Saltar al contenido principal

2 publicaciones etiquetados con "market maturation"

Market maturation and growth

Ver Todas las Etiquetas

Entornos de Ejecución Confiables (TEEs) en el Ecosistema Web3: Un Análisis Profundo

· 82 min de lectura

1. Descripción General de la Tecnología TEE

Definición y Arquitectura: Un Entorno de Ejecución Confiable (TEE) es un área segura de un procesador que protege el código y los datos cargados en su interior con respecto a la confidencialidad y la integridad. En términos prácticos, un TEE actúa como un "enclave" aislado dentro de la CPU, una especie de caja negra donde los cálculos sensibles pueden ejecutarse protegidos del resto del sistema. El código que se ejecuta dentro de un enclave TEE está protegido de tal manera que incluso un sistema operativo o hipervisor comprometido no puede leer ni manipular los datos o el código del enclave. Las propiedades clave de seguridad que proporcionan los TEEs incluyen:

  • Aislamiento: La memoria del enclave está aislada de otros procesos e incluso del kernel del sistema operativo. Incluso si un atacante obtiene privilegios de administrador completos en la máquina, no puede inspeccionar o modificar directamente la memoria del enclave.
  • Integridad: El hardware garantiza que el código que se ejecuta en el TEE no pueda ser alterado por ataques externos. Cualquier manipulación del código del enclave o del estado de ejecución será detectada, evitando resultados comprometidos.
  • Confidencialidad: Los datos dentro del enclave permanecen cifrados en la memoria y solo se descifran para su uso dentro de la CPU, por lo que los datos secretos no se exponen en texto plano al mundo exterior.
  • Atestación Remota: El TEE puede producir pruebas criptográficas (atestaciones) para convencer a una parte remota de que es genuino y que un código de confianza específico se está ejecutando en su interior. Esto significa que los usuarios pueden verificar que un enclave se encuentra en un estado confiable (por ejemplo, ejecutando el código esperado en hardware genuino) antes de proporcionarle datos secretos.

Diagrama conceptual de un Entorno de Ejecución Confiable como un enclave seguro tipo "caja negra" para la ejecución de contratos inteligentes. Las entradas cifradas (datos y código del contrato) se descifran y procesan dentro del enclave seguro, y solo los resultados cifrados salen del enclave. Esto garantiza que los datos sensibles del contrato permanezcan confidenciales para todos fuera del TEE.

Bajo el capó, los TEEs son posibles gracias al cifrado de memoria basado en hardware y al control de acceso en la CPU. Por ejemplo, cuando se crea un enclave TEE, la CPU le asigna una región de memoria protegida y utiliza claves dedicadas (grabadas en el hardware o gestionadas por un coprocesador seguro) para cifrar/descifrar datos sobre la marcha. Cualquier intento de software externo de leer la memoria del enclave solo obtiene bytes cifrados. Esta protección única a nivel de CPU permite que incluso el código a nivel de usuario defina regiones de memoria privadas (enclaves) que el malware privilegiado o incluso un administrador de sistema malicioso no puede espiar o modificar. En esencia, un TEE proporciona un nivel de seguridad más alto para las aplicaciones que el entorno operativo normal, al tiempo que es más flexible que los elementos seguros dedicados o los módulos de seguridad de hardware.

Implementaciones Clave de Hardware: Existen varias tecnologías de TEE de hardware, cada una con diferentes arquitecturas pero con el objetivo similar de crear un enclave seguro dentro del sistema:

  • Intel SGX (Software Guard Extensions): Intel SGX es una de las implementaciones de TEE más utilizadas. Permite a las aplicaciones crear enclaves a nivel de proceso, con cifrado de memoria y controles de acceso aplicados por la CPU. Los desarrolladores deben dividir su código en código "confiable" (dentro del enclave) y código "no confiable" (mundo normal), utilizando instrucciones especiales (ECALL/OCALL) para transferir datos dentro y fuera del enclave. SGX proporciona un fuerte aislamiento para los enclaves y admite la atestación remota a través del Servicio de Atestación de Intel (IAS). Muchos proyectos de blockchain, especialmente Secret Network y Oasis Network, construyeron funcionalidades de contratos inteligentes que preservan la privacidad sobre enclaves SGX. Sin embargo, el diseño de SGX en arquitecturas x86 complejas ha llevado a algunas vulnerabilidades (ver §4), y la atestación de Intel introduce una dependencia de confianza centralizada.

  • ARM TrustZone: TrustZone adopta un enfoque diferente al dividir todo el entorno de ejecución del procesador en dos mundos: un Mundo Seguro y un Mundo Normal. El código sensible se ejecuta en el Mundo Seguro, que tiene acceso a cierta memoria y periféricos protegidos, mientras que el Mundo Normal ejecuta el sistema operativo y las aplicaciones regulares. Los cambios entre mundos son controlados por la CPU. TrustZone se utiliza comúnmente en dispositivos móviles e IoT para cosas como una interfaz de usuario segura, procesamiento de pagos o gestión de derechos digitales. En un contexto de blockchain, TrustZone podría habilitar aplicaciones Web3 orientadas a móviles al permitir que las claves privadas o la lógica sensible se ejecuten en el enclave seguro del teléfono. Sin embargo, los enclaves de TrustZone suelen ser de grano más grueso (a nivel de SO o VM) y no son tan comúnmente adoptados en los proyectos Web3 actuales como SGX.

  • AMD SEV (Secure Encrypted Virtualization): La tecnología SEV de AMD se dirige a entornos virtualizados. En lugar de requerir enclaves a nivel de aplicación, SEV puede cifrar la memoria de máquinas virtuales enteras. Utiliza un procesador de seguridad integrado para gestionar claves criptográficas y realizar el cifrado de memoria para que la memoria de una VM permanezca confidencial incluso para el hipervisor anfitrión. Esto hace que SEV sea muy adecuado para casos de uso en la nube o en servidores: por ejemplo, un nodo de blockchain o un trabajador off-chain podría ejecutarse dentro de una VM totalmente cifrada, protegiendo sus datos de un proveedor de nube malicioso. El diseño de SEV significa menos esfuerzo para el desarrollador para particionar el código (se puede ejecutar una aplicación existente o incluso un sistema operativo completo en una VM protegida). Iteraciones más nuevas como SEV-SNP añaden características como la detección de manipulaciones y permiten a los propietarios de VM atestiguar sus VM sin depender de un servicio centralizado. SEV es muy relevante para el uso de TEE en la infraestructura de blockchain basada en la nube.

Otras implementaciones de TEE emergentes o de nicho incluyen Intel TDX (Trust Domain Extensions, para una protección similar a un enclave en VMs en chips Intel más nuevos), TEEs de código abierto como Keystone (RISC-V), y chips de enclave seguro en móviles (como el Secure Enclave de Apple, aunque generalmente no está abierto para código arbitrario). Cada TEE viene con su propio modelo de desarrollo y supuestos de confianza, pero todos comparten la idea central de la ejecución segura aislada por hardware.

2. Aplicaciones de los TEEs en Web3

Los Entornos de Ejecución Confiables se han convertido en una herramienta poderosa para abordar algunos de los desafíos más difíciles de Web3. Al proporcionar una capa de computación segura y privada, los TEEs habilitan nuevas posibilidades para las aplicaciones de blockchain en áreas de privacidad, escalabilidad, seguridad de oráculos e integridad. A continuación, exploramos los principales dominios de aplicación:

Contratos Inteligentes que Preservan la Privacidad

Uno de los usos más prominentes de los TEEs en Web3 es habilitar contratos inteligentes confidenciales, programas que se ejecutan en una blockchain pero que pueden manejar datos privados de forma segura. Las blockchains como Ethereum son transparentes por defecto: todos los datos de las transacciones y el estado de los contratos son públicos. Esta transparencia es problemática para casos de uso que requieren confidencialidad (por ejemplo, transacciones financieras privadas, votaciones secretas, procesamiento de datos personales). Los TEEs proporcionan una solución al actuar como un enclave de computación que preserva la privacidad conectado a la blockchain.

En un sistema de contratos inteligentes impulsado por TEE, las entradas de las transacciones pueden enviarse a un enclave seguro en un nodo validador o trabajador, procesarse dentro del enclave donde permanecen cifradas para el mundo exterior, y luego el enclave puede emitir un resultado cifrado o hasheado de vuelta a la cadena. Solo las partes autorizadas con la clave de descifrado (o la propia lógica del contrato) pueden acceder al resultado en texto plano. Por ejemplo, Secret Network utiliza Intel SGX en sus nodos de consenso para ejecutar contratos inteligentes CosmWasm sobre entradas cifradas, de modo que cosas como los saldos de las cuentas, los montos de las transacciones o el estado del contrato pueden mantenerse ocultos al público mientras siguen siendo utilizables en los cálculos. Esto ha permitido aplicaciones de DeFi secreto, por ejemplo, intercambios de tokens privados donde los montos son confidenciales, o subastas secretas donde las ofertas están cifradas y solo se revelan después del cierre de la subasta. Otro ejemplo es Parcel de Oasis Network y su ParaTime confidencial, que permiten que los datos se tokenicen y se utilicen en contratos inteligentes bajo restricciones de confidencialidad, habilitando casos de uso como la calificación crediticia o los datos médicos en la blockchain con cumplimiento de la privacidad.

