跳到主要内容

Gensyn 的 Judge:位级精确的可复现性如何终结不透明 AI API 时代

· 阅读需 22 分钟
Dora Noda
Software Engineer

每次当你查询 ChatGPT、Claude 或 Gemini 时,你都在信任一个看不见的黑盒。模型版本?未知。精确权重?专有。输出是由你认为正在使用的模型生成的,还是由悄悄更新的变体生成的?无法核实。对于询问食谱或琐事的普通用户来说,这种不透明性仅仅是令人恼火。但对于高风险的 AI 决策——金融交易算法、医疗诊断、法律合同分析——这是一种根本性的信任危机。

Gensyn 的 Judge 于 2025 年底推出,并于 2026 年进入生产阶段。它提供了一种激进的替代方案:加密可验证的 AI 评估,每次推理都可以复现到比特级别。Judge 允许任何人验证特定的、预先商定的 AI 模型是否针对真实输入进行了确定性执行,而不是信任 OpenAI 或 Anthropic 会提供正确的模型——加密证明确保结果无法伪造。

技术突破在于 Verde,这是 Gensyn 的验证系统,它消除了浮点非确定性——这是 AI 可复现性的克星。通过在不同设备上强制执行逐比特精确的计算,Verde 确保在伦敦的 NVIDIA A100 和东京的 AMD MI250 上运行相同的模型会产生完全相同的结果,并可在链上证明。这为去中心化金融(DeFi)、自主代理(Autonomous Agents)以及任何透明度不是可选项而是生存条件的应用程序开启了可验证 AI。

不透明 API 问题:没有验证的信任

AI 行业运行在 API 之上。开发者通过 REST 终端集成 OpenAI 的 GPT-4、Anthropic 的 Claude 或 Google 的 Gemini,发送提示词并接收响应。但这些 API 在根本上是不透明的:

版本不确定性:当你调用 gpt-4 时,我得到的是哪个确切版本?GPT-4-0314?GPT-4-0613?还是一个悄悄更新的变体?供应商经常在不发布公告的情况下部署补丁,一夜之间改变模型行为。

无审计追踪:API 响应不包含生成它们的模型的加密证明。如果 OpenAI 为特定的地区或客户提供经过审查或有偏见的变体,用户无法检测到。

无声退化:供应商可以为了降低成本而对模型进行“性能阉割”——在保持相同 API 协议的同时降低推理质量。用户反映 GPT-4 随着时间的推移变得“变笨了”,但由于缺乏透明的版本控制,此类说法仍停留在轶事层面。

非确定性输出:由于温度设置、批处理或硬件级浮点舍入误差,即使使用相同的输入两次查询同一个模型,也可能产生不同的结果。这使得审计变得不可能——当输出不可复现时,你如何验证其正确性?

对于普通应用,这些问题只是不便。对于高风险决策,它们则是阻碍。考虑到:

算法交易:一家对冲基金部署了一个管理着 5000 万美元 DeFi 头寸的 AI 代理。该代理依靠 GPT-4 分析来自 X 帖子的市场情绪。如果模型在交易环节中途悄悄更新,情绪评分会发生不可预测的偏移——从而触发意外的清算。该基金没有证据证明模型表现异常;OpenAI 的日志是不公开审计的。

医疗诊断:一家医院使用 AI 模型来推荐癌症治疗方案。法规要求医生记录决策过程。但如果 AI 模型版本无法验证,审计追踪就是不完整的。医疗事故诉讼可能取决于证明是 哪一个 模型生成了该建议——而这对于不透明的 API 来说是不可能的。

DAO 治理:一个去中心化组织使用 AI 代理对国库提案进行投票。社区成员要求证明该代理使用的是经过批准的模型——而不是一个有利于特定结果的篡改变体。没有加密验证,投票就缺乏合法性。

这就是 Gensyn 瞄准的信任差距:随着 AI 被嵌入到关键决策中,无法验证模型的真实性和行为成为了“在高风险环境中部署代理化 AI 的根本障碍”。

Judge:可验证 AI 评估协议

Judge 通过针对真实输入执行预先商定的确定性 AI 模型,并将结果提交到区块链(任何人都可以发起挑战)来解决不透明问题。以下是该协议的工作原理:

1. 模型承诺:参与者就 AI 模型达成一致——包括其架构、权重和推理配置。该模型被哈希处理并提交到链上。哈希值充当加密指纹:任何偏离商定模型的行为都会产生不同的哈希值。

2. 确定性执行:Judge 使用 Gensyn 的可复现运行时 运行模型,该运行时保证了跨设备的逐比特精确可复现性。这消除了浮点非确定性——这是我们稍后将探讨的一项关键创新。

3. 公开承诺:推理完成后,Judge 将输出(或其哈希值)发布在链上。这为模型针对给定输入产生的内容创建了一个永久的、可审计的记录。

4. 挑战期:任何人都可以通过独立重新执行模型来挑战结果。如果他们的输出不同,他们可以提交欺诈证明。Verde 的 受仲裁的委托机制 可以精确定位计算图中结果发生分歧的具体操作员。

5. 欺诈罚没:如果挑战者证明 Judge 产生了错误结果,原始执行者将受到惩罚(罚没抵押的代币)。这统一了经济激励:执行者通过正确运行模型来最大化利润。

Judge 将 AI 评估从“信任 API 供应商”转变为“验证加密证明”。模型的行为是公开的、可审计的和可强制执行的——不再隐藏在专有终端后面。

Verde:消除浮点非确定性

可验证 AI 的核心技术挑战在于确定性。神经网络在推理过程中执行数十亿次浮点运算。在现代 GPU 上,这些操作并非完全可复现:

非结合性 (Non-associativity):浮点加法不满足结合律。由于舍入误差,(a + b) + c 的结果可能与 a + (b + c) 不同。GPU 在数千个核心上并行执行求和运算,而部分和累加的顺序会因硬件和驱动程序版本的不同而变化。

内核调度变异性 (Kernel scheduling variability):GPU 内核(如矩阵乘法或注意力机制)可能会根据工作负载、驱动程序优化或硬件架构以不同的顺序执行。即使在同一块 GPU 上运行两次相同的模型,如果内核调度不同,也可能产生不同的结果。

批次大小依赖性 (Batch-size dependency):研究发现 LLM 推理具有系统级非确定性,因为输出取决于批次大小 (batch size)。许多内核(如 matmul、RMSNorm、attention)会根据同时处理的样本数量改变数值输出——批次大小为 1 的推理产生的值与在批次大小为 8 的同一输入中产生的值不同。

这些问题使得标准 AI 模型不适用于区块链验证。如果两个验证者重新运行相同的推理并得到略有不同的输出,谁才是正确的?如果没有确定性,共识就无法达成。

Verde 通过 RepOps (可复现算子) 解决了这一问题。这是一个通过控制所有设备上浮点运算顺序来消除硬件非确定性的库。其工作原理如下:

规范归约顺序 (Canonical reduction orders):RepOps 在执行矩阵乘法等运算时,强制执行部分结果求和的确定性顺序。RepOps 不再由 GPU 调度器决定,而是明确指定:在所有硬件上“先对第 0 列求和,然后是第 1 列,接着是第 2 列……”。这确保了 (a + b) + c 始终按相同的序列计算。

定制 CUDA 内核 (Custom CUDA kernels):Gensyn 开发了优化的内核,将可复现性置于原始速度之上。与标准的 cuBLAS 相比,RepOps 矩阵乘法的额外开销不到 30%——对于实现确定性来说,这是一个合理的权衡。

驱动程序与版本锁定 (Driver and version pinning):Verde 使用锁定版本的 GPU 驱动程序和规范配置,确保在不同硬件上执行的相同模型产生完全一致的位级输出。在一个数据中心的 NVIDIA A100 上运行的模型,其输出与另一个数据中心 AMD MI250 的输出在位级别上完全匹配。

这是实现 Judge 验证的突破:位级精确的可复现性 意味着验证者可以在不信任执行者的情况下独立确认结果。如果哈希值匹配,推理就是正确的——这在数学上是可证明的。

仲裁委托:无需完整重新计算的高效验证

即便拥有确定性执行,通过朴素方式验证 AI 推理的成本也极其高昂。一个拥有 700 亿参数、生成 1,000 个 token 的模型可能需要 10 个 GPU 小时。如果验证者必须重新运行每一次推理来验证正确性,那么验证成本将等于执行成本——这违背了去中心化的初衷。

