライバシー

2026 年のプライバシーの展望は、哲学的な転換を意味しています。プライバシーはもはや透明なブロックチェーンに後付けされた機能ではなく、基盤となるインフラになりつつあります。新しいチェーンはプライバシー優先のアーキテクチャで立ち上げられ、既存のプロトコルはプライバシー レイヤーを後付けしています。機関投資家による採用は、機密性の高いトランザクション処理にかかっています。

規制の圧力もこの移行を加速させています。欧州の MiCA、米国の GENIUS 法、そして世界的なコンプライアンス フレームワークは、「ユーザー データの機密性を保持しつつ、規制当局への選択的な開示を可能にする」という相反する要求を満たすプライバシー保護システムを求めています。ZK 証明は、基盤となるデータを明かすことなくコンプライアンスのアテステーションを可能にします。FHE は、監査人が暗号化された記録に対して計算を行うことを可能にします。TEE は、機密性の高い規制関連の計算のためにハードウェアで隔離された環境を提供します。

エンタープライズ採用の動向もこの傾向を後押ししています。ブロックチェーン決済をテストしている銀行はトランザクションのプライバシーを必要としています。オンチェーンでの医療記録を模索しているヘルスケア システムは HIPAA 準拠を必要としています。サプライチェーン ネットワークは機密性の高いビジネス ロジックを必要としています。あらゆるエンタープライズ ユースケースにおいて、第一世代の透明なブロックチェーンでは提供できないプライバシー保証が求められています。

一方で、DeFi はフロントランニング、MEV 抽出、そしてユーザー エクスペリエンスを損なうプライバシーの問題に直面しています。大規模な注文をブロードキャストするトレーダーは、そのトランザクションをフロントランニングする高度なアクターに隙を与えてしまいます。プロトコルのガバナンス投票は戦略的な意図を露呈させます。ウォレットの全取引履歴は競合他社の分析にさらされます。これらは例外的なケースではなく、透明な実行環境における根本的な限界です。

市場はこれに応えています。ZK を活用した DEX は、検証可能な決済を維持しながら取引の詳細を隠します。FHE ベースのレンディング プロトコルは、担保設定を保証しつつ借り手の身元を秘匿します。TEE 対応のオラクルは、API キーや独自の計算式を公開することなく、機密情報を取得します。プライバシーは、アプリケーションがそれなしでは機能し得ないため、インフラになりつつあるのです。

前途:2026 年とその先へ

2025 年がプライバシーの研究の年であったなら、2026 年は本番環境へのデプロイの年です。ZK 技術の時価総額は 117 億ドルを超え、バリディティ・ロールアップ(validity rollups)は毎日数百万件のトランザクションを処理しています。FHE は、Fhenix の Decomposable BFV と Zama のプロトコルの成熟により、画期的なパフォーマンスを実現します。ハードウェア・アテステーションの標準が成熟するにつれ、TEE の採用は 50 以上のブロックチェーン・プロジェクトに広がっています。

しかし、大きな課題も残っています。ZK 証明の生成には依然として専用のハードウェアが必要であり、レイテンシのボトルネックが生じます。FHE の計算オーバーヘッドは、最近の進歩にもかかわらずスループットを制限しています。TEE のハードウェアへの依存は、中央集権化のリスクや潜在的なバックドアの脆弱性をもたらします。それぞれの技術は特定の領域で優れていますが、他の領域では苦戦しています。

勝利へのアプローチは、おそらく思想的な純粋さではなく、実用的な構成にあります。パブリックな検証可能性と数学的な確実性のために ZK を使用し、暗号化された計算が譲れない場合には FHE を導入します。ネイティブなパフォーマンスが重要な場合には TEE を活用します。弱点を補いながら強みを継承するハイブリッド・アーキテクチャを通じて、これらの技術を組み合わせます。

Web3 のプライバシー・インフラストラクチャは、実験的なプロトタイプから本番システムへと成熟しつつあります。もはや、プライバシー技術がブロックチェーンの基盤を再構築するかどうかという問いではなく、どのハイブリッド・アーキテクチャが速度、セキュリティ、分散化という「不可能な三角形」を達成するかという問いになっています。26,000 文字に及ぶ Web3Caff の調査レポートや、プライバシー・プロトコルに流入する機関投資家の資本は、その答えが「3 つすべてが連携すること」であることを示唆しています。

ブロックチェーンのトリレンマは、トレードオフが根本的であることを教えてくれましたが、適切なアーキテクチャがあれば克服できないものではありません。プライバシー・インフラストラクチャも同じパターンを辿っています。ZK、FHE、TEE はそれぞれ独自の機能を持っています。これらの技術をまとまりのあるプライバシー・レイヤーとして構築するプラットフォームが、Web3 の次の 10 年を定義するでしょう。

なぜなら、機関投資家の資本、規制当局の監視、そしてユーザーの機密性への需要が交差するとき、プライバシーは単なる機能ではなく、基盤となるからです。


プライバシーを保護するブロックチェーン・アプリケーションを構築するには、機密データの処理を大規模に処理できるインフラストラクチャが必要です。BlockEden.xyz は、プライバシーに焦点を当てたチェーン向けにエンタープライズ・グレードのノード・インフラストラクチャと API アクセスを提供し、開発者が Web3 の未来のために設計されたプライバシー・ファーストの基盤の上に構築できるようにします。

情報源