Los contratos inteligentes que preservan la privacidad a través de TEEs son atractivos para la adopción empresarial e institucional de la blockchain. Las organizaciones pueden aprovechar los contratos inteligentes mientras mantienen la lógica empresarial y los datos sensibles confidenciales. Por ejemplo, un banco podría usar un contrato habilitado para TEE para manejar solicitudes de préstamos o liquidaciones de operaciones sin exponer los datos de los clientes en la cadena, pero aún así beneficiarse de la transparencia y la integridad de la verificación de la blockchain. Esta capacidad aborda directamente los requisitos de privacidad regulatorios (como GDPR o HIPAA), permitiendo el uso compatible de la blockchain en la atención médica, las finanzas y otras industrias sensibles. De hecho, los TEEs facilitan el cumplimiento de las leyes de protección de datos al garantizar que los datos personales puedan procesarse dentro de un enclave con solo salidas cifradas, satisfaciendo a los reguladores de que los datos están salvaguardados.

Más allá de la confidencialidad, los TEEs también ayudan a hacer cumplir la equidad en los contratos inteligentes. Por ejemplo, un exchange descentralizado podría ejecutar su motor de emparejamiento dentro de un TEE para evitar que los mineros o validadores vean las órdenes pendientes y realicen front-running de manera injusta. En resumen, los TEEs aportan una muy necesaria capa de privacidad a Web3, desbloqueando aplicaciones como DeFi confidencial, votación/gobernanza privada y contratos empresariales que antes eran inviables en los registros públicos.

Escalabilidad y Computación Off-Chain

Otro papel crítico para los TEEs es mejorar la escalabilidad de la blockchain al descargar cálculos pesados fuera de la cadena a un entorno seguro. Las blockchains tienen dificultades con tareas complejas o computacionalmente intensivas debido a los límites de rendimiento y los costos de la ejecución en la cadena. La computación off-chain habilitada por TEE permite que estas tareas se realicen fuera de la cadena principal (por lo tanto, sin consumir gas de bloque ni ralentizar el rendimiento en la cadena) mientras se conservan las garantías de confianza sobre la corrección de los resultados. En efecto, un TEE puede servir como un acelerador de computación off-chain verificable para Web3.

Por ejemplo, la plataforma iExec utiliza TEEs para crear un mercado descentralizado de computación en la nube donde los desarrolladores pueden ejecutar cálculos off-chain y obtener resultados que son confiables para la blockchain. Una dApp puede solicitar que una computación (digamos, una inferencia de un modelo de IA complejo o un análisis de big data) sea realizada por los nodos trabajadores de iExec. Estos nodos trabajadores ejecutan la tarea dentro de un enclave SGX, produciendo un resultado junto con una atestación de que el código correcto se ejecutó en un enclave genuino. El resultado se devuelve luego en la cadena, y el contrato inteligente puede verificar la atestación del enclave antes de aceptar la salida. Esta arquitectura permite que las cargas de trabajo pesadas se manejen off-chain sin sacrificar la confianza, aumentando efectivamente el rendimiento. La integración del Orquestador de iExec con Chainlink demuestra esto: un oráculo de Chainlink obtiene datos externos, luego entrega una computación compleja a los trabajadores TEE de iExec (por ejemplo, agregando o puntuando los datos), y finalmente el resultado seguro se entrega en la cadena. Los casos de uso incluyen cosas como cálculos de seguros descentralizados (como demostró iExec), donde se puede realizar una gran cantidad de procesamiento de datos off-chain y de manera económica, con solo el resultado final yendo a la blockchain.

La computación off-chain basada en TEE también sustenta algunas soluciones de escalado de Capa 2. El prototipo temprano de Oasis Labs, Ekiden (el precursor de Oasis Network), utilizó enclaves SGX para ejecutar transacciones off-chain en paralelo, y luego confirmar solo las raíces de estado en la cadena principal, de manera efectiva similar a las ideas de rollup pero utilizando la confianza del hardware. Al realizar la ejecución de contratos en TEEs, lograron un alto rendimiento mientras dependían de los enclaves para preservar la seguridad. Otro ejemplo es la próxima L2 Op-Succinct de Sanders Network, que combina TEEs y zkSNARKs: los TEEs ejecutan transacciones de forma privada y rápida, y luego se generan pruebas ZK para demostrar la corrección de esas ejecuciones a Ethereum. Este enfoque híbrido aprovecha la velocidad de los TEE y la verificabilidad de ZK para una solución L2 escalable y privada.

En general, los TEEs pueden ejecutar cálculos con un rendimiento casi nativo (ya que utilizan instrucciones reales de la CPU, solo con aislamiento), por lo que son órdenes de magnitud más rápidos que las alternativas puramente criptográficas como el cifrado homomórfico o las pruebas de conocimiento cero para lógica compleja. Al descargar el trabajo a los enclaves, las blockchains pueden manejar aplicaciones más complejas (como aprendizaje automático, procesamiento de imágenes/audio, análisis grandes) que serían imprácticas en la cadena. Los resultados regresan con una atestación, que el contrato en la cadena o los usuarios pueden verificar como originarios de un enclave de confianza, preservando así la integridad de los datos y la corrección. Este modelo a menudo se llama "computación off-chain verificable", y los TEEs son una piedra angular para muchos de estos diseños (por ejemplo, el Trusted Compute Framework de Hyperledger Avalon, desarrollado por Intel, iExec y otros, utiliza TEEs para ejecutar bytecode de EVM off-chain con una prueba de corrección publicada en la cadena).

Oráculos Seguros e Integridad de Datos

Los oráculos conectan las blockchains con datos del mundo real, pero introducen desafíos de confianza: ¿cómo puede un contrato inteligente confiar en que una fuente de datos off-chain es correcta y no ha sido manipulada? Los TEEs proporcionan una solución al servir como un sandbox seguro para los nodos de oráculo. Un nodo de oráculo basado en TEE puede obtener datos de fuentes externas (APIs, servicios web) y procesarlos dentro de un enclave que garantiza que los datos no han sido manipulados por el operador del nodo o un malware en el nodo. El enclave puede luego firmar o atestiguar la veracidad de los datos que proporciona. Esto mejora significativamente la integridad y confiabilidad de los datos del oráculo. Incluso si un operador de oráculo es malicioso, no puede alterar los datos sin romper la atestación del enclave (que la blockchain detectará).

Un ejemplo notable es Town Crier, un sistema de oráculo desarrollado en Cornell que fue uno de los primeros en utilizar enclaves Intel SGX para proporcionar datos autenticados a los contratos de Ethereum. Town Crier recuperaría datos (por ejemplo, de sitios web HTTPS) dentro de un enclave SGX y los entregaría a un contrato junto con una prueba (una firma del enclave) de que los datos provenían directamente de la fuente y no fueron falsificados. Chainlink reconoció el valor de esto y adquirió Town Crier en 2018 para integrar oráculos basados en TEE en su red descentralizada. Hoy en día, Chainlink y otros proveedores de oráculos tienen iniciativas de TEE: por ejemplo, DECO y Fair Sequencing Services de Chainlink involucran TEEs para garantizar la confidencialidad de los datos y el ordenamiento justo. Como se señaló en un análisis, "TEE revolucionó la seguridad de los oráculos al proporcionar un entorno a prueba de manipulaciones para el procesamiento de datos... incluso los propios operadores de nodos no pueden manipular los datos mientras se están procesando". Esto es particularmente crucial para las fuentes de datos financieros de alto valor (como los oráculos de precios para DeFi): un TEE puede prevenir incluso manipulaciones sutiles que podrían llevar a grandes exploits.

Los TEEs también permiten a los oráculos manejar datos sensibles o propietarios que no podrían publicarse en texto plano en una blockchain. Por ejemplo, una red de oráculos podría usar enclaves para agregar datos privados (como libros de órdenes de acciones confidenciales o datos de salud personales) y alimentar solo resultados derivados o pruebas validadas a la blockchain, sin exponer las entradas sensibles en bruto. De esta manera, los TEEs amplían el alcance de los datos que pueden integrarse de forma segura en los contratos inteligentes, lo cual es crítico para la tokenización de activos del mundo real (RWA), la calificación crediticia, los seguros y otros servicios en cadena intensivos en datos.

En el tema de los puentes cross-chain, los TEEs mejoran de manera similar la integridad. Los puentes a menudo dependen de un conjunto de validadores o una multifirma para custodiar activos y validar transferencias entre cadenas, lo que los convierte en objetivos principales para ataques. Al ejecutar la lógica del validador del puente dentro de TEEs, se pueden asegurar las claves privadas y los procesos de verificación del puente contra la manipulación. Incluso si el sistema operativo de un validador está comprometido, el atacante no debería poder extraer claves privadas o falsificar mensajes desde dentro del enclave. Los TEEs pueden hacer cumplir que las transacciones del puente se procesen exactamente de acuerdo con las reglas del protocolo, reduciendo el riesgo de que operadores humanos o malware inyecten transferencias fraudulentas. Además, los TEEs pueden permitir que los atomic swaps y las transacciones cross-chain se manejen en un enclave seguro que completa ambos lados o se aborta limpiamente, evitando escenarios donde los fondos se quedan atascados debido a interferencias. Varios proyectos de puentes y consorcios han explorado la seguridad basada en TEE para mitigar la plaga de hackeos de puentes que han ocurrido en los últimos años.

Integridad de Datos y Verificabilidad Off-Chain

En todos los escenarios anteriores, un tema recurrente es que los TEEs ayudan a mantener la integridad de los datos incluso fuera de la blockchain. Debido a que un TEE puede probar qué código está ejecutando (a través de la atestación) y puede garantizar que el código se ejecute sin interferencias, proporciona una forma de computación verificable. Los usuarios y los contratos inteligentes pueden confiar en los resultados que provienen de un TEE como si se hubieran calculado en la cadena, siempre que la atestación sea válida. Esta garantía de integridad es la razón por la que a veces se hace referencia a los TEEs como un "ancla de confianza" para los datos y la computación off-chain.

Sin embargo, vale la pena señalar que este modelo de confianza traslada algunas suposiciones al hardware (ver §4). La integridad de los datos es tan fuerte como la seguridad del TEE. Si el enclave se ve comprometido o la atestación se falsifica, la integridad podría fallar. No obstante, en la práctica, los TEEs (cuando se mantienen actualizados) hacen que ciertos ataques sean significativamente más difíciles. Por ejemplo, una plataforma de préstamos DeFi podría usar un TEE para calcular puntajes de crédito a partir de los datos privados de un usuario off-chain, y el contrato inteligente aceptaría el puntaje solo si va acompañado de una atestación de enclave válida. De esta manera, el contrato sabe que el puntaje fue calculado por el algoritmo aprobado sobre datos reales, en lugar de confiar ciegamente en el usuario o en un oráculo.

Los TEEs también juegan un papel en los sistemas emergentes de identidad descentralizada (DID) y autenticación. Pueden gestionar de forma segura claves privadas, datos personales y procesos de autenticación de una manera que la información sensible del usuario nunca se exponga a la blockchain o a los proveedores de dApps. Por ejemplo, un TEE en un dispositivo móvil podría manejar la autenticación biométrica y firmar una transacción de blockchain si la verificación biométrica pasa, todo sin revelar los datos biométricos del usuario. Esto proporciona tanto seguridad como privacidad en la gestión de la identidad, un componente esencial si Web3 va a manejar cosas como pasaportes, certificados o datos KYC de una manera soberana para el usuario.

En resumen, los TEEs sirven como una herramienta versátil en Web3: permiten la confidencialidad para la lógica en la cadena, permiten el escalado a través de la computación segura off-chain, protegen la integridad de los oráculos y puentes, y abren nuevos usos (desde la identidad privada hasta el intercambio de datos compatible). A continuación, veremos proyectos específicos que aprovechan estas capacidades.

3. Proyectos Web3 Notables que Aprovechan los TEEs

Varios proyectos líderes de blockchain han construido sus ofertas principales en torno a los Entornos de Ejecución Confiables. A continuación, nos sumergimos en algunos de los más notables, examinando cómo cada uno utiliza la tecnología TEE y qué valor único añade:

Secret Network

Secret Network es una blockchain de capa 1 (construida sobre el SDK de Cosmos) que fue pionera en los contratos inteligentes que preservan la privacidad utilizando TEEs. Todos los nodos validadores en Secret Network ejecutan enclaves Intel SGX, que ejecutan el código del contrato inteligente de modo que el estado del contrato y las entradas/salidas permanecen cifrados incluso para los operadores de los nodos. Esto convierte a Secret en una de las primeras plataformas de contratos inteligentes con privacidad por defecto: la privacidad no es un complemento opcional, sino una característica predeterminada de la red a nivel de protocolo.

En el modelo de Secret Network, los usuarios envían transacciones cifradas, que los validadores cargan en su enclave SGX para su ejecución. El enclave descifra las entradas, ejecuta el contrato (escrito en un tiempo de ejecución CosmWasm modificado) y produce salidas cifradas que se escriben en la blockchain. Solo los usuarios con la clave de visualización correcta (o el propio contrato con su clave interna) pueden descifrar y ver los datos reales. Esto permite que las aplicaciones utilicen datos privados en la cadena sin revelarlos públicamente.

La red ha demostrado varios casos de uso novedosos:

  • DeFi Secreto: por ejemplo, SecretSwap (un AMM) donde los saldos de las cuentas de los usuarios y los montos de las transacciones son privados, mitigando el front-running y protegiendo las estrategias de trading. Los proveedores de liquidez y los traders pueden operar sin transmitir cada uno de sus movimientos a la competencia.
  • Subastas Secretas: Contratos de subasta donde las ofertas se mantienen en secreto hasta que finaliza la subasta, evitando el comportamiento estratégico basado en las ofertas de otros.
  • Votación y Gobernanza Privada: Los poseedores de tokens pueden votar sobre propuestas sin revelar sus opciones de voto, mientras que el recuento aún puede ser verificado, asegurando una gobernanza justa y libre de intimidación.
  • Mercados de datos: Conjuntos de datos sensibles pueden ser transaccionados y utilizados en cálculos sin exponer los datos brutos a compradores o nodos.

Secret Network esencialmente incorpora TEEs a nivel de protocolo para crear una propuesta de valor única: ofrece privacidad programable. Los desafíos que abordan incluyen la coordinación de la atestación de enclaves en un conjunto de validadores descentralizado y la gestión de la distribución de claves para que los contratos puedan descifrar las entradas mientras las mantienen en secreto para los validadores. A todas luces, Secret ha demostrado la viabilidad de la confidencialidad impulsada por TEE en una blockchain pública, estableciéndose como un líder en el espacio.

Oasis Network

Oasis Network es otra capa 1 orientada a la escalabilidad y la privacidad, que utiliza extensivamente TEEs (Intel SGX) en su arquitectura. Oasis introdujo un diseño innovador que separa el consenso de la computación en diferentes capas llamadas la Capa de Consenso y la Capa ParaTime. La Capa de Consenso se encarga del ordenamiento y la finalidad de la blockchain, mientras que cada ParaTime puede ser un entorno de ejecución para contratos inteligentes. Notablemente, el Emerald ParaTime de Oasis es un entorno compatible con EVM, y Sapphire es un EVM confidencial que utiliza TEEs para mantener privado el estado de los contratos inteligentes.

El uso de TEEs por parte de Oasis se centra en la computación confidencial a escala. Al aislar la computación pesada en ParaTimes paralelizables (que pueden ejecutarse en muchos nodos), logran un alto rendimiento, y al usar TEEs dentro de esos nodos ParaTime, aseguran que los cálculos puedan incluir datos sensibles sin revelarlos. Por ejemplo, una institución podría ejecutar un algoritmo de calificación crediticia en Oasis alimentando datos privados en un ParaTime confidencial: los datos permanecen cifrados para el nodo (ya que se procesan en el enclave), y solo sale la puntuación. Mientras tanto, el consenso de Oasis solo registra la prueba de que la computación se realizó correctamente.

Técnicamente, Oasis añadió capas adicionales de seguridad más allá de SGX estándar. Implementaron una "raíz de confianza en capas": utilizando el Enclave de Cotización SGX de Intel y un kernel ligero personalizado para verificar la confiabilidad del hardware y para aislar las llamadas al sistema del enclave. Esto reduce la superficie de ataque (al filtrar qué llamadas al SO pueden hacer los enclaves) y protege contra ciertos ataques conocidos de SGX. Oasis también introdujo características como enclaves duraderos (para que los enclaves puedan persistir el estado a través de reinicios) y registro seguro para mitigar los ataques de reversión (donde un nodo podría intentar reproducir un estado de enclave antiguo). Estas innovaciones se describieron en sus documentos técnicos y son parte de por qué Oasis es visto como un proyecto impulsado por la investigación en la computación de blockchain basada en TEE.

Desde una perspectiva de ecosistema, Oasis se ha posicionado para cosas como DeFi privado (permitiendo que los bancos participen sin filtrar los datos de los clientes) y la tokenización de datos (donde individuos o empresas pueden compartir datos con modelos de IA de manera confidencial y ser compensados, todo a través de la blockchain). También han colaborado con empresas en proyectos piloto (por ejemplo, trabajando con BMW en la privacidad de datos, y otros en el intercambio de datos de investigación médica). En general, Oasis Network muestra cómo la combinación de TEEs con una arquitectura escalable puede abordar tanto la privacidad como el rendimiento, convirtiéndolo en un actor significativo en las soluciones Web3 basadas en TEE.

Sanders Network

Sanders Network es una red de computación en la nube descentralizada en el ecosistema de Polkadot que utiliza TEEs para proporcionar servicios de computación confidenciales y de alto rendimiento. Es una parachain en Polkadot, lo que significa que se beneficia de la seguridad e interoperabilidad de Polkadot, pero introduce su propio tiempo de ejecución novedoso para la computación off-chain en enclaves seguros.

La idea central de Sanders es mantener una gran red de nodos trabajadores (llamados mineros de Sanders) que ejecutan tareas dentro de TEEs (específicamente, Intel SGX hasta ahora) y producen resultados verificables. Estas tareas pueden variar desde ejecutar segmentos de contratos inteligentes hasta computación de propósito general solicitada por los usuarios. Debido a que los trabajadores se ejecutan en SGX, Sanders asegura que los cálculos se realizan con confidencialidad (los datos de entrada están ocultos para el operador del trabajador) e integridad (los resultados vienen con una atestación). Esto crea efectivamente una nube sin confianza donde los usuarios pueden desplegar cargas de trabajo sabiendo que el anfitrión no puede espiar ni manipularlas.

Se puede pensar en Sanders como análogo a Amazon EC2 o AWS Lambda, pero descentralizado: los desarrolladores pueden desplegar código en la red de Sanders y hacer que se ejecute en muchas máquinas habilitadas para SGX en todo el mundo, pagando con el token de Sanders por el servicio. Algunos casos de uso destacados:

  • Análisis e IA en Web3: Un proyecto podría analizar datos de usuarios o ejecutar algoritmos de IA en enclaves de Sanders, de modo que los datos brutos de los usuarios permanezcan cifrados (protegiendo la privacidad) mientras que solo las ideas agregadas salen del enclave.
  • Backends de juegos y Metaverso: Sanders puede manejar lógica de juego intensiva o simulaciones de mundos virtuales off-chain, enviando solo compromisos o hashes a la blockchain, permitiendo una jugabilidad más rica sin confiar en un solo servidor.
  • Servicios en cadena: Sanders ha construido una plataforma de computación off-chain llamada Sanders Cloud. Por ejemplo, puede servir como backend para bots, servicios web descentralizados, o incluso un libro de órdenes off-chain que publica operaciones en un contrato inteligente de DEX con atestación TEE.

Sanders enfatiza que puede escalar la computación confidencial horizontalmente: ¿necesitas más capacidad? Añade más nodos trabajadores TEE. Esto es diferente a una sola blockchain donde la capacidad de cómputo está limitada por el consenso. Así, Sanders abre posibilidades para dApps computacionalmente intensivas que aún desean seguridad sin confianza. Es importante destacar que Sanders no se basa únicamente en la confianza del hardware; se está integrando con el consenso de Polkadot (por ejemplo, staking y slashing por resultados incorrectos) e incluso explorando una combinación de TEE con pruebas de conocimiento cero (como se mencionó, su próxima L2 utiliza TEE para acelerar la ejecución y ZKP para verificarla de manera sucinta en Ethereum). Este enfoque híbrido ayuda a mitigar el riesgo de cualquier compromiso de un solo TEE al agregar verificación criptográfica por encima.

En resumen, Sanders Network aprovecha los TEEs para ofrecer una nube descentralizada y confidencial para Web3, permitiendo la computación off-chain con garantías de seguridad. Esto libera una clase de aplicaciones de blockchain que necesitan tanto cómputo pesado como privacidad de datos, cerrando la brecha entre los mundos on-chain y off-chain.

iExec

iExec es un mercado descentralizado para recursos de computación en la nube construido sobre Ethereum. A diferencia de los tres anteriores (que son sus propias cadenas o parachains), iExec opera como una red de capa 2 o off-chain que se coordina con los contratos inteligentes de Ethereum. Los TEEs (específicamente Intel SGX) son una piedra angular del enfoque de iExec para establecer la confianza en la computación off-chain.

La red iExec consta de nodos trabajadores contribuidos por varios proveedores. Estos trabajadores pueden ejecutar tareas solicitadas por los usuarios (desarrolladores de dApps, proveedores de datos, etc.). Para garantizar que estos cálculos off-chain sean confiables, iExec introdujo un marco de "Computación Off-chain Confiable": las tareas pueden ejecutarse dentro de enclaves SGX, y los resultados vienen con una firma de enclave que prueba que la tarea se ejecutó correctamente en un nodo seguro. iExec se asoció con Intel para lanzar esta función de computación confiable e incluso se unió al Confidential Computing Consortium para avanzar en los estándares. Su protocolo de consenso, llamado Prueba de Contribución (PoCo), agrega votos/atestaciones de múltiples trabajadores cuando es necesario para alcanzar un consenso sobre el resultado correcto. En muchos casos, la atestación de un solo enclave puede ser suficiente si el código es determinista y la confianza en SGX es alta; para una mayor seguridad, iExec puede replicar tareas en varios TEEs y usar un consenso o un voto mayoritario.

La plataforma de iExec permite varios casos de uso interesantes:

  • Computación de Oráculos Descentralizados: Como se mencionó anteriormente, iExec puede trabajar con Chainlink. Un nodo de Chainlink podría obtener datos brutos, luego entregarlos a un trabajador SGX de iExec para realizar un cálculo (por ejemplo, un algoritmo propietario o una inferencia de IA) sobre esos datos, y finalmente devolver un resultado en la cadena. Esto amplía lo que los oráculos pueden hacer más allá de simplemente retransmitir datos: ahora pueden proporcionar servicios computados (como llamar a un modelo de IA o agregar muchas fuentes) con TEE garantizando la honestidad.
  • IA y DePIN (Red de Infraestructura Física Descentralizada): iExec se está posicionando como una capa de confianza para aplicaciones de IA descentralizadas. Por ejemplo, una dApp que utiliza un modelo de aprendizaje automático puede ejecutar el modelo en un enclave para proteger tanto el modelo (si es propietario) como los datos del usuario que se introducen. En el contexto de DePIN (como las redes de IoT distribuidas), los TEEs se pueden utilizar en dispositivos de borde para confiar en las lecturas de los sensores y los cálculos sobre esas lecturas.
  • Monetización Segura de Datos: Los proveedores de datos pueden hacer que sus conjuntos de datos estén disponibles en el mercado de iExec en forma cifrada. Los compradores pueden enviar sus algoritmos para que se ejecuten sobre los datos dentro de un TEE (de modo que los datos brutos del proveedor de datos nunca se revelen, protegiendo su propiedad intelectual, y los detalles del algoritmo también pueden ocultarse). El resultado del cálculo se devuelve al comprador, y el pago apropiado al proveedor de datos se maneja a través de contratos inteligentes. Este esquema, a menudo llamado intercambio seguro de datos, es facilitado por la confidencialidad de los TEEs.

En general, iExec proporciona el pegamento entre los contratos inteligentes de Ethereum y la ejecución segura off-chain. Demuestra cómo los "trabajadores" TEE pueden conectarse en red para formar una nube descentralizada, completa con un mercado (utilizando el token RLC de iExec para el pago) y mecanismos de consenso. Al liderar el grupo de trabajo de Computación Confiable de la Enterprise Ethereum Alliance y contribuir a los estándares (como Hyperledger Avalon), iExec también impulsa una adopción más amplia de los TEEs en escenarios de blockchain empresarial.

Otros Proyectos y Ecosistemas

Más allá de los cuatro anteriores, hay algunos otros proyectos que vale la pena señalar:

  • Integritee – otra parachain de Polkadot similar a Sanders (de hecho, surgió del trabajo de TEE de la Energy Web Foundation). Integritee utiliza TEEs para crear "parachain-como-servicio" para empresas, combinando el procesamiento de enclaves on-chain y off-chain.
  • Automata Network – un protocolo de middleware para la privacidad en Web3 que aprovecha los TEEs para transacciones privadas, votación anónima y procesamiento de transacciones resistente a MEV. Automata funciona como una red off-chain que proporciona servicios como un relé RPC privado y se mencionó que utiliza TEEs para cosas como identidad protegida y transacciones privadas sin gas.
  • Hyperledger Sawtooth (PoET) – en el ámbito empresarial, Sawtooth introdujo un algoritmo de consenso llamado Prueba de Tiempo Transcurrido que se basaba en SGX. Cada validador ejecuta un enclave que espera un tiempo aleatorio y produce una prueba; el que tiene la espera más corta "gana" el bloque, una lotería justa impuesta por SGX. Aunque Sawtooth no es un proyecto Web3 per se (más bien blockchain empresarial), es un uso creativo de los TEEs para el consenso.
  • Cadenas Empresariales/de Consorcio – Muchas soluciones de blockchain empresarial (por ejemplo, ConsenSys Quorum, IBM Blockchain) incorporan TEEs para permitir transacciones de consorcio confidenciales, donde solo los nodos autorizados ven ciertos datos. Por ejemplo, el plan del Trusted Compute Framework (TCF) de la Enterprise Ethereum Alliance utiliza TEEs para ejecutar contratos privados off-chain y entregar pruebas de Merkle en la cadena.

Estos proyectos muestran colectivamente la versatilidad de los TEEs: impulsan L1s enteras centradas en la privacidad, sirven como redes off-chain, aseguran piezas de infraestructura como oráculos y puentes, e incluso sustentan algoritmos de consenso. A continuación, consideramos los beneficios y desafíos más amplios del uso de TEEs en entornos descentralizados.

4. Beneficios y Desafíos de los TEEs en Entornos Descentralizados

La adopción de Entornos de Ejecución Confiables en sistemas de blockchain conlleva importantes beneficios técnicos, así como notables desafíos y compromisos. Examinaremos ambos lados: lo que los TEEs ofrecen a las aplicaciones descentralizadas y qué problemas o riesgos surgen de su uso.

Beneficios y Fortalezas Técnicas

  • Fuerte Seguridad y Privacidad: El principal beneficio son las garantías de confidencialidad e integridad. Los TEEs permiten que el código sensible se ejecute con la seguridad de que no será espiado ni alterado por malware externo. Esto proporciona un nivel de confianza en la computación off-chain que antes no estaba disponible. Para la blockchain, esto significa que se pueden utilizar datos privados (mejorando la funcionalidad de las dApps) sin sacrificar la seguridad. Incluso en entornos no confiables (servidores en la nube, nodos validadores gestionados por terceros), los TEEs mantienen los secretos a salvo. Esto es especialmente beneficioso para gestionar claves privadas, datos de usuario y algoritmos propietarios dentro de los sistemas cripto. Por ejemplo, una billetera de hardware o un servicio de firma en la nube podría usar un TEE para firmar transacciones de blockchain internamente para que la clave privada nunca se exponga en texto plano, combinando conveniencia con seguridad.

  • Rendimiento Casi Nativo: A diferencia de los enfoques puramente criptográficos para la computación segura (como las pruebas ZK o el cifrado homomórfico), la sobrecarga de los TEE es relativamente pequeña. El código se ejecuta directamente en la CPU, por lo que un cálculo dentro de un enclave es aproximadamente tan rápido como ejecutarlo fuera (con cierta sobrecarga por las transiciones del enclave y el cifrado de memoria, típicicamente ralentizaciones de un solo dígito porcentual en SGX). Esto significa que los TEEs pueden manejar tareas computacionalmente intensivas de manera eficiente, permitiendo casos de uso (como fuentes de datos en tiempo real, contratos inteligentes complejos, aprendizaje automático) que serían órdenes de magnitud más lentos si se hicieran con protocolos criptográficos. La baja latencia de los enclaves los hace adecuados donde se necesita una respuesta rápida (por ejemplo, bots de trading de alta frecuencia asegurados por TEEs, o aplicaciones y juegos interactivos donde la experiencia del usuario sufriría con grandes retrasos).

  • Escalabilidad Mejorada (a través de la Descarga): Al permitir que los cálculos pesados se realicen de forma segura off-chain, los TEEs ayudan a aliviar la congestión y los costos de gas en las cadenas principales. Habilitan diseños de Capa 2 y protocolos secundarios donde la blockchain se utiliza solo para verificación o liquidación final, mientras que la mayor parte de la computación ocurre en enclaves paralelos. Esta modularización (lógica computacionalmente intensiva en TEEs, consenso en la cadena) puede mejorar drásticamente el rendimiento y la escalabilidad de las aplicaciones descentralizadas. Por ejemplo, un DEX podría hacer el emparejamiento en un TEE off-chain y solo publicar las operaciones emparejadas en la cadena, aumentando el rendimiento y reduciendo el gas en la cadena.

  • Mejor Experiencia de Usuario y Funcionalidad: Con los TEEs, las dApps pueden ofrecer características como confidencialidad o análisis complejos que atraen a más usuarios (incluidas las instituciones). Los TEEs también permiten transacciones sin gas o meta-transacciones al ejecutarlas de forma segura off-chain y luego enviar los resultados, como se señaló en el uso de TEEs por parte de Automata para reducir el gas en transacciones privadas. Además, almacenar el estado sensible off-chain en un enclave puede reducir los datos publicados en la cadena, lo cual es bueno para la privacidad del usuario y la eficiencia de la red (menos datos en la cadena para almacenar/verificar).

  • Composabilidad con Otras Tecnologías: Curiosamente, los TEEs pueden complementar otras tecnologías (no es estrictamente un beneficio inherente a los TEEs solos, sino en combinación). Pueden servir como el pegamento que une soluciones híbridas: por ejemplo, ejecutar un programa en un enclave y también generar una prueba ZK de su ejecución, donde el enclave ayuda con partes del proceso de prueba para acelerarlo. O usar TEEs en redes MPC para manejar ciertas tareas con menos rondas de comunicación. Discutiremos las comparaciones en el §5, pero muchos proyectos destacan que los TEEs no tienen que reemplazar la criptografía, pueden trabajar junto a ella para reforzar la seguridad (el mantra de Sanders: "La fuerza de los TEEs radica en apoyar a otros, no en reemplazarlos").

Supuestos de Confianza y Vulnerabilidades de Seguridad

A pesar de sus fortalezas, los TEEs introducen supuestos de confianza específicos y no son invulnerables. Es crucial entender estos desafíos:

  • Confianza en el Hardware y Centralización: Al usar TEEs, uno está depositando inherentemente confianza en el proveedor de silicio y en la seguridad de su diseño de hardware y cadena de suministro. Por ejemplo, usar Intel SGX significa confiar en que Intel no tiene puertas traseras, que su fabricación es segura y que el microcódigo de la CPU implementa correctamente el aislamiento del enclave. Este es un modelo de confianza más centralizado en comparación con la criptografía pura (que se basa en supuestos matemáticos distribuidos entre todos los usuarios). Además, la atestación para SGX históricamente depende de contactar al Servicio de Atestación de Intel, lo que significa que si Intel se desconectara o decidiera revocar claves, los enclaves a nivel mundial podrían verse afectados. Esta dependencia de la infraestructura de una sola empresa plantea preocupaciones: podría ser un único punto de fallo o incluso un objetivo de regulación gubernamental (por ejemplo, los controles de exportación de EE. UU. podrían en teoría restringir quién puede usar TEEs fuertes). AMD SEV mitiga esto al permitir una atestación más descentralizada (los propietarios de VM pueden atestiguar sus VM), pero aún así se confía en el chip y el firmware de AMD. El riesgo de centralización a menudo se cita como algo antitético a la descentralización de la blockchain. Proyectos como Keystone (TEE de código abierto) y otros están investigando formas de reducir la dependencia de cajas negras propietarias, pero aún no son de uso generalizado.

  • Canal Lateral y Otras Vulnerabilidades: Un TEE no es una bala de plata; puede ser atacado a través de medios indirectos. Los ataques de canal lateral explotan el hecho de que incluso si el acceso directo a la memoria está bloqueado, la operación de un enclave podría influir sutilmente en el sistema (a través del tiempo, el uso de la caché, el consumo de energía, las emisiones electromagnéticas, etc.). En los últimos años, se han demostrado numerosos ataques académicos a Intel SGX: desde Foreshadow (extracción de secretos del enclave a través de fugas de tiempo de la caché L1) hasta Plundervolt (inyección de fallos de voltaje a través de instrucciones privilegiadas) y SGAxe (extracción de claves de atestación), entre otros. Estos ataques sofisticados muestran que los TEEs pueden ser comprometidos sin necesidad de romper las protecciones criptográficas, sino explotando comportamientos microarquitectónicos o fallos en la implementación. Como resultado, se reconoce que "los investigadores han identificado varios vectores de ataque potenciales que podrían explotar vulnerabilidades de hardware o diferencias de tiempo en las operaciones de TEE". Aunque estos ataques no son triviales y a menudo requieren acceso local o hardware malicioso, son una amenaza real. Los TEEs tampoco protegen generalmente contra ataques físicos si un adversario tiene el chip en sus manos (por ejemplo, decapsular el chip, sondear buses, etc., puede derrotar a la mayoría de los TEEs comerciales).

    Las respuestas de los proveedores a los descubrimientos de canales laterales han sido parches de microcódigo y actualizaciones del SDK del enclave para mitigar las fugas conocidas (a veces a costa del rendimiento). Pero sigue siendo un juego del gato y el ratón. Para Web3, esto significa que si alguien encuentra un nuevo canal lateral en SGX, un contrato DeFi "seguro" que se ejecuta en SGX podría ser explotado (por ejemplo, para filtrar datos secretos o manipular la ejecución). Por lo tanto, depender de los TEEs significa aceptar una superficie de vulnerabilidad potencial a nivel de hardware que está fuera del modelo de amenaza típico de la blockchain. Es un área activa de investigación para fortalecer los TEEs contra estos (por ejemplo, diseñando código de enclave con operaciones de tiempo constante, evitando patrones de acceso a memoria dependientes de secretos y utilizando técnicas como la RAM ajena). Algunos proyectos también aumentan los TEEs con verificaciones secundarias, por ejemplo, combinándolos con pruebas ZK, o haciendo que múltiples enclaves se ejecuten en hardware de diferentes proveedores para reducir el riesgo de un solo chip.

  • Rendimiento y Restricciones de Recursos: Aunque los TEEs se ejecutan a una velocidad casi nativa para tareas ligadas a la CPU, tienen algunas sobrecargas y límites. Entrar en un enclave (un ECALL) y salir (OCALL) tiene un costo, al igual que el cifrado/descifrado de las páginas de memoria. Esto puede afectar el rendimiento en cruces de límites de enclave muy frecuentes. Los enclaves también suelen tener limitaciones de tamaño de memoria. Por ejemplo, los primeros SGX tenían una Caché de Páginas de Enclave limitada y cuando los enclaves usaban más memoria, las páginas tenían que ser intercambiadas (con cifrado), lo que ralentizaba masivamente el rendimiento. Incluso los TEEs más nuevos a menudo no permiten usar toda la RAM del sistema fácilmente; hay una región de memoria segura que podría estar limitada. Esto significa que los cálculos o conjuntos de datos a muy gran escala podrían ser difíciles de manejar por completo dentro de un TEE. En contextos de Web3, esto podría limitar la complejidad de los contratos inteligentes o los modelos de ML que pueden ejecutarse en un enclave. Los desarrolladores tienen que optimizar la memoria y posiblemente dividir las cargas de trabajo.

  • Complejidad de la Atestación y la Gestión de Claves: Usar TEEs en un entorno descentralizado requiere flujos de trabajo de atestación robustos: cada nodo necesita demostrar a los demás que está ejecutando un enclave auténtico con el código esperado. Configurar esta verificación de atestación en la cadena puede ser complejo. Generalmente implica codificar la clave pública de atestación o el certificado del proveedor en el protocolo y escribir la lógica de verificación en contratos inteligentes o clientes off-chain. Esto introduce una sobrecarga en el diseño del protocolo, y cualquier cambio (como que Intel cambie su formato de clave de firma de atestación de EPID a DCAP) puede causar cargas de mantenimiento. Además, la gestión de claves dentro de los TEEs (para descifrar datos o firmar resultados) añade otra capa de complejidad. Los errores en la gestión de claves del enclave podrían socavar la seguridad (por ejemplo, si un enclave expone inadvertidamente una clave de descifrado a través de un error, todas sus promesas de confidencialidad se derrumban). Las mejores prácticas implican el uso de las API de sellado del TEE para almacenar claves de forma segura y rotar las claves si es necesario, pero de nuevo, esto requiere un diseño cuidadoso por parte de los desarrolladores.

  • Denegación de Servicio y Disponibilidad: Un problema quizás menos discutido: los TEEs no ayudan con la disponibilidad e incluso pueden introducir nuevas vías de DoS. Por ejemplo, un atacante podría inundar un servicio basado en TEE con entradas que son costosas de procesar, sabiendo que el enclave no puede ser inspeccionado o interrumpido fácilmente por el operador (ya que está aislado). Además, si se encuentra una vulnerabilidad y un parche requiere actualizaciones de firmware, durante ese ciclo muchos servicios de enclave podrían tener que pausarse (por seguridad) hasta que los nodos estén parcheados, causando tiempo de inactividad. En el consenso de la blockchain, imagina si se encontrara un error crítico en SGX: redes como Secret podrían tener que detenerse hasta que haya una solución, ya que la confianza en los enclaves se rompería. La coordinación de tales respuestas en una red descentralizada es un desafío.

Composabilidad y Limitaciones del Ecosistema

  • Composabilidad Limitada con Otros Contratos: En una plataforma de contratos inteligentes pública como Ethereum, los contratos pueden llamar fácilmente a otros contratos y todo el estado está abierto, lo que permite los legos de dinero de DeFi y una rica composición. En un modelo de contrato basado en TEE, el estado privado no se puede compartir o componer libremente sin romper la confidencialidad. Por ejemplo, si el Contrato A en un enclave necesita interactuar con el Contrato B, y ambos tienen algunos datos secretos, ¿cómo colaboran? O deben realizar un complejo protocolo seguro multipartita (lo que niega parte de la simplicidad de los TEEs) o se combinan en un solo enclave (reduciendo la modularidad). Este es un desafío que Secret Network y otros enfrentan: las llamadas entre contratos con privacidad no son triviales. Algunas soluciones implican tener un solo enclave que maneje la ejecución de múltiples contratos para que pueda gestionar internamente los secretos compartidos, pero eso puede hacer que el sistema sea más monolítico. Por lo tanto, la composabilidad de los contratos privados es más limitada que la de los públicos, o requiere nuevos patrones de diseño. De manera similar, la integración de módulos basados en TEE en dApps de blockchain existentes requiere un diseño de interfaz cuidadoso: a menudo solo el resultado de un enclave se publica en la cadena, que podría ser un snark o un hash, y otros contratos solo pueden usar esa información limitada. Esto es ciertamente un compromiso; proyectos como Secret proporcionan claves de visualización y permiten compartir secretos según sea necesario, pero no es tan fluido como la composabilidad normal en la cadena.

  • Estandarización e Interoperabilidad: El ecosistema TEE actualmente carece de estándares unificados entre los proveedores. Intel SGX, AMD SEV, ARM TrustZone tienen todos diferentes modelos de programación y métodos de atestación. Esta fragmentación significa que una dApp escrita para enclaves SGX no es trivialmente portable a TrustZone, etc. En la blockchain, esto puede atar un proyecto a un hardware específico (por ejemplo, Secret y Oasis están atados a servidores x86 con SGX en este momento). Si en el futuro quisieran admitir nodos ARM (digamos, validadores en móviles), requeriría un desarrollo adicional y quizás una lógica de verificación de atestación diferente. Hay esfuerzos (como el CCC – Confidential Computing Consortium) para estandarizar la atestación y las API de enclaves, pero aún no hemos llegado a ese punto. La falta de estándares también afecta las herramientas para desarrolladores: uno podría encontrar el SDK de SGX maduro pero luego necesitar adaptarse a otro TEE con un SDK diferente. Este desafío de interoperabilidad puede ralentizar la adopción y aumentar los costos.

  • Curva de Aprendizaje para Desarrolladores: Construir aplicaciones que se ejecutan dentro de TEEs requiere un conocimiento especializado que muchos desarrolladores de blockchain pueden no tener. A menudo se necesita programación de bajo nivel en C/C++ (para SGX/TrustZone) o comprensión de la seguridad de la memoria y la codificación resistente a canales laterales. La depuración del código del enclave es notoriamente complicada (¡no se puede ver fácilmente dentro de un enclave mientras se está ejecutando por razones de seguridad!). Aunque existen frameworks y lenguajes de nivel superior (como el uso de Rust por parte de Oasis para su tiempo de ejecución confidencial, o incluso herramientas para ejecutar WebAssembly en enclaves), la experiencia del desarrollador sigue siendo más difícil que el desarrollo típico de contratos inteligentes o el desarrollo web2 off-chain. Esta curva de aprendizaje pronunciada y las herramientas inmaduras pueden disuadir a los desarrolladores o llevar a errores si no se manejan con cuidado. También está el aspecto de necesitar hardware para probar: ejecutar código SGX necesita una CPU habilitada para SGX o un emulador (que es más lento), por lo que la barrera de entrada es más alta. Como resultado, relativamente pocos desarrolladores hoy en día están profundamente familiarizados con el desarrollo de enclaves, lo que hace que las auditorías y el apoyo de la comunidad sean más escasos que en, digamos, la bien transitada comunidad de Solidity.

  • Costos Operativos: Ejecutar una infraestructura basada en TEE puede ser más costoso. El hardware en sí podría ser más caro o escaso (por ejemplo, ciertos proveedores de la nube cobran una prima por las VM con capacidad SGX). También hay una sobrecarga en las operaciones: mantener el firmware actualizado (para parches de seguridad), gestionar la red de atestación, etc., lo que los proyectos pequeños podrían encontrar oneroso. Si cada nodo debe tener una cierta CPU, podría reducir el grupo potencial de validadores (no todos tienen el hardware requerido), afectando así la descentralización y posiblemente llevando a un mayor uso de alojamiento en la nube.

En resumen, aunque los TEEs desbloquean características potentes, también traen compromisos de confianza (confianza en el hardware vs. confianza en las matemáticas), debilidades de seguridad potenciales (especialmente canales laterales) y obstáculos de integración en un contexto descentralizado. Los proyectos que utilizan TEEs deben ingeniárselas cuidadosamente en torno a estos problemas, empleando defensa en profundidad (no asumir que el TEE es inquebrantable), manteniendo la base de computación confiable al mínimo y siendo transparentes sobre los supuestos de confianza para los usuarios (para que quede claro, por ejemplo, que se está confiando en el hardware de Intel además del consenso de la blockchain).

5. TEEs vs. Otras Tecnologías que Preservan la Privacidad (ZKP, FHE, MPC)

Los Entornos de Ejecución Confiables son un enfoque para lograr la privacidad y la seguridad en Web3, pero existen otras técnicas importantes que incluyen las Pruebas de Conocimiento Cero (ZKPs), el Cifrado Totalmente Homomórfico (FHE) y la Computación Segura Multipartita (MPC). Cada una de estas tecnologías tiene un modelo de confianza y un perfil de rendimiento diferentes. En muchos casos, no son mutuamente excluyentes, pueden complementarse entre sí, pero es útil comparar sus compromisos en rendimiento, confianza y usabilidad para el desarrollador:

Para definir brevemente las alternativas:

  • ZKPs: Pruebas criptográficas (como zk-SNARKs, zk-STARKs) que permiten a una parte demostrar a otras que una afirmación es verdadera (por ejemplo, "conozco un secreto que satisface este cálculo") sin revelar por qué es verdadera (ocultando la entrada secreta). En la blockchain, las ZKPs se utilizan para transacciones privadas (por ejemplo, Zcash, Aztec) y para la escalabilidad (rollups que publican pruebas de ejecución correcta). Garantizan una fuerte privacidad (no se filtra ningún dato secreto, solo pruebas) y una integridad garantizada por las matemáticas, pero generar estas pruebas puede ser computacionalmente pesado y los circuitos deben diseñarse cuidadosamente.
  • FHE: Esquema de cifrado que permite la computación arbitraria sobre datos cifrados, de modo que el resultado, al ser descifrado, coincide con el resultado de computar sobre textos planos. En teoría, el FHE proporciona la máxima privacidad: los datos permanecen cifrados en todo momento, y no es necesario confiar en nadie con los datos brutos. Pero el FHE es extremadamente lento para cálculos generales (aunque está mejorando con la investigación); todavía se encuentra principalmente en uso experimental o especializado debido al rendimiento.
  • MPC: Protocolos donde múltiples partes calculan conjuntamente una función sobre sus entradas privadas sin revelar esas entradas entre sí. A menudo implica compartir secretos de los datos entre las partes y realizar operaciones criptográficas para que la salida sea correcta pero las entradas individuales permanezcan ocultas. El MPC puede distribuir la confianza (ningún punto único ve todos los datos) y puede ser eficiente para ciertas operaciones, pero típicamente incurre en una sobrecarga de comunicación y coordinación y puede ser complejo de implementar para redes grandes.

A continuación se presenta una tabla comparativa que resume las diferencias clave:

TecnologíaModelo de ConfianzaRendimientoPrivacidad de DatosUsabilidad para el Desarrollador
TEE (Intel SGX, etc.)Confianza en el fabricante del hardware (servidor de atestación centralizado en algunos casos). Asume que el chip es seguro; si el hardware se ve comprometido, la seguridad se rompe.Velocidad de ejecución casi nativa; sobrecarga mínima. Bueno para computación en tiempo real y grandes cargas de trabajo. La escalabilidad está limitada por la disponibilidad de nodos habilitados para TEE.Los datos están en texto plano dentro del enclave, pero cifrados para el mundo exterior. Fuerte confidencialidad si el hardware se mantiene, pero si el enclave es vulnerado, los secretos quedan expuestos (sin protección matemática adicional).Complejidad moderada. A menudo se puede reutilizar código/lenguajes existentes (C, Rust) y ejecutarlo en un enclave con modificaciones menores. La barrera de entrada más baja entre estos: no es necesario aprender criptografía avanzada, pero requiere programación de sistemas y conocimiento específico del SDK del TEE.
ZKP (zk-SNARK/STARK)Confianza en supuestos matemáticos (por ejemplo, la dureza de los problemas criptográficos) y a veces una configuración confiable (para SNARKs). Sin dependencia de ninguna parte única en tiempo de ejecución.La generación de pruebas es computacionalmente pesada (especialmente para programas complejos), a menudo órdenes de magnitud más lenta que la nativa. La verificación en la cadena es rápida (pocos ms). No es ideal para grandes cálculos de datos debido al tiempo de prueba. Escalabilidad: buena para la verificación sucinta (rollups) pero el probador es el cuello de botella.Privacidad muy fuerte: se puede probar la corrección sin revelar ninguna entrada privada. Solo se filtra información mínima (como el tamaño de la prueba). Ideal para la privacidad financiera, etc.Alta complejidad. Requiere aprender lenguajes especializados (circuitos, zkDSLs como Circom o Noir) y pensar en términos de circuitos aritméticos. La depuración es difícil. Menos expertos disponibles.
FHEConfianza en las matemáticas (problemas de retículos). Sin parte confiable; la seguridad se mantiene mientras el cifrado no se rompa.Muy lento para uso general. Las operaciones sobre datos cifrados son varios órdenes de magnitud más lentas que en texto plano. Mejora algo con avances de hardware y mejores algoritmos, pero actualmente es impráctico para uso en tiempo real en contextos de blockchain.Máxima privacidad: los datos permanecen cifrados todo el tiempo, incluso durante la computación. Esto es ideal para datos sensibles (por ejemplo, médicos, análisis interinstitucionales) si el rendimiento lo permitiera.Muy especializado. Los desarrolladores necesitan conocimientos de criptografía. Existen algunas bibliotecas (como Microsoft SEAL, TFHE), pero escribir programas arbitrarios en FHE es difícil y tortuoso. Aún no es un objetivo de desarrollo rutinario para dApps.
MPCConfianza distribuida entre múltiples partes. Asume que un umbral de partes es honesto (sin colusión más allá de cierto número). No se necesita confianza en el hardware. Falla la confianza si demasiados coluden.Típicamente más lento que el nativo debido a las rondas de comunicación, pero a menudo más rápido que el FHE. El rendimiento varía: operaciones simples (suma, multiplicación) pueden ser eficientes; la lógica compleja puede disparar el costo de comunicación. La latencia es sensible a las velocidades de la red. La escalabilidad puede mejorarse con sharding o supuestos de confianza parcial.Fuerte privacidad si se cumplen los supuestos: ningún nodo ve la entrada completa. Pero algo de información puede filtrarse a través de la salida o si las partes se caen (además, carece de la sucinta de ZK: obtienes el resultado pero no una prueba fácilmente compartible sin ejecutar el protocolo de nuevo).Alta complejidad. Requiere diseñar un protocolo personalizado para cada caso de uso o usar frameworks (como SPDZ, o la oferta de Partisia). Los desarrolladores deben razonar sobre protocolos criptográficos y a menudo coordinar el despliegue de múltiples nodos. La integración en aplicaciones de blockchain puede ser compleja (necesita rondas off-chain).

Citas: La comparación anterior se basa en fuentes como el análisis de Sanders Network y otros, que destacan que los TEEs sobresalen en velocidad y facilidad de uso, mientras que ZK y FHE se centran en la máxima falta de confianza a costa de un cómputo pesado, y MPC distribuye la confianza pero introduce una sobrecarga de red.

De la tabla, algunos compromisos clave se vuelven claros:

  • Rendimiento: Los TEEs tienen una gran ventaja en velocidad bruta y baja latencia. El MPC a menudo puede manejar una complejidad moderada con cierta ralentización, ZK es lento para producir pero rápido para verificar (uso asíncrono), y FHE es actualmente el más lento con diferencia para tareas arbitrarias (aunque está bien para operaciones limitadas como sumas/multiplicaciones simples). Si tu aplicación necesita procesamiento complejo en tiempo real (como aplicaciones interactivas, decisiones de alta frecuencia), los TEEs o quizás el MPC (con pocas partes en buenas conexiones) son las únicas opciones viables hoy en día. ZK y FHE serían demasiado lentos en tales escenarios.

  • Modelo de Confianza: ZKP y FHE son puramente sin confianza (solo confían en las matemáticas). MPC traslada la confianza a supuestos sobre la honestidad de los participantes (que pueden reforzarse teniendo muchas partes o incentivos económicos). TEE deposita la confianza en el hardware y el proveedor. Esta es una diferencia fundamental: los TEEs introducen un tercero de confianza (el chip) en el mundo generalmente sin confianza de la blockchain. En contraste, ZK y FHE a menudo son elogiados por alinearse mejor con el ethos descentralizado: no hay entidades especiales en las que confiar, solo la dureza computacional. MPC se encuentra en el medio: la confianza está descentralizada pero no eliminada (si N de M nodos coluden, la privacidad se rompe). Así que para una máxima falta de confianza (por ejemplo, un sistema verdaderamente resistente a la censura y descentralizado), uno podría inclinarse hacia soluciones criptográficas. Por otro lado, muchos sistemas prácticos se sienten cómodos asumiendo que Intel es honesto o que un conjunto de validadores principales no coludirá, intercambiando un poco de confianza por enormes ganancias en eficiencia.

  • Seguridad/Vulnerabilidades: Los TEEs, como se discutió, pueden ser socavados por errores de hardware o canales laterales. La seguridad de ZK y FHE puede ser socavada si las matemáticas subyacentes (digamos, una curva elíptica o un problema de retículo) se rompen, pero esos son problemas bien estudiados y los ataques probablemente se notarían (además, las elecciones de parámetros pueden mitigar los riesgos conocidos). La seguridad de MPC puede ser rota por adversarios activos si el protocolo no está diseñado para eso (algunos protocolos de MPC asumen participantes "honestos pero curiosos" y podrían fallar si alguien hace trampa abiertamente). En el contexto de la blockchain, una brecha en un TEE podría ser más catastrófica (todos los contratos basados en enclaves podrían estar en riesgo hasta que se parcheen), mientras que una ruptura criptográfica de ZK (como descubrir un fallo en una función hash utilizada por un rollup ZK) también podría ser catastrófica, pero generalmente se considera menos probable dada la suposición más simple. La superficie de ataque es muy diferente: los TEEs tienen que preocuparse por cosas como el análisis de potencia, mientras que ZK tiene que preocuparse por los avances matemáticos.

  • Privacidad de Datos: FHE y ZK ofrecen las garantías de privacidad más fuertes: los datos permanecen protegidos criptográficamente. MPC asegura que los datos se comparten en secreto, por lo que ninguna parte los ve (aunque algo de información podría filtrarse si las salidas son públicas o si los protocolos no están diseñados cuidadosamente). TEE mantiene los datos privados del exterior, pero dentro del enclave los datos se descifran; si alguien de alguna manera obtiene el control del enclave, la confidencialidad de los datos se pierde. Además, los TEEs típicamente permiten que el código haga cualquier cosa con los datos (incluyendo filtrarlos inadvertidamente a través de canales laterales o la red si el código es malicioso). Por lo tanto, los TEEs requieren que también confíes en el código del enclave, no solo en el hardware. En contraste, las ZKPs prueban propiedades del código sin revelar nunca secretos, por lo que ni siquiera tienes que confiar en el código (más allá de que realmente tenga la propiedad probada). Si una aplicación de enclave tuviera un error que filtrara datos a un archivo de registro, el hardware del TEE no lo evitaría, mientras que un sistema de prueba ZK simplemente no revelaría nada excepto la prueba prevista. Este es un matiz: los TEEs protegen contra adversarios externos, pero no necesariamente contra errores lógicos en el propio programa del enclave, mientras que el diseño de ZK fuerza un enfoque más declarativo (pruebas exactamente lo que se pretende y nada más).

  • Composabilidad e Integración: Los TEEs se integran con bastante facilidad en los sistemas existentes: puedes tomar un programa existente, ponerlo en un enclave y obtener algunos beneficios de seguridad sin cambiar demasiado el modelo de programación. ZK y FHE a menudo requieren reescribir el programa en un circuito o forma restrictiva, lo que puede ser un esfuerzo masivo. Por ejemplo, escribir una verificación simple de un modelo de IA en ZK implica transformarlo en una serie de operaciones aritméticas y restricciones, lo que está muy lejos de simplemente ejecutar TensorFlow en un TEE y atestiguar el resultado. De manera similar, MPC puede requerir un protocolo personalizado por caso de uso. Así que desde el punto de vista de la productividad y el costo del desarrollador, los TEEs son atractivos. Hemos visto una adopción más rápida de los TEEs en algunas áreas precisamente porque se pueden aprovechar los ecosistemas de software existentes (muchas bibliotecas se ejecutan en enclaves con pequeños ajustes). ZK/MPC requieren talento de ingeniería especializado que es escaso. Sin embargo, la otra cara de la moneda es que los TEEs producen una solución que a menudo está más aislada (tienes que confiar en ese enclave o en ese conjunto de nodos), mientras que ZK te da una prueba que cualquiera puede verificar en la cadena, lo que la hace altamente componible (cualquier contrato puede verificar una prueba ZK). Así que los resultados de ZK son portátiles: producen una pequeña prueba que cualquier número de otros contratos o usuarios pueden usar para ganar confianza. Los resultados de TEE generalmente vienen en forma de una atestación vinculada a un hardware particular y posiblemente no sucinta; pueden no ser tan fácilmente compartibles o agnósticos a la cadena (aunque puedes publicar una firma del resultado y tener contratos programados para aceptarla si conocen la clave pública del enclave).

En la práctica, estamos viendo enfoques híbridos: por ejemplo, Sanders Network argumenta que TEE, MPC y ZK brillan cada uno en diferentes áreas y pueden complementarse entre sí. Un caso concreto es la identidad descentralizada: se podrían usar pruebas ZK para probar una credencial de identidad sin revelarla, pero esa credencial podría haber sido verificada y emitida por un proceso basado en TEE que verificó tus documentos de forma privada. O considera el escalado: los rollups ZK proporcionan pruebas sucintas para muchas transacciones, pero la generación de esas pruebas podría acelerarse utilizando TEEs para hacer algunos cálculos más rápido (y luego solo probar una afirmación más pequeña). La combinación a veces puede reducir el requisito de confianza en los TEEs (por ejemplo, usar TEEs para el rendimiento, pero aún así verificar la corrección final a través de una prueba ZK o mediante un juego de desafío en la cadena para que un TEE comprometido no pueda hacer trampa sin ser atrapado). Mientras tanto, el MPC se puede combinar con los TEEs haciendo que el nodo de cómputo de cada parte sea un TEE, añadiendo una capa extra para que incluso si algunas partes coluden, todavía no puedan ver los datos de los demás a menos que también rompan la seguridad del hardware.

En resumen, los TEEs ofrecen un camino muy práctico e inmediato hacia la computación segura con supuestos modestos (confianza en el hardware), mientras que ZK y FHE ofrecen un camino más teórico y sin confianza pero a un alto costo computacional, y MPC ofrece un camino de confianza distribuida con costos de red. La elección correcta en Web3 depende de los requisitos de la aplicación:

  • Si necesitas computación rápida y compleja sobre datos privados (como IA, grandes conjuntos de datos), los TEEs (o MPC con pocas partes) son actualmente la única forma factible.
  • Si necesitas máxima descentralización y verificabilidad, las pruebas ZK brillan (por ejemplo, las transacciones de criptomonedas privadas favorecen a ZKP como en Zcash, porque los usuarios no quieren confiar en nada más que en las matemáticas).
  • Si necesitas computación colaborativa entre múltiples partes interesadas, el MPC es naturalmente adecuado (como la gestión de claves multipartita o las subastas).
  • Si tienes datos extremadamente sensibles y la privacidad a largo plazo es una necesidad, el FHE podría ser atractivo si el rendimiento mejora, porque incluso si alguien obtuviera tus textos cifrados años después, sin la clave no aprenderían nada; mientras que un compromiso de enclave podría filtrar secretos retroactivamente si se guardaran registros.

Vale la pena señalar que el espacio de la blockchain está explorando activamente todas estas tecnologías en paralelo. Es probable que veamos combinaciones: por ejemplo, soluciones de Capa 2 que integran TEEs para secuenciar transacciones y luego usan un ZKP para probar que el TEE siguió las reglas (un concepto que se está explorando en algunas investigaciones de Ethereum), o redes MPC que usan TEEs en cada nodo para reducir la complejidad de los protocolos MPC (ya que cada nodo es internamente seguro y puede simular múltiples partes).

En última instancia, TEEs vs ZK vs MPC vs FHE no es una elección de suma cero: cada uno apunta a diferentes puntos en el triángulo de seguridad, rendimiento y falta de confianza. Como dijo un artículo, los cuatro enfrentan un "triángulo imposible" de rendimiento, costo y seguridad; ninguna solución única es superior en todos los aspectos. El diseño óptimo a menudo utiliza la herramienta adecuada para la parte correcta del problema.

6. Adopción en los Principales Ecosistemas de Blockchain

Los Entornos de Ejecución Confiables han visto niveles variables de adopción en diferentes ecosistemas de blockchain, a menudo influenciados por las prioridades de esas comunidades y la facilidad de integración. Aquí evaluamos cómo se están utilizando (o explorando) los TEEs en algunos de los principales ecosistemas: Ethereum, Cosmos y Polkadot, además de tocar otros.

Ethereum (y Capas 1 en General)

En la mainnet de Ethereum misma, los TEEs no son parte del protocolo central, pero se han utilizado en aplicaciones y Capas 2. La filosofía de Ethereum se inclina hacia la seguridad criptográfica (por ejemplo, los emergentes ZK-rollups), pero los TEEs han encontrado roles en oráculos y ejecución off-chain para Ethereum:

  • Servicios de Oráculo: Como se discutió, Chainlink ha incorporado soluciones basadas en TEE como Town Crier. Aunque no todos los nodos de Chainlink usan TEEs por defecto, la tecnología está ahí para fuentes de datos que requieren confianza extra. Además, API3 (otro proyecto de oráculo) ha mencionado el uso de Intel SGX para ejecutar APIs y firmar datos para garantizar la autenticidad. Estos servicios alimentan datos a los contratos de Ethereum con mayores garantías.

  • Capa 2 y Rollups: Hay una investigación y un debate en curso en la comunidad de Ethereum sobre el uso de TEEs en secuenciadores o validadores de rollups. Por ejemplo, el concepto de "ZK-Portal" de ConsenSys y otros han propuesto usar TEEs para hacer cumplir el ordenamiento correcto en rollups optimistas o para proteger al secuenciador de la censura. El artículo de Medium que vimos incluso sugiere que para 2025, los TEE podrían convertirse en una característica predeterminada en algunas L2 para cosas como la protección del trading de alta frecuencia. Proyectos como Catalyst (un DEX de trading de alta frecuencia) y Flashbots (para relés de MEV) han considerado los TEEs para hacer cumplir el ordenamiento justo de las transacciones antes de que lleguen a la blockchain.

  • Ethereum Empresarial: En redes de Ethereum de consorcio o permisionadas, los TEEs son más ampliamente adoptados. El Trusted Compute Framework (TCF) de la Enterprise Ethereum Alliance era básicamente un plan para integrar TEEs en los clientes de Ethereum. Hyperledger Avalon (anteriormente EEA TCF) permite que partes de los contratos inteligentes de Ethereum se ejecuten off-chain en un TEE y luego se verifiquen en la cadena. Varias empresas como IBM, Microsoft e iExec contribuyeron a esto. Aunque en el Ethereum público esto no se ha vuelto común, en despliegues privados (por ejemplo, un grupo de bancos usando Quorum o Besu), los TEEs pueden usarse para que incluso los miembros del consorcio no vean los datos de los demás, solo los resultados autorizados. Esto puede satisfacer los requisitos de privacidad en un entorno empresarial.

  • Proyectos Notables: Aparte de iExec que opera en Ethereum, hubo proyectos como Enigma (que originalmente comenzó como un proyecto de MPC en el MIT, luego pivotó para usar SGX; más tarde se convirtió en Secret Network en Cosmos). Otro fue Decentralized Cloud Services (DCS) en las primeras discusiones de Ethereum. Más recientemente, OAuth (Oasis Ethereum ParaTime) permite que los contratos de Solidity se ejecuten con confidencialidad utilizando el backend TEE de Oasis pero liquidando en Ethereum. Además, algunas dApps basadas en Ethereum como el intercambio de datos médicos o los juegos han experimentado con TEEs al tener un componente de enclave off-chain que interactúa con sus contratos.

Así que la adopción de Ethereum es algo indirecta: no ha cambiado el protocolo para requerir TEEs, pero tiene un rico conjunto de servicios y extensiones opcionales que aprovechan los TEEs para quienes los necesitan. Es importante destacar que los investigadores de Ethereum siguen siendo cautelosos: las propuestas para hacer una "shard solo de TEE" o para integrar profundamente los TEEs han encontrado escepticismo en la comunidad debido a preocupaciones de confianza. En cambio, los TEEs son vistos como "coprocesadores" para Ethereum en lugar de componentes centrales.

Ecosistema Cosmos

El ecosistema de Cosmos es amigable con la experimentación a través de su SDK modular y cadenas soberanas, y Secret Network (cubierto anteriormente) es un excelente ejemplo de la adopción de TEE en Cosmos. Secret Network es en realidad una cadena del SDK de Cosmos con consenso Tendermint, modificada para exigir SGX en sus validadores. Es una de las zonas de Cosmos más prominentes después del Cosmos Hub principal, lo que indica una adopción significativa de la tecnología TEE en esa comunidad. El éxito de Secret en proporcionar privacidad entre cadenas (a través de sus conexiones IBC, Secret puede servir como un centro de privacidad para otras cadenas de Cosmos) es un caso notable de integración de TEE en L1.

Otro proyecto relacionado con Cosmos es Oasis Network (aunque no está construido sobre el SDK de Cosmos, fue diseñado por algunas de las mismas personas que contribuyeron a Tendermint y comparte un ethos similar de arquitectura modular). Oasis es independiente pero puede conectarse a Cosmos a través de puentes, etc. Tanto Secret como Oasis muestran que en el mundo de Cosmos, la idea de "la privacidad como una característica" a través de TEEs ganó suficiente tracción como para justificar redes dedicadas.

Cosmos incluso tiene un concepto de "proveedores de privacidad" para aplicaciones entre cadenas; por ejemplo, una aplicación en una cadena puede llamar a un contrato en Secret Network a través de IBC para realizar un cálculo confidencial y luego recibir el resultado. Esta composabilidad está surgiendo ahora.

Además, el proyecto Anoma (no estrictamente de Cosmos, pero relacionado en el sentido de la interoperabilidad) ha hablado de usar TEEs para arquitecturas centradas en la intención, aunque es más teórico.

En resumen, Cosmos tiene al menos una cadena principal que abraza completamente los TