Skip to main content

· 4 min read

We are excited to announce the launch of the Cuckoo Prediction Events API, expanding BlockEden.xyz's comprehensive suite of Web3 infrastructure solutions. This new addition to our API marketplace marks a significant step forward in supporting prediction market developers and platforms.

Cuckoo Prediction Events API

What is the Cuckoo Prediction Events API?

The Cuckoo Prediction Events API provides developers with streamlined access to real-time prediction market data and events. Through a GraphQL interface, developers can easily query and integrate prediction events data into their applications, including event titles, descriptions, source URLs, images, timestamps, options, and tags.

Key features include:

  • Rich Event Data: Access comprehensive prediction event information including titles, descriptions, and source URLs
  • Flexible GraphQL Interface: Efficient querying with pagination support
  • Real-time Updates: Stay current with the latest prediction market events
  • Structured Data Format: Well-organized data structure for easy integration
  • Tag-based Categorization: Filter events by categories like price movements, forecasts, and regulations

Example Response Structure

{
"data": {
"predictionEvents": {
"pageInfo": {
"hasNextPage": true,
"endCursor": "2024-11-30T12:01:43.018Z",
"hasPreviousPage": false,
"startCursor": "2024-12-01"
},
"edges": [
{
"node": {
"id": "pevt_36npN7RGMkHmMyYJb1t7",
"eventTitle": "Will Bitcoin reach $100,000 by the end of December 2024?",
"eventDescription": "Bitcoin is currently making a strong push toward the $100,000 mark, with analysts predicting a potential price top above this threshold as global money supply increases. Market sentiment is bullish, but Bitcoin has faced recent consolidation below this key psychological level.",
"sourceUrl": "https://u.today/bitcoin-btc-makes-final-push-to-100000?utm_source=snapi",
"imageUrl": "https://crypto.snapi.dev/images/v1/q/e/2/54300-602570.jpg",
"createdAt": "2024-11-30T12:02:08.106Z",
"date": "2024-12-31T00:00:00.000Z",
"options": [
"Yes",
"No"
],
"tags": [
"BTC",
"pricemovement",
"priceforecast"
]
},
"cursor": "2024-11-30T12:02:08.106Z"
},
{
"node": {
"id": "pevt_2WMQJnqsfanUTcAHEVNs",
"eventTitle": "Will Ethereum break the $4,000 barrier in December 2024?",
"eventDescription": "Ethereum has shown significant performance this bull season, with increased inflows into ETH ETFs and rising institutional interest. Analysts are speculating whether ETH will surpass the $4,000 mark as it continues to gain momentum.",
"sourceUrl": "https://coinpedia.org/news/will-ether-breakthrough-4000-traders-remain-cautious/",
"imageUrl": "https://crypto.snapi.dev/images/v1/p/h/4/top-reasons-why-ethereum-eth-p-602592.webp",
"createdAt": "2024-11-30T12:02:08.106Z",
"date": "2024-12-31T00:00:00.000Z",
"options": [
"Yes",
"No"
],
"tags": [
"ETH",
"priceforecast",
"pricemovement"
]
},
"cursor": "2024-11-30T12:02:08.106Z"
}
]
}
}
}

This sample response showcases two diverse prediction events - one about regulatory developments and another about institutional investment - demonstrating the API's ability to provide comprehensive market intelligence across different aspects of the crypto ecosystem. The response includes cursor-based pagination with timestamps and metadata like creation dates and image URLs.

This sample response shows two prediction events with full details including IDs, timestamps, and pagination information, demonstrating the rich data available through the API.

Who's Using It?

We're proud to be working with leading prediction market platforms including:

  • Cuckoo Pred: A decentralized prediction market platform
  • Event Protocol: A protocol for creating and managing prediction markets

Getting Started

To start using the Cuckoo Prediction Events API:

  1. Visit the API Marketplace
  2. Create your API access key
  3. Make GraphQL queries using our provided endpoint

Example GraphQL query:

query PredictionEvents($after: String, $first: Int) {
predictionEvents(after: $after, first: $first) {
pageInfo {
hasNextPage
endCursor
}
edges {
node {
id
eventTitle
eventDescription
sourceUrl
imageUrl
options
tags
}
}
}
}

Example variable:

{
"after": "2024-12-01",
"first": 10
}

About Cuckoo Network

Cuckoo Network is pioneering the intersection of artificial intelligence and blockchain technology through a decentralized infrastructure. As a leading Web3 platform, Cuckoo Network provides:

  • AI Computing Marketplace: A decentralized marketplace that connects AI computing power providers with users, ensuring efficient resource allocation and fair pricing
  • Prediction Market Protocol: A robust framework for creating and managing decentralized prediction markets
  • Node Operation Network: A distributed network of nodes that process AI computations and validate prediction market outcomes
  • Innovative Tokenomics: A sustainable economic model that incentivizes network participation and ensures long-term growth

The Cuckoo Prediction Events API is built on top of this infrastructure, leveraging Cuckoo Network's deep expertise in both AI and blockchain technologies. By integrating with Cuckoo Network's ecosystem, developers can access not just prediction market data, but also tap into a growing network of AI-powered services and decentralized computing resources.

This partnership between BlockEden.xyz and Cuckoo Network represents a significant step forward in bringing enterprise-grade prediction market infrastructure to Web3 developers, combining BlockEden.xyz's reliable API delivery with Cuckoo Network's innovative technology stack.

Join Our Growing Ecosystem

As we continue to expand our API offerings, we invite developers to join our community and help shape the future of prediction markets in Web3. With our commitment to high availability and robust infrastructure, BlockEden.xyz ensures your applications have the reliable foundation they need to succeed.

For more information, technical documentation, and support:

Together, let's build the future of prediction markets!

· 2 min read

We're excited to share a transformative opportunity at Altera.al, a breakthrough AI startup that recently made waves with their groundbreaking work in developing digital humans. Recently featured in MIT Technology Review, Altera.al has demonstrated remarkable progress in creating AI agents that can develop humanlike behaviors, form communities, and interact meaningfully in digital spaces.

Altera.al: Join the Frontier of Digital Human Development with Compensation of $600K-1M

About Altera.al

Founded by Robert Yang, who left his position as an assistant professor in computational neuroscience at MIT to pursue this vision, Altera.al has already secured over $11 million in funding from prestigious investors including A16Z and Eric Schmidt's emerging tech VC firm. Their recent Project Sid demonstration showed AI agents spontaneously developing specialized roles, forming social connections, and even creating cultural systems within Minecraft - a significant step toward their goal of creating truly autonomous AI agents that can collaborate at scale.