Verde 的 仲裁委托机制 (refereed delegation mechanism) 使验证效率呈指数级提升:

多个不可信执行者:Judge 不再只分配给一个执行者,而是将任务分配给多个独立的提供者。每个执行者运行相同的推理并提交结果。

分歧触发调查:如果所有执行者达成一致,结果将被接受——无需进一步验证。如果输出不一致,Verde 会启动挑战博弈。

计算图上的二分查找:Verde 不会重新运行整个推理。相反,它在模型的计算图上执行二分查找,以找到结果产生分歧的第一个算子。这能精准定位导致差异的具体层(例如,“第 47 层注意力机制,第 8 个头”)。

极小化仲裁计算:仲裁者(可以是智能合约或计算能力有限的验证者)仅检查有争议的算子,而不是整个前向传播过程。对于一个拥有 80 层、70B 参数的模型,这在最坏情况下将验证工作量减少到仅需检查约 7 层 (log₂ 80)。

这种方法比朴素复制(即每个验证者重新运行所有内容)效率提升超过 1,350%。Gensyn 结合了加密证明、博弈论和优化流程,在不进行冗余计算的情况下保证了执行的正确性。

结果是:Judge 可以大规模验证 AI 工作负载,从而实现去中心化推理网络,让数千个不可信节点贡献算力——同时捕获并惩罚不诚实的执行者。

高风险 AI 决策:透明度为何至关重要

Judge 的目标市场并非普通的聊天机器人,而是那些可验证性不是“锦上添花”而是监管或经济要求的应用场景。在以下场景中,不透明的 API 可能会导致灾难性的失败:

去中心化金融 (DeFi):自主交易代理管理着数十亿资产。如果代理使用 AI 模型来决定何时重新平衡投资组合,用户需要证明该模型未被篡改。Judge 实现了链上验证:代理提交特定的模型哈希值,根据其输出执行交易,任何人都可以挑战其决策逻辑。这种透明度防止了恶意代理在没有证据的情况下声称“是 AI 让我平仓”的撤资 (Rug Pull) 行为。

监管合规:将 AI 用于信用评分、欺诈检测或反洗钱 (AML) 的金融机构面临审计。监管机构要求提供解释:“为什么模型会标记这笔交易?”不透明的 API 无法提供审计追踪。Judge 创建了模型版本、输入和输出的不可变记录,满足了合规性要求。

算法治理:去中心化自治组织 (DAO) 使用 AI 代理来提议治理决策或进行投票。社区成员必须验证代理使用的是经过批准的模型,而不是被黑客篡改的变体。通过 Judge,DAO 在其智能合约中编码模型哈希,每一项决策都包含正确性的加密证明。

医疗与法律 AI:医疗保健和法律系统需要问责制。医生在 AI 辅助下诊断癌症时需要记录所使用的确切模型版本。律师使用 AI 起草合同时必须证明输出源自经过审核、无偏见的模型。Judge 的链上审计追踪提供了这些证据。

预测市场与预言机:像 Polymarket 这样的项目使用 AI 来结算投注结果(例如,“这件事会发生吗?”)。如果结算取决于分析新闻文章的 AI 模型,参与者需要证明模型未被操纵。Judge 验证预言机的 AI 推理,防止产生争议。

在每种情况下,共同点在于 缺乏透明度的信任是不够的。正如 VeritasChain 所指出的,AI 系统需要“加密飞行记录仪”——即在发生争议时证明事实经过的不可变日志。

零知识证明的替代方案:Verde 与 ZKML 的对比

Judge 并不是实现可验证 AI 的唯一方法。零知识机器学习 (ZKML) 使用 zk-SNARKs 实现了类似的目标:通过加密证明确保计算正确执行,而无需透露输入或权重。

Verde 与 ZKML 相比如何?

