数据市场遇上 AI 训练:区块链如何解决 230 亿美元的数据定价危机
AI 行业面临着一个悖论:全球数据产量到 2025 年将从 33 ZB 爆发式增长到 175 ZB,然而 AI 模型的质量却停滞不前。问题不在于数据匮乏,而在于数据提供者无法从其贡献中获取价值。以 Ocean Protocol、LazAI 和 ZENi 为代表的基于区块链的数据市场正在进入这一领域,它们正将 AI 训练数据从一种免费资源转化为一种到 2034 年价值将达 231.8 亿美元的可变现资产类别。
230 亿美元的数据定价难题
2023 年至 2025 年间,AI 训练成本飙升了 89%,其中数据获取和标注消耗了高达 80% 的机器学习项目预算。然而,作为数据创造者的个人——他们生成搜索查询、社交媒体互动和行为模式——却一无所获,而科技巨头则收割了数十亿美元的价值。
AI 训练数据集市场揭示了这种脱节。该市场在 2025 年的估值为 35.9 亿美元,预计到 2034 年将达到 231.8 亿美元,复合年增长率(CAGR)为 22.9%。另一份预测认为 2026 年该市场规模将达到 74.8 亿美元,到 2035 年将达到 524.1 亿美元,年增长率为 24.16%。
但谁捕获了这些价值?目前,中心化平台榨取利润,而数据创造者得到的补偿为零。标签噪声、标注不一致和上下文缺失推高了成本,但贡献者缺乏提高质量的动力。数据隐私顾虑影响了 28% 的公司,在 AI 正需要多样化、高质量输入的时刻限制了数据集的可访问性。
Ocean Protocol:将 1 亿美元的数据经济代币化
Ocean Protocol 通过允许数据提供者将数据集代币化,并在不放弃控制权的情况下将其用于 AI 训练,从而解决了所有权问题。自 2024 年 8 月推出 Ocean Nodes 以来,该网络已发展到 遍布 70 多个国家的 140 多万个节点,引入了 35,000 多个数据集,并促成了超过 1 亿美元的 AI 相关数据交易。
2025 年的产品路线图包含三个关键组成部分:
推理流水线(Inference Pipelines) 实现了直接在 Ocean 的基础设施上进行端到端的 AI 模型训练和部署。数据提供者将自有数据集代币化并设定定价,每当 AI 模型消耗其数据进行训练或推理时即可获得收入。
Ocean 企业入驻(Ocean Enterprise Onboarding) 推动生态系统企业从试点走向生产。将于 2025 年第三季度推出的 Ocean Enterprise v1 提供了一个合规、生产级的数据平台,目标客户是需要可审计、隐私保护数据交换的机构客户。
节点分析(Node Analytics) 引入了跟踪性能、使用情况和投资回报率(ROI)的仪表板。NetMind 等合作伙伴贡献了 2,000 个 GPU,而 Aethir 协助扩展 Ocean 节点以支持大型 AI 工作负载,为 AI 训练创建了一个去中心化的计算层。
Ocean 的收入分成机制通过智能合约运作:数据提供者设置访问条款,AI 开发者按使用付费,区块链自动向所有贡献者分配报酬。这使数据从一次性销售转变为与模型性能挂钩的持续性收入流。
LazAI:Metis 上的可验证 AI 交互数据
LazAI 引入了一种根本不同的方法——将 AI 交互 数据变现,而不仅仅是静态数据集。与 LazAI 旗舰智能体(Lazbubu、SoulTarot)的每一次对话都会生成 数据锚定代币(DATs),作为 AI 生成输出的可追溯、可验证记录。
Alpha 主网于 2025 年 12 月启动,在采用 QBFT 共识和基于 $METIS 结算的企业级基础设施上运行。DATs 将 AI 数据集和模型代币化,使其成为具有透明所有权和收入归属的可验证资产。
为什么这很重要?传统的 AI 训练使用在收集时就被冻结的静态数据集。LazAI 捕获 动态 交互数据——用户查询、模型响应、细化循环——从而创建反映现实世界使用模式的训练数据集。这些数据对于微调模型具有指数级的更高价值,因为它们包含了嵌入在对话流中的人类反馈信号。
该系统包括三项关键创新:
权益证明验证者质押(Proof-of-Stake Validator Staking) 保护 AI 数据流水线的安全。验证者质押代币以验证数据完整性,通过准确验证获得奖励,并因批准欺诈数据而面临处罚。
带有收入分成的 DAT 铸造 允许生成有价值交互数据的用户铸造代表其贡献的 DAT。当 AI 公司购买这些数据集用于模型训练时,收入会根据比例自动流向所有 DAT 持有者。
iDAO 治理 建立了去中心化的 AI 协作体,数据贡献者通过链上投票集体治理数据集管理、定价策略和质量标准。
2026 年的路线图增加了基于 ZK 的隐私保护(用户可以在不暴露个人信息的情况下将交互数据变现)、去中心化计算市场(在分布式基础设施而非中心化云上进行训练)以及超越文本的多模态数据评估(视频、音频、图像交互)。
ZENi:面向 AI 代理的智能数据层
ZENi 运作于 Web3 与 AI 的交汇点,通过助力“InfoFi 经济”——一个利用 AI 驱动的智能,连接传统商业与基于区块链商业的去中心化网络。该公司完成了由 Waterdrip Capital(水滴资本)和 Mindfulness Capital 领投的 150 万美元种子轮融资。
其核心是 InfoFi 数据层,这是一个高吞吐量的行为智能引擎,每日处理跨 X/Twitter、Telegram、Discord 及链上活动的超过 100 万条信号。ZENi 识别用户行为模式、情绪转变和社区参与度——这些数据对于训练 AI 代理至关重要,但极难大规模收集。
该平台作为一个三部分组成的系统运行:
AI 数据分析代理 (AI Data Analytic Agent) 通过分析社交图谱、链上交易和互动指标,识别高意向受众和影响力集群。这创建了行为数据集,不仅显示用户“做了什么”,还显示了他们“为什么”做出决定。
AIGC(AI 生成内容)代理 利用来自数据层的见解制作个性化营销活动。通过理解用户偏好和社区动态,该代理生成针对特定受众群体优化的内容。
AI 执行代理 (AI Execution Agent) 通过 ZENi dApp 激活触达,完成从数据收集到变现的闭环。当用户的行为数据为成功的营销活动做出贡献时,用户将获得补偿。
ZENi 已经为电子商务、游戏和 Web3 领域的合作伙伴提供服务,拥有 48 万注册用户和 8 万日活跃用户。其商业模式将行为智能货币化:公司付费获取经 ZENi AI 处理的数据集,收入则流向那些为这些见解提供数据的用户。