Why Now Is an Exciting Time to Join

Altera.al has achieved a significant technical breakthrough in their mission to develop machines with fundamental human qualities. Their work goes beyond traditional AI development - they're creating digital beings that can:

  • Form communities and social hierarchies
  • Develop specialized roles and responsibilities
  • Create and spread cultural patterns
  • Interact meaningfully with humans in digital spaces

Who They're Looking For

Following their recent breakthrough, Altera.al is scaling their team and offering exceptional compensation packages ranging from $600,000 to $1,000,000 for:

  • Experts in AI agent research
  • Strong Individual Contributors in:
    • Distributed systems
    • Security
    • Operating systems

How to Apply

Ready to be part of this groundbreaking journey? Apply directly through their careers page: https://jobs.ashbyhq.com/altera.al

Join the Future of Digital Human Development

This is a unique opportunity to work at the intersection of artificial intelligence and human behavior modeling, with a team that's already demonstrating remarkable results. If you're passionate about pushing the boundaries of what's possible in AI and human-machine interaction, Altera.al could be your next adventure.


For more updates on groundbreaking opportunities in tech and blockchain, follow us on Twitter or join our Discord community.

This post is part of our ongoing commitment to supporting innovation and connecting talent with transformative opportunities in the tech industry.

· 8 min read

Every year, a16z publishes sweeping predictions on the technologies that will define our future. This time, their crypto team has painted a vivid picture of a 2025 where blockchains, AI, and advanced governance experiments collide.

I’ve summarized and commented on their key insights below, focusing on what I see as the big levers for change — and possible stumbling blocks. If you’re a tech builder, investor, or simply curious about the next wave of the internet, this piece is for you.

1. AI Meets Crypto Wallets

Key Insight: AI models are moving from “NPCs” in the background to “main characters,” acting independently in online (and potentially physical) economies. That means they’ll need crypto wallets of their own.

  • What It Means: Instead of an AI just spitting out answers, it might hold, spend, or invest digital assets — transacting on behalf of its human owner or purely on its own.
  • Potential Payoff: Higher-efficiency “agentic AIs” could help businesses with supply chain coordination, data management, or automated trading.
  • Watch Out For: How do we ensure an AI is truly autonomous, not just secretly manipulated by humans? Trusted execution environments (TEEs) can provide technical guarantees, but establishing trust in a “robot with a wallet” won’t happen overnight.

2. Rise of the DAC (Decentralized Autonomous Chatbot)

Key Insight: A chatbot running autonomously in a TEE can manage its own keys, post content on social media, gather followers, and even generate revenue — all without direct human control.

  • What It Means: Think of an AI influencer that can’t be silenced by any one person because it literally controls itself.
  • Potential Payoff: A glimpse of a world where content creators aren’t individuals but self-governing algorithms with million-dollar (or billion-dollar) valuations.
  • Watch Out For: If an AI breaks laws, who’s liable? Regulatory guardrails will be tricky when the “entity” is a set of code housed on distributed servers.

3. Proof of Personhood Becomes Essential

Key Insight: With AI lowering the cost of generating hyper-realistic fakes, we need better ways to verify that we’re interacting with real humans online. Enter privacy-preserving unique IDs.

  • What It Means: Every user might eventually have a certified “human stamp” — hopefully without sacrificing personal data.
  • Potential Payoff: This could drastically reduce spam, scams, and bot armies. It also lays the groundwork for more trustworthy social networks and community platforms.
  • Watch Out For: Adoption is the main barrier. Even the best proof-of-personhood solutions need broad acceptance before malicious actors outpace them.

4. From Prediction Markets to Broader Information Aggregation

Key Insight: 2024’s election-driven prediction markets grabbed headlines, but a16z sees a bigger trend: using blockchain to design new ways of revealing and aggregating truths — be it in governance, finance, or community decisions.

  • What It Means: Distributed incentive mechanisms can reward people for honest input or data. We might see specialized “truth markets” for everything from local sensor networks to global supply chains.
  • Potential Payoff: A more transparent, less gameable data layer for society.
  • Watch Out For: Sufficient liquidity and user participation remain challenging. For niche questions, “prediction pools” can be too small to yield meaningful signals.

5. Stablecoins Go Enterprise

Key Insight: Stablecoins are already the cheapest way to move digital dollars, but large companies haven’t embraced them — yet.

  • What It Means: SMBs and high-transaction merchants might wake up to the idea that they can save hefty credit-card fees by adopting stablecoins. Enterprises that process billions in annual revenue could do the same, potentially adding 2% to their bottom lines.
  • Potential Payoff: Faster, cheaper global payments, plus a new wave of stablecoin-based financial products.
  • Watch Out For: Companies will need new ways to manage fraud protection, identity verification, and refunds — previously handled by credit-card providers.

6. Government Bonds on the Blockchain

Key Insight: Governments exploring on-chain bonds could create interest-bearing digital assets that function without the privacy issues of a central bank digital currency.

  • What It Means: On-chain bonds could serve as high-quality collateral in DeFi, letting sovereign debt seamlessly integrate with decentralized lending protocols.
  • Potential Payoff: Greater transparency, potentially lower issuance costs, and a more democratized bond market.
  • Watch Out For: Skeptical regulators and potential inertia in big institutions. Legacy clearing systems won’t disappear easily.

Key Insight: Wyoming introduced a new category called the “decentralized unincorporated nonprofit association” (DUNA), meant to give DAOs legal standing in the U.S.

  • What It Means: DAOs can now hold property, sign contracts, and limit the liability of token holders. This opens the door for more mainstream usage and real commercial activity.
  • Potential Payoff: If other states follow Wyoming’s lead (as they did with LLCs), DAOs will become normal business entities.
  • Watch Out For: Public perception is still fuzzy on what DAOs do. They’ll need a track record of successful projects that translate to real-world benefits.

8. Liquid Democracy in the Physical World

Key Insight: Blockchain-based governance experiments might extend from online DAO communities to local-level elections. Voters could delegate their votes or vote directly — “liquid democracy.”

  • What It Means: More flexible representation. You can choose to vote on specific issues or hand that responsibility to someone you trust.
  • Potential Payoff: Potentially more engaged citizens and dynamic policymaking.
  • Watch Out For: Security concerns, technical literacy, and general skepticism around mixing blockchain with official elections.

9. Building on Existing Infrastructure (Instead of Reinventing It)

Key Insight: Startups often spend time reinventing base-layer technology (consensus protocols, programming languages) rather than focusing on product-market fit. In 2025, they’ll pick off-the-shelf components more often.

  • What It Means: Faster speed to market, more reliable systems, and greater composability.
  • Potential Payoff: Less time wasted building a new blockchain from scratch; more time spent on the user problem you’re solving.
  • Watch Out For: It’s tempting to over-specialize for performance gains. But specialized languages or consensus layers can create higher overhead for developers.

10. User Experience First, Infrastructure Second

Key Insight: Crypto needs to “hide the wires.” We don’t make consumers learn SMTP to send email — so why force them to learn “EIPs” or “rollups”?

  • What It Means: Product teams will choose the technical underpinnings that serve a great user experience, not vice versa.
  • Potential Payoff: A big leap in user onboarding, reducing friction and jargon.
  • Watch Out For: “Build it and they will come” only works if you truly nail the experience. Marketing lingo about “easy crypto UX” means nothing if people are still forced to wrangle private keys or memorize arcane acronyms.

11. Crypto’s Own App Stores Emerge

Key Insight: From Worldcoin’s World App marketplace to Solana’s dApp Store, crypto-friendly platforms provide distribution and discovery free from Apple or Google’s gatekeeping.

  • What It Means: If you’re building a decentralized application, you can reach users without fear of sudden deplatforming.
  • Potential Payoff: Tens (or hundreds) of thousands of new users discovering your dApp in days, instead of being lost in the sea of centralized app stores.
  • Watch Out For: These stores need enough user base and momentum to compete with Apple and Google. That’s a big hurdle. Hardware tie-ins (like specialized crypto phones) might help.

12. Tokenizing ‘Unconventional’ Assets

Key Insight: As blockchain infrastructure matures and fees drop, tokenizing everything from biometric data to real-world curiosities becomes more feasible.

  • What It Means: A “long tail” of unique assets can be fractionalized and traded globally. People could even monetize personal data in a controlled, consent-based way.
  • Potential Payoff: Massive new markets for otherwise “locked up” assets, plus interesting new data pools for AI to consume.
  • Watch Out For: Privacy pitfalls and ethical landmines. Just because you can tokenize something doesn’t mean you should.

A16Z’s 2025 outlook shows a crypto sector that’s reaching for broader adoption, more responsible governance, and deeper integration with AI. Where previous cycles dwelled on speculation or hype, this vision revolves around utility: stablecoins saving merchants 2% on every latte, AI chatbots operating their own businesses, local governments experimenting with liquid democracy.

Yet execution risk looms. Regulators worldwide remain skittish, and user experience is still too messy for the mainstream. 2025 might be the year that crypto and AI finally “grow up,” or it might be a halfway step — it all depends on whether teams can ship real products people love, not just protocols for the cognoscenti.

· 4 min read

In 2024, something remarkable is happening: Big Tech is not just exploring blockchain; it's deploying critical workloads on Ethereum's mainnet. Microsoft processes over 100,000 supply chain verifications daily through their Ethereum-based system, JP Morgan's pilot has settled $2.3 billion in securities transactions, and Ernst & Young's blockchain division has grown 300% year-over-year building on Ethereum.

Ethereum Adoption

But the most compelling story isn't just that these giants are embracing public blockchains—it's why they're doing it now and what their $4.2 billion in combined Web3 investments tells us about the future of enterprise technology.

The Decline of Private Blockchains Was Inevitable (But Not for the Reasons You Think)

The fall of private blockchains like Hyperledger and Quorum has been widely documented, but their failure wasn't just about network effects or being "expensive databases." It was about timing and ROI.

Consider the numbers: The average enterprise private blockchain project in 2020-2022 cost $3.7 million to implement and yielded just $850,000 in cost savings over three years (according to Gartner). In contrast, early data from Microsoft's public Ethereum implementation shows a 68% reduction in implementation costs and 4x greater cost savings.

Private blockchains were a technological anachronism, created to solve problems enterprises didn't yet fully understand. They aimed to de-risk blockchain adoption but instead created isolated systems that couldn't deliver value.

The Three Hidden Forces Accelerating Enterprise Adoption (And One Major Risk)

While Layer 2 scalability and regulatory clarity are often cited as drivers, three deeper forces are actually reshaping the landscape:

1. The "AWSification" of Web3

Just as AWS abstracted infrastructure complexity (reducing average deployment times from 89 days to 3 days), Ethereum's Layer 2s have transformed blockchain into consumable infrastructure. Microsoft's supply chain verification system went from concept to production in 45 days on Arbitrum—a timeline that would have been impossible two years ago.

The data tells the story: Enterprise deployments on Layer 2s have grown 780% since January 2024, with average deployment times falling from 6 months to 6 weeks.

2. The Zero-Knowledge Revolution

Zero-knowledge proofs haven't just solved privacy—they've reinvented the trust model. The technological breakthrough can be measured in concrete terms: EY's Nightfall protocol can now process private transactions at 1/10th the cost of previous privacy solutions while maintaining complete data confidentiality.

Current enterprise ZK implementations include:

  • Microsoft: Supply chain verification (100k tx/day)
  • JP Morgan: Securities settlement ($2.3B processed)
  • EY: Tax reporting systems (250k entities)

3. Public Chains as a Strategic Hedge

The strategic value proposition is quantifiable. Enterprises spending on cloud infrastructure face average vendor lock-in costs of 22% of their total IT budget. Building on public Ethereum reduces this to 3.5% while maintaining the benefits of network effects.

The Counter Argument: The Centralization Risk

However, this trend faces one significant challenge: the risk of centralization. Current data shows that 73% of enterprise Layer 2 transactions are processed by just three sequencers. This concentration could recreate the same vendor lock-in problems enterprises are trying to escape.

The New Enterprise Technical Stack: A Detailed Breakdown

The emerging enterprise stack reveals a sophisticated architecture:

Settlement Layer (Ethereum Mainnet):

  • Finality: 12 second block times
  • Security: $2B in economic security
  • Cost: $15-30 per settlement

Execution Layer (Purpose-built L2s):

  • Performance: 3,000-5,000 TPS
  • Latency: 2-3 second finality
  • Cost: $0.05-0.15 per transaction

Privacy Layer (ZK Infrastructure):

  • Proof Generation: 50ms-200ms
  • Verification Cost: ~$0.50 per proof
  • Data Privacy: Complete

Data Availability:

  • Ethereum: $0.15 per kB
  • Alternative DA: $0.001-0.01 per kB
  • Hybrid Solutions: Growing 400% QoQ

What's Next: Three Predictions for 2025

  1. Enterprise Layer 2 Consolidation The current fragmentation (27 enterprise-focused L2s) will consolidate to 3-5 dominant platforms, driven by security requirements and standardization needs.

  2. Privacy Toolkit Explosion Following EY's success, expect 50+ new enterprise privacy solutions by Q4 2024. Early indicators show 127 privacy-focused repositories under development by major enterprises.

  3. Cross-Chain Standards Emergence Watch for the Enterprise Ethereum Alliance to release standardized cross-chain communication protocols by Q3 2024, addressing the current fragmentation risks.

Why This Matters Now

The mainstreaming of Web3 marks the evolution from "permissionless innovation" to "permissionless infrastructure." For enterprises, this represents a $47 billion opportunity to rebuild critical systems on open, interoperable foundations.

Success metrics to watch:

  • Enterprise TVL Growth: Currently $6.2B, growing 40% monthly
  • Development Activity: 4,200+ active enterprise developers
  • Cross-chain Transaction Volume: 15M monthly, up 900% YTD
  • ZK Proof Generation Costs: Falling 12% monthly

For Web3 builders, this isn't just about adoption—it's about co-creating the next generation of enterprise infrastructure. The winners will be those who can bridge the gap between crypto innovation and enterprise requirements while maintaining the core values of decentralization.

· 11 min read

On November 13, 2024, 0G Labs announced a $40 million funding round led by Hack VC, Delphi Digital, OKX Ventures, Samsung Next, and Animoca Brands, thrusting the team behind this decentralized AI operating system into the spotlight. Their modular approach combines decentralized storage, data availability verification, and decentralized settlement to enable AI applications on-chain. But can they realistically achieve GB/s-level throughput to fuel the next era of AI adoption on Web3? This in-depth report evaluates 0G’s architecture, incentive mechanics, ecosystem traction, and potential pitfalls, aiming to help you gauge whether 0G can deliver on its promise.

Background

The AI sector has been on a meteoric rise, catalyzed by large language models like ChatGPT and ERNIE Bot. Yet AI is more than just chatbots and generative text; it also includes everything from AlphaGo’s Go victories to image generation tools like MidJourney. The holy grail that many developers pursue is a general-purpose AI, or AGI (Artificial General Intelligence)—colloquially described as an AI “Agent” capable of learning, perception, decision-making, and complex execution similar to human intelligence.

However, both AI and AI Agent applications are extremely data-intensive. They rely on massive datasets for training and inference. Traditionally, this data is stored and processed on centralized infrastructure. With the advent of blockchain, a new approach known as DeAI (Decentralized AI) has emerged. DeAI attempts to leverage decentralized networks for data storage, sharing, and verification to overcome the pitfalls of traditional, centralized AI solutions.

0G Labs stands out in this DeAI infrastructure landscape, aiming to build a decentralized AI operating system known simply as 0G.

What Is 0G Labs?

In traditional computing, an Operating System (OS) manages hardware and software resources—think Microsoft Windows, Linux, macOS, iOS, or Android. An OS abstracts away the complexity of the underlying hardware, making it easier for both end-users and developers to interact with the computer.

By analogy, the 0G OS aspires to fulfill a similar role in Web3:

  • Manage decentralized storage, compute, and data availability.
  • Simplify on-chain AI application deployment.

Why decentralization? Conventional AI systems store and process data in centralized silos, raising concerns around data transparency, user privacy, and fair compensation for data providers. 0G’s approach uses decentralized storage, cryptographic proofs, and open incentive models to mitigate these risks.

The name “0G” stands for “Zero Gravity.” The team envisions an environment where data exchange and computation feel “weightless”—everything from AI training to inference and data availability happens seamlessly on-chain.

The 0G Foundation, formally established in October 2024, drives this initiative. Its stated mission is to make AI a public good—one that is accessible, verifiable, and open to all.

Key Components of the 0G Operating System

Fundamentally, 0G is a modular architecture designed specifically to support AI applications on-chain. Its three primary pillars are:

  1. 0G Storage – A decentralized storage network.
  2. 0G DA (Data Availability) – A specialized data availability layer ensuring data integrity.
  3. 0G Compute Network – Decentralized compute resource management and settlement for AI inference (and eventually training).

These pillars work in concert under the umbrella of a Layer1 network called 0G Chain, which is responsible for consensus and settlement.

According to the 0G Whitepaper (“0G: Towards Data Availability 2.0”), both the 0G Storage and 0G DA layers build on top of 0G Chain. Developers can launch multiple custom PoS consensus networks, each functioning as part of the 0G DA and 0G Storage framework. This modular approach means that as system load grows, 0G can dynamically add new validator sets or specialized nodes to scale out.

0G Storage

0G Storage is a decentralized storage system geared for large-scale data. It uses distributed nodes with built-in incentives for storing user data. Crucially, it splits data into smaller, redundant “chunks” using Erasure Coding (EC), distributing these chunks across different storage nodes. If a node fails, data can still be reconstructed from redundant chunks.

Supported Data Types

0G Storage accommodates both structured and unstructured data.

  1. Structured Data is stored in a Key-Value (KV) layer, suitable for dynamic and frequently updated information (think databases, collaborative documents, etc.).
  2. Unstructured Data is stored in a Log layer which appends data entries chronologically. This layer is akin to a file system optimized for large-scale, append-only workloads.

By stacking a KV layer on top of the Log layer, 0G Storage can serve diverse AI application needs—from storing large model weights (unstructured) to dynamic user-based data or real-time metrics (structured).

PoRA Consensus

PoRA (Proof of Random Access) ensures storage nodes actually hold the chunks they claim to store. Here’s how it works:

  • Storage miners are periodically challenged to produce cryptographic hashes of specific random data chunks they store.
  • They must respond by generating a valid hash (similar to PoW-like puzzle-solving) derived from their local copy of the data.

To level the playing field, the system limits mining competitions to 8 TB segments. A large miner can subdivide its hardware into multiple 8 TB partitions, while smaller miners compete within a single 8 TB boundary.

Incentive Design

Data in 0G Storage is divided into 8 GB “Pricing Segments.” Each segment has both a donation pool and a reward pool. Users who wish to store data pay a fee in 0G Token (ZG), which partially funds node rewards.

  • Base Reward: When a storage node submits valid PoRA proofs, it gets immediate block rewards for that segment.
  • Ongoing Reward: Over time, the donation pool releases a portion (currently ~4% per year) into the reward pool, incentivizing nodes to store data permanently. The fewer the nodes storing a particular segment, the larger the share each node can earn.

Users only pay once for permanent storage, but must set a donation fee above a system minimum. The higher the donation, the more likely miners are to replicate the user’s data.

Royalty Mechanism: 0G Storage also includes a “royalty” or “data sharing” mechanism. Early storage providers create “royalty records” for each data chunk. If new nodes want to store that same chunk, the original node can share it. When the new node later proves storage (via PoRA), the original data provider receives an ongoing royalty. The more widely replicated the data, the higher the aggregate reward for early providers.

Comparisons with Filecoin and Arweave

Similarities:

  • All three incentivize decentralized data storage.
  • Both 0G Storage and Arweave aim for permanent storage.
  • Data chunking and redundancy are standard approaches.

Key Differences:

  • Native Integration: 0G Storage is not an independent blockchain; it’s integrated directly with 0G Chain and primarily supports AI-centric use cases.
  • Structured Data: 0G supports KV-based structured data alongside unstructured data, which is critical for many AI workloads requiring frequent read-write access.
  • Cost: 0G claims $10–11/TB for permanent storage, reportedly cheaper than Arweave.
  • Performance Focus: Specifically designed to meet AI throughput demands, whereas Filecoin or Arweave are more general-purpose decentralized storage networks.

0G DA (Data Availability Layer)

Data availability ensures that every network participant can fully verify and retrieve transaction data. If the data is incomplete or withheld, the blockchain’s trust assumptions break.

In the 0G system, data is chunked and stored off-chain. The system records Merkle roots for these data chunks, and DA nodes must sample these chunks to ensure they match the Merkle root and erasure-coding commitments. Only then is the data deemed “available” and appended into the chain’s consensus state.

DA Node Selection and Incentives

  • DA nodes must stake ZG to participate.
  • They’re grouped into quorums randomly via Verifiable Random Functions (VRFs).
  • Each node only validates a subset of data. If 2/3 of a quorum confirm the data as available and correct, they sign a proof that’s aggregated and submitted to the 0G consensus network.
  • Reward distribution also happens through periodic sampling. Only the nodes storing randomly sampled chunks are eligible for that round’s rewards.

Comparison with Celestia and EigenLayer

0G DA draws on ideas from Celestia (data availability sampling) and EigenLayer (restaking) but aims to provide higher throughput. Celestia’s throughput currently hovers around 10 MB/s with ~12-second block times. Meanwhile, EigenDA primarily serves Layer2 solutions and can be complex to implement. 0G envisions GB/s throughput, which better suits large-scale AI workloads that can exceed 50–100 GB/s of data ingestion.

0G Compute Network

0G Compute Network serves as the decentralized computing layer. It’s evolving in phases:

  • Phase 1: Focus on settlement for AI inference.
  • The network matches “AI model buyers” (users) with compute providers (sellers) in a decentralized marketplace. Providers register their services and prices in a smart contract. Users pre-fund the contract, consume the service, and the contract mediates payment.
  • Over time, the team hopes to expand to full-blown AI training on-chain, though that’s more complex.

Batch Processing: Providers can batch user requests to reduce on-chain overhead, improving efficiency and lowering costs.

0G Chain

0G Chain is a Layer1 network serving as the foundation for 0G’s modular architecture. It underpins:

  • 0G Storage (via smart contracts)
  • 0G DA (data availability proofs)
  • 0G Compute (settlement mechanisms)

Per official docs, 0G Chain is EVM-compatible, enabling easy integration for dApps that require advanced data storage, availability, or compute.

0G Consensus Network

0G’s consensus mechanism is somewhat unique. Rather than a single monolithic consensus layer, multiple independent consensus networks can be launched under 0G to handle different workloads. These networks share the same staking base:

  • Shared Staking: Validators stake ZG on Ethereum. If a validator misbehaves, their staked ZG on Ethereum can be slashed.
  • Scalability: New consensus networks can be spun up to scale horizontally.

Reward Mechanism: When validators finalize blocks in the 0G environment, they receive tokens. However, the tokens they earn on 0G Chain are burned in the local environment, and the validator’s Ethereum-based account is minted an equivalent amount, ensuring a single point of liquidity and security.

0G Token (ZG)

ZG is an ERC-20 token representing the backbone of 0G’s economy. It’s minted, burned, and circulated via smart contracts on Ethereum. In practical terms:

  • Users pay for storage, data availability, and compute resources in ZG.
  • Miners and validators earn ZG for proving storage or validating data.
  • Shared staking ties the security model back to Ethereum.

Summary of Key Modules

0G OS merges four components—Storage, DA, Compute, and Chain—into one interconnected, modular stack. The system’s design goal is scalability, with each layer horizontally extensible. The team touts the potential for “infinite” throughput, especially crucial for large-scale AI tasks.

0G Ecosystem

Although relatively new, the 0G ecosystem already includes key integration partners:

  1. Infrastructure & Tooling:

    • ZK solutions like Union, Brevis, Gevulot
    • Cross-chain solutions like Axelar
    • Restaking protocols like EigenLayer, Babylon, PingPong
    • Decentralized GPU providers IoNet, exaBits
    • Oracle solutions Hemera, Redstone
    • Indexing tools for Ethereum blob data
  2. Projects Using 0G for Data Storage & DA:

    • Polygon, Optimism (OP), Arbitrum, Manta for L2 / L3 integration
    • Nodekit, AltLayer for Web3 infrastructure
    • Blade Games, Shrapnel for on-chain gaming

Supply Side

ZK and Cross-chain frameworks connect 0G to external networks. Restaking solutions (e.g., EigenLayer, Babylon) strengthen security and possibly attract liquidity. GPU networks accelerate erasure coding. Oracle solutions feed off-chain data or reference AI model pricing.

Demand Side

AI Agents can tap 0G for both data storage and inference. L2s and L3s can integrate 0G’s DA to improve throughput. Gaming and other dApps requiring robust data solutions can store assets, logs, or scoring systems on 0G. Some have already partnered with the project, pointing to early ecosystem traction.

Roadmap & Risk Factors

0G aims to make AI a public utility, accessible and verifiable by anyone. The team aspires to GB/s-level DA throughput—crucial for real-time AI training that can demand 50–100 GB/s of data transfer.

Co-founder & CEO Michael Heinrich has stated that the explosive growth of AI makes timely iteration critical. The pace of AI innovation is fast; 0G’s own dev progress must keep up.

Potential Trade-Offs:

  • Current reliance on shared staking might be an intermediate solution. Eventually, 0G plans to introduce a horizontally scalable consensus layer that can be incrementally augmented (akin to spinning up new AWS nodes).
  • Market Competition: Many specialized solutions exist for decentralized storage, data availability, and compute. 0G’s all-in-one approach must stay compelling.
  • Adoption & Ecosystem Growth: Without robust developer traction, the promised “unlimited throughput” remains theoretical.
  • Sustainability of Incentives: Ongoing motivation for nodes depends on real user demand and an equilibrium token economy.

Conclusion

0G attempts to unify decentralized storage, data availability, and compute into a single “operating system” supporting on-chain AI. By targeting GB/s throughput, the team seeks to break the performance barrier that currently deters large-scale AI from migrating on-chain. If successful, 0G could significantly accelerate the Web3 AI wave by providing a scalable, integrated, and developer-friendly infrastructure.

Still, many open questions remain. The viability of “infinite throughput” hinges on whether 0G’s modular consensus and incentive structures can seamlessly scale. External factors—market demand, node uptime, developer adoption—will also determine 0G’s staying power. Nonetheless, 0G’s approach to addressing AI’s data bottlenecks is novel and ambitious, hinting at a promising new paradigm for on-chain AI.

· 3 min read

In one of the most sophisticated cyber attacks of 2023, Radiant Capital, a decentralized cross-chain lending protocol built on LayerZero, lost approximately $50 million to hackers. The complexity and precision of this attack revealed the advanced capabilities of state-sponsored North Korean hackers, pushing the boundaries of what many thought possible in crypto security breaches.

The Radiant Capital Hack: How North Korean Hackers Used a Single PDF to Steal Hundreds of Millions

The Perfect Social Engineering Attack

On September 11, 2023, a Radiant Capital developer received what seemed like an innocent Telegram message. The sender posed as a former contractor, claiming they had switched careers to smart contract auditing and wanted feedback on a project report. This type of request is commonplace in the remote-work culture of crypto development, making it particularly effective as a social engineering tactic.

The attackers went the extra mile by creating a fake website that closely mimicked the supposed contractor's legitimate domain, adding another layer of authenticity to their deception.

The Trojan Horse

When the developer downloaded and unzipped the file, it appeared to be a standard PDF document. However, the file was actually a malicious executable called INLETDRIFT disguised with a PDF icon. Once opened, it silently installed a backdoor on the macOS system and established communication with the attackers' command server (atokyonews[.]com).

The situation worsened when the infected developer, seeking feedback, shared the malicious file with other team members, inadvertently spreading the malware within the organization.

The Sophisticated Man-in-the-Middle Attack

With the malware in place, the hackers executed a precisely targeted "bait-and-switch" attack. They intercepted transaction data when team members were operating their Gnosis Safe multi-signature wallet. While the transaction appeared normal on the web interface, the malware replaced the transaction content when it reached the Ledger hardware wallet for signing.

Due to the blind signing mechanism used in Safe multi-sig transactions, team members couldn't detect that they were actually signing a transferOwnership() function call, which handed control of the lending pools to the attackers. This allowed the hackers to drain user funds that had been authorized to the protocol's contracts.

The Swift Cleanup

Following the theft, the attackers demonstrated remarkable operational security. Within just three minutes, they removed all traces of the backdoor and browser extensions, effectively covering their tracks.

Key Lessons for the Industry

  1. Never Trust File Downloads: Teams should standardize on online document tools like Google Docs or Notion instead of downloading files. For example, OneKey's recruitment process only accepts Google Docs links, explicitly refusing to open any other files or links.

  2. Frontend Security is Critical: The incident highlights how easily attackers can spoof transaction information on the frontend, making users unknowingly sign malicious transactions.

  3. Blind Signing Risks: Hardware wallets often display oversimplified transaction summaries, making it difficult to verify the true nature of complex smart contract interactions.

  4. DeFi Protocol Safety: Projects handling large amounts of capital should implement timelock mechanisms and robust governance processes. This creates a buffer period for detecting and responding to suspicious activities before funds can be moved.

The Radiant Capital hack serves as a sobering reminder that even with hardware wallets, transaction simulation tools, and industry best practices, sophisticated attackers can still find ways to compromise security. It underscores the need for constant vigilance and evolution in crypto security measures.

As the industry matures, we must learn from these incidents to build more robust security frameworks that can withstand increasingly sophisticated attack vectors. The future of DeFi depends on it.

· 5 min read

The blockchain industry faces a critical inflection point in 2024. While the global market for blockchain technology is projected to reach $469.49 billion by 2030, privacy remains a fundamental challenge. Trusted Execution Environments (TEEs) have emerged as a potential solution, with the TEE market expected to grow from $1.2 billion in 2023 to $3.8 billion by 2028. But does this hardware-based approach truly solve blockchain's privacy paradox, or does it introduce new risks?

The Hardware Foundation: Understanding TEE's Promise

A Trusted Execution Environment functions like a bank's vault within your computer—but with a crucial difference. While a bank vault simply stores assets, a TEE creates an isolated computation environment where sensitive operations can run completely shielded from the rest of the system, even if that system is compromised.

The market is currently dominated by three key implementations:

  1. Intel SGX (Software Guard Extensions)

    • Market Share: 45% of server TEE implementations
    • Performance: Up to 40% overhead for encrypted operations
    • Security Features: Memory encryption, remote attestation
    • Notable Users: Microsoft Azure Confidential Computing, Fortanix
  2. ARM TrustZone

    • Market Share: 80% of mobile TEE implementations
    • Performance: <5% overhead for most operations
    • Security Features: Secure boot, biometric protection
    • Key Applications: Mobile payments, DRM, secure authentication
  3. AMD SEV (Secure Encrypted Virtualization)

    • Market Share: 25% of server TEE implementations
    • Performance: 2-7% overhead for VM encryption
    • Security Features: VM memory encryption, nested page table protection
    • Notable Users: Google Cloud Confidential Computing, AWS Nitro Enclaves

Real-World Impact: The Data Speaks

Let's examine three key applications where TEE is already transforming blockchain:

1. MEV Protection: The Flashbots Case Study

Flashbots' implementation of TEE has demonstrated remarkable results:

  • Pre-TEE (2022):

    • Average daily MEV extraction: $7.1M
    • Centralized extractors: 85% of MEV
    • User losses to sandwich attacks: $3.2M daily
  • Post-TEE (2023):

    • Average daily MEV extraction: $4.3M (-39%)
    • Democratized extraction: No single entity >15% of MEV
    • User losses to sandwich attacks: $0.8M daily (-75%)

According to Phil Daian, Flashbots' co-founder: "TEE has fundamentally changed the MEV landscape. We're seeing a more democratic, efficient market with significantly reduced user harm."

2. Scaling Solutions: Scroll's Breakthrough

Scroll's hybrid approach combining TEE with zero-knowledge proofs has achieved impressive metrics:

  • Transaction throughput: 3,000 TPS (compared to Ethereum's 15 TPS)
  • Cost per transaction: $0.05 (vs. $2-20 on Ethereum mainnet)
  • Validation time: 15 seconds (vs. minutes for pure ZK solutions)
  • Security guarantee: 99.99% with dual verification (TEE + ZK)

Dr. Sarah Wang, blockchain researcher at UC Berkeley, notes: "Scroll's implementation shows how TEE can complement cryptographic solutions rather than replace them. The performance gains are significant without compromising security."

3. Private DeFi: Emerging Applications

Several DeFi protocols are now leveraging TEE for private transactions:

  • Secret Network (Using Intel SGX):
    • 500,000+ private transactions processed
    • $150M in private token transfers
    • 95% reduction in front-running

The Technical Reality: Challenges and Solutions

Side-Channel Attack Mitigation

Recent research has revealed both vulnerabilities and solutions:

  1. Power Analysis Attacks

    • Vulnerability: 85% success rate in key extraction
    • Solution: Intel's latest SGX update reduces success rate to <0.1%
    • Cost: 2% additional performance overhead
  2. Cache Timing Attacks

    • Vulnerability: 70% success rate in data extraction
    • Solution: AMD's cache partitioning technology
    • Impact: Reduces attack surface by 99%

Centralization Risk Analysis

The hardware dependency introduces specific risks:

  • Hardware Vendor Market Share (2023):
    • Intel: 45%
    • AMD: 25%
    • ARM: 20%
    • Others: 10%

To address centralization concerns, projects like Scroll implement multi-vendor TEE verification:

  • Required agreement from 2+ different vendor TEEs
  • Cross-validation with non-TEE solutions
  • Open-source verification tools

Market Analysis and Future Projections

TEE adoption in blockchain shows strong growth:

  • Current Implementation Costs:

    • Server-grade TEE hardware: $2,000-5,000
    • Integration cost: $50,000-100,000
    • Maintenance: $5,000/month
  • Projected Cost Reduction: 2024: -15% 2025: -30% 2026: -50%

Industry experts predict three key developments by 2025:

  1. Hardware Evolution

    • New TEE-specific processors
    • Reduced performance overhead (<1%)
    • Enhanced side-channel protection
  2. Market Consolidation

    • Standards emergence
    • Cross-platform compatibility
    • Simplified developer tools
  3. Application Expansion

    • Private smart contract platforms
    • Decentralized identity solutions
    • Cross-chain privacy protocols

The Path Forward

While TEE presents compelling solutions, success requires addressing several key areas:

  1. Standards Development

    • Industry working groups forming
    • Open protocols for cross-vendor compatibility
    • Security certification frameworks
  2. Developer Ecosystem

    • New tools and SDKs
    • Training and certification programs
    • Reference implementations
  3. Hardware Innovation

    • Next-gen TEE architectures
    • Reduced costs and energy consumption
    • Enhanced security features

Competitive Landscape

TEE faces competition from other privacy solutions:

SolutionPerformanceSecurityDecentralizationCost
TEEHighMedium-HighMediumMedium
MPCMediumHighHighHigh
FHELowHighHighVery High
ZK ProofsMedium-HighHighHighHigh

The Bottom Line

TEE represents a pragmatic approach to blockchain privacy, offering immediate performance benefits while working to address centralization concerns. The technology's rapid adoption by major projects like Flashbots and Scroll, combined with measurable improvements in security and efficiency, suggests TEE will play a crucial role in blockchain's evolution.

However, success isn't guaranteed. The next 24 months will be critical as the industry grapples with hardware dependencies, standardization efforts, and the ever-present challenge of side-channel attacks. For blockchain developers and enterprises, the key is to understand TEE's strengths and limitations, implementing it as part of a comprehensive privacy strategy rather than a silver bullet solution.

· 3 min read
Dora Noda

In the rapidly evolving world of blockchain, venture capital plays a crucial role. Yet, beneath the surface of sophisticated analysis lies a straightforward goal: selling tokens. Unfortunately, many VCs, especially newcomers, fail to turn a profit due to a lack of deep industry knowledge. Their primary function often boils down to promoting and supporting their investments through various channels.

The Performance of Liquid Funds

Currently, liquid funds are underperforming compared to Bitcoin (BTC). Historically, they were profitable, but so were individual investors. Liquid fund investors typically already have BTC exposure, forcing these funds to invest in non-BTC assets, which frequently struggle to outperform BTC. If a fund can't beat BTC, it doesn't add value.

Advanced Blockchain Literacy

Influencers (KOLs)

Never take influencer content at face value. Their statements often generate noise and serve as tools to gauge project funding and their network. When someone promotes a project, it’s usually because they have financial stakes. Disregard profit and loss screenshots and retrospective analyses. Genuine wealth is often understated, and the most seemingly affluent may not be as wealthy as they appear.

Centralized Exchanges

Inherently distrust centralized exchanges. Avoid using them for contract trading. They can serve as cross-chain bridges or platforms for buying spot currencies, but always be ready to withdraw funds at the slightest hint of FUD (Fear, Uncertainty, Doubt). Using a centralized exchange can be a good career start, providing passive information intake, but success depends on your ability to leverage this information.

Evaluating Blockchain Projects

Treat statements from project teams with skepticism. Announcements of partnerships often signify minimal progress. Focus on the tangible actions of the project team and evaluate how their work accelerates the value chain. If the outcomes positively influence public perception of token value, the project is worth considering. Be wary of projects with past ethical breaches—they are likely to repeat such behavior.

Marketing in Blockchain

Most project teams lack effective marketing strategies. It's challenging to quantify marketing success, and metrics often involve inflated figures. Basic marketing budgets are best converted into influencer rounds. Other marketing expenses are less effective than direct market actions like price boosts.

Individual Investment Approach

For VC-backed tokens, avoid promoting them publicly but feel free to share sincere insights. For community-driven tokens, engage in community building and advocacy. Trust on-chain data and genuine buy orders. Encourage any form of investor rights protection unless you have conflicting interests. Publicly documenting your learning journey and successes can build trust and credibility.

Key Takeaways

Navigating the blockchain industry requires skepticism, strategic thinking, and a reliance on verifiable data. Trust actions over words, and always prioritize projects and funds that demonstrate real, measurable progress.

· 4 min read
Dora Noda

Decentralized physical infrastructure network (DePIN) is emerging as a transformative force in the Web3 landscape, offering a new paradigm for building, operating, and managing physical infrastructure networks. However, many DePIN startups face significant challenges due to a lack of funds and technical competence. IoTeX 2.0 aims to address these challenges with a suite of innovations designed to support the DePIN community in realizing the vision of "DePIN for Everyone!".

Core Innovations of IoTeX 2.0

  1. Tokenomic Design:

    • A comprehensive utility for IOTX tokens within the modular DePIN infrastructure.
    • Inflationary staking rewards, deflationary burning mechanisms, and growth incentives to maintain a balanced token supply.
  2. Modular DePIN Infrastructure:

    • Modular Security Pool (MSP): Provides a unified trusted layer for DePIN infrastructure modules through restaking.
    • W3bstream: A decentralized multi-prover network for DePIN verification, supporting various validity proof approaches.
    • ioID: A unified identity system managing and securing machine-to-machine and machine-to-person relationships.
    • ioConnect: A universal embedded SDK empowering device abstraction and facilitating smart device interaction.
    • ioDDK: A chain SDK allowing DePIN projects to provision self-sovereign application chains, inheriting IoTeX L1 security.
  3. Public Goods:

    • Tools like DePINScan and DePIN Liquidity Hub to support awareness, usability, and liquidity for DePIN projects.

The Importance of DePIN

DePIN aims to disrupt traditional industries and public utilities, which are often monopolies controlled by centralized corporations and governments. By leveraging blockchain technology, DePIN can bring transparency, trust, and innovation to physical infrastructure and public utilities. This new model allows people to contribute to and build equity in real-world infrastructure networks, overcoming financial and logistical barriers to entry.

The DePIN Landscape

DePIN is a collective effort of numerous projects across the globe, focusing on decentralizing and improving physical infrastructure. The DePIN sector includes:

  • Physical Resource Networks: Produce non-fungible resources relying on location-dependent hardware.
  • Digital Resource Networks: Produce marketplaces for fungible resources, relying on location-agnostic hardware.
  • Infrastructure and Tooling: Facilitate growth and provide off-the-shelf capabilities for DePIN applications.

The DePIN Tech Stack and Its Challenges

The DePIN tech stack requires an end-to-end architecture connecting the real world to the blockchain. This includes layers like hardware abstraction, connectivity, sequencer, data availability, long-term storage, off-chain computing, blockchain, identity, and governance. Developing this complex stack presents high barriers to entry, particularly for emerging markets.

IoTeX 2.0: A Modular Approach

IoTeX 2.0 introduces a modular infrastructure, allowing DePIN projects to construct a tech stack that suits their specific needs. This approach supports both large and small teams by providing comprehensive and purpose-built solutions. Key components include:

  • Modular Security Pool (MSP): Ensures unified and end-to-end trust across DIMs, leveraging staked assets from well-established blockchains.
  • W3bstream: Facilitates decentralized off-chain computing with multiple provers, enhancing the scalability and efficiency of DePIN applications.
  • ioID and ioConnect: Simplify identity management and hardware abstraction, respectively, enabling seamless integration of smart devices into DePIN projects.
  • ioDDK: Supports the launch of self-sovereign L2 blockchains, expanding the capabilities of DePIN projects.

Future Outlook

IoTeX 2.0 aims to create a new world where physical infrastructure networks are decentralized, transparent, and equitable. By leveraging cutting-edge technologies like zero-knowledge proofs, AI, and blockchain, IoTeX 2.0 envisions a future where smart devices, autonomous systems, and digital resource marketplaces operate seamlessly and securely. This vision empowers everyday people to contribute to and benefit from the modernization of global infrastructure, ensuring "DePIN for Everyone!".

Summary

IoTeX 2.0 is a significant milestone in the evolution of the IoTeX network, addressing the challenges faced by DePIN startups and driving the next phase of growth for decentralized physical infrastructure networks. With its innovative modular infrastructure, comprehensive tokenomics, and commitment to public goods, IoTeX 2.0 is poised to lead the DePIN movement and empower builders worldwide. Are you an IoTeX developer? BlockEden.xyz offers IoTeX RPC at https://blockeden.xyz/api-marketplace/iotex.

· 3 min read
Dora Noda

BlockEden.xyz is thrilled to announce the winners of the Sui Overflow Hackathon! After weeks of innovative coding, intense competition, and creative problem-solving, we are proud to present the projects that stood out the most. Congratulations to all the participants for their outstanding contributions. Here are the top winners:

1st Prize ($1,500 in SUI): Orbital

Project Links:

Orbital is a cutting-edge cross-chain lending platform that leverages wormhole technology and Supra Oracles to revolutionize decentralized finance (DeFi). By enabling seamless and secure lending and borrowing across multiple blockchain networks like SUI and Avalanche, Orbital maximizes liquidity and capital efficiency. The integration of Supra Oracles ensures accurate, real-time data for price feeds and interest rates.

Designed to feel like a DEX that many blockchain users are accustomed to, Orbital simplifies the user experience with a unified interface where users can manage all transactions from a single dashboard. This intuitive design makes it just one-click to borrow, transforming the traditional DeFi landscape.

2nd Prize ($1,000 in SUI): Liquidity Garden

Project Link:

Liquidity Garden is an innovative farm simulation game where players build and manage their own farm garden. Players stake liquidity from FlowX DEX to buy NFT seeds, water them daily, and watch as dynamic NFTs grow and release $OXYGEN tokens. With additional features like raising pets and integrating token swaps directly in the game, Liquidity Garden provides a unique blend of gaming and DeFi, encouraging continuous engagement and interaction.

3rd Prize ($100 in SUI): BioWallet, Cocktail OTC Market, SharkyTheSuiBot, Zomdev

BioWallet

Project Links:

BioWallet transforms devices into secure hardware wallets by leveraging biometric-based onboarding. This innovative digital wallet eliminates the need for traditional seed phrases, storing private keys securely in the Secure Enclave. With advanced features like MultiSig and WebAuthn, BioWallet offers top-notch protection and flexibility, bridging the gap between traditional browser wallets and hardware wallets.

Cocktail OTC Market

Project Links:

Cocktail OTC Market provides a seamless platform for token transactions without the need for a centralized exchange. Sellers can list their tokens with flexible pricing, and buyers can browse and purchase tokens easily. Managed by Sui contracts, Cocktail OTC Market ensures secure and transparent transactions, making it a reliable solution for token trading.

SharkyTheSuiBot

Project Links:

SharkyTheSuiBot is the fastest SUI Telegram bot designed to find and exploit arbitrage opportunities across different SUI DEXs. It performs trading activities based on script-logic strategies, offers real-time price fetching, and enables users to provide liquidity in pools directly from the bot. With advanced features like flash loans and real-time charts, SharkyTheSuiBot enhances the user trading experience.

Zomdev

Project Links:

Zomdev is a developer bounty system where companies post bounties for GitHub issues or talent acquisition, and developers can claim these bounties based on project submissions. This platform facilitates a dynamic interaction between companies seeking development assistance and developers looking for opportunities to earn and showcase their skills.

Final Words

Congratulations to all the winners and participants! Your innovative solutions and creative ideas have made this hackathon a remarkable success. We look forward to seeing how these projects evolve and continue to impact the blockchain and DeFi landscape.

Stay tuned for more updates and future hackathons from BlockEden.xyz!