验证成本:ZKML 生成证明所需的计算量大约是原始推理的 1,000 倍(研究预估)。一个拥有 70B 参数的模型如果推理需要 10 个 GPU 小时,那么证明可能需要 10,000 个 GPU 小时。Verde 的仲裁委托是对数级的:检查约 7 层而不是 80 层,实现了 10 倍的缩减,而不是 1,000 倍的增加。

证明者复杂度:ZKML 需要专门的硬件(如用于 zk-SNARK 电路的定制 ASIC)才能高效生成证明。Verde 可以在通用 GPU 上运行——任何拥有游戏电脑的矿工都可以参与。

隐私权衡:ZKML 的优势在于隐私——证明过程不会泄露任何关于输入或模型权重的信息。Verde 的确定性执行是透明的:输入和输出是公开的(尽管权重可以加密)。对于高风险的决策,透明度通常是更受欢迎的。一个对金库分配进行投票的 DAO 需要的是公开的审计追踪,而不是隐藏的证明。

证明范围:ZKML 在实际应用中仅限于推理——以当前的计算成本,证明训练过程是不可行的。Verde 同时支持推理和训练验证(Gensyn 更广泛的协议验证分布式训练)。

现实世界采用:像 Modulus Labs 这样的 ZKML 项目已经取得了突破(在链上验证了 18M 参数的模型),但仍局限于较小的模型。Verde 的确定性运行时已经在生产环境中处理 70B+ 参数的模型。

ZKML 在隐私至上的场景中表现出色——例如在不暴露虹膜扫描的情况下验证生物识别身份 (Worldcoin)。Verde 在以透明度为目标的场景中表现出色——证明特定的公开模型已正确执行。这两种方法是互补的,而非竞争关系。

Gensyn 生态系统:从 Judge 到去中心化训练

Judge 是 Gensyn 宏伟蓝图中的一个组件:一个用于机器学习计算的去中心化网络。该协议包括:

执行层:在异构硬件(消费级 GPU、企业级集群、边缘设备)之间实现一致的机器学习执行。Gensyn 标准化了推理和训练工作负载,确保了兼容性。

验证层 (Verde):使用仲裁委托进行无需信任的验证。不诚实的执行者会被检测并受到惩罚。

点对点通信:在没有中心化协调的情况下跨设备分配工作负载。矿工接收任务、执行任务并直接向区块链提交证明。

去中心化协调:以太坊 Rollup 上的智能合约无许可地识别参与者、分配任务并处理支付。

Gensyn 的公共测试网于 2025 年 3 月启动,主网计划于 2026 年发布。 $AI 代币公开销售于 2025 年 12 月进行,为矿工和验证者建立了经济激励机制。

Judge 作为评估层融入此生态系统:虽然 Gensyn 的核心协议处理训练和推理,但 Judge 确保这些输出是可验证的。这创造了一个飞轮效应:

开发者在 Gensyn 的去中心化网络上训练模型(由于闲置的消费级 GPU 提供算力,成本比 AWS 更低)。

模型在 Judge 的保证下部署以确保评估的完整性。应用程序通过 Gensyn 的 API 消费推理结果,但与 OpenAI 不同,每一个输出都包含加密证明。

验证者通过检查证明和捕获欺诈行为赚取费用,使经济激励与网络安全保持一致。

信任随着更多应用采用可验证 AI 而扩展,减少了对中心化供应商的依赖。

最终目标:实现可证明正确、去中心化且任何人都能访问的 AI 训练和推理——而不仅仅属于大型科技公司。

挑战与开放性问题

Judge 的方法具有开创性,但仍面临一些挑战:

性能开销:RepOps 30% 的性能损耗对于验证来说是可以接受的,但如果每次推理都必须以确定性方式运行,那么对延迟敏感的应用(实时交易、自动驾驶汽车)可能会倾向于更快、不可验证的替代方案。Gensyn 的路线图可能包括进一步优化 RepOps——但在速度和确定性之间存在根本性的权衡。

驱动程序版本碎片化:Verde 假设使用固定版本的驱动程序,但 GPU 制造商不断发布更新。如果某些矿工使用 CUDA 12.4 而其他矿工使用 12.5,位级复现性就会失效。Gensyn 必须执行严格的版本管理——这增加了矿工加入的复杂性。

模型权重保密性:Judge 的透明度对于公开模型是一个特性,但对于私有模型则是一个缺陷。如果一家对冲基金训练了一个有价值的交易模型,将其部署在 Judge 上会通过链上承诺将权重暴露给竞争对手。对于秘密模型,基于 ZKML 的替代方案可能更受青睐——这表明 Judge 的目标是开放或半开放的 AI 应用。

争议解决延迟:如果挑战者声称存在欺诈,通过二分查找解决争议需要多次链上交易(每一轮都会缩小搜索范围)。高频应用无法等待数小时来达成最终性。Gensyn 可能会引入乐观验证(除非在窗口期内受到挑战,否则假设正确)以降低延迟。

仲裁委托中的抗女巫攻击:如果多个执行者必须达成一致,如何防止单个实体通过女巫身份控制所有执行者?Gensyn 可能会使用基于质押权重的选择(优先选择声誉高的验证者)结合罚没 (Slashing) 机制来威慑共谋——但经济阈值必须经过精心校准。

这些并不是无法逾越的障碍——它们是工程挑战。核心创新(确定性 AI + 加密验证)是可靠的。随着测试网向主网过渡,执行细节将会趋于成熟。

可验证 AI 之路:采用路径与市场契合度

Judge 的成功取决于采用率。哪些应用将率先部署可验证 AI?

带有自治代理的 DeFi 协议:Aave、Compound 或 Uniswap DAO 可以集成经 Judge 验证的代理进行国库管理。社区投票批准模型哈希,所有代理决策都包含证明。这种透明度建立了信任——这对 DeFi 的合法性至关重要。

预测市场与预言机:Polymarket 或 Chainlink 等平台可以使用 Judge 来结算投注或交付价格喂价。分析情绪、新闻或链上活动的 AI 模型将产生可验证的输出——消除关于预言机操纵的争议。

去中心化身份与 KYC:需要基于 AI 的身份验证(如自拍年龄估算、文件真实性检查)的项目可以从 Judge 的审计轨迹中受益。监管机构可以接受合规性的加密证明,而无需信任中心化身份提供商。

社交媒体的内容审核:去中心化社交网络(Farcaster、Lens Protocol)可以部署经 Judge 验证的 AI 审核员。社区成员可以验证审核模型是否存在偏见或被审查——从而确保平台的中立性。

AI 即服务(AI-as-a-Service)平台:开发 AI 应用的开发者可以提供“可验证推理”作为一项高级功能。用户为证明支付额外费用,从而使服务区别于不透明的替代方案。

其共同点是:在这些应用中,信任的成本很高(由于监管、去中心化或高风险),且验证成本是可接受的(与确定性的价值相比)。

Judge 不会在消费者聊天机器人领域取代 OpenAI——用户在询问食谱建议时并不关心 GPT-4 是否可验证。但在金融算法、医疗工具和治理系统领域,可验证 AI 才是未来。

可验证性成为新标准

Gensyn 的 Judge 代表了一场范式转移:AI 评估正从“信任提供商”转向“验证证明”。其技术基础——通过 Verde 实现的位精确(bitwise-exact)可复现性、通过裁判委托(refereed delegation)实现的高效验证以及链上审计轨迹——使这一转变变得切实可行,而不仅仅是愿景。

其影响远超 Gensyn 本身。如果可验证 AI 成为标准,中心化提供商将失去其护城河。OpenAI 的价值主张不仅在于 GPT-4 的能力,还在于无需管理基础设施的便利性。但如果 Gensyn 证明去中心化 AI 能够匹配中心化性能并增加可验证性,开发者就没有理由被锁定在专有 API 中。

竞赛已经开始。ZKML 项目(Modulus Labs、Worldcoin 的生物识别系统)押注于零知识证明。确定性运行时(Gensyn 的 Verde、EigenAI)押注于可复现性。乐观方案(区块链 AI 预言机)押注于欺诈证明。每条路径都有权衡,但终点是一致的:即输出是可证明的、而不仅仅是看似合理的 AI 系统

对于高风险决策,这不再是可选项。监管机构不会接受金融、医疗或法律应用中 AI 提供商的“相信我们”。DAO 不会将国库管理委托给黑箱代理。随着自主 AI 系统变得越来越强大,公众将要求透明度。

Judge 是第一个实现这一承诺的生产就绪系统。测试网已上线。加密基础扎实。市场——价值 270 亿美元的 AI 代理加密货币、算法管理的数十亿 DeFi 资产以及不断增加的监管压力——已经准备就绪。

不透明 AI API 的时代即将结束。可验证智能的时代正在开启。而 Gensyn 的 Judge 正照亮前路。


参考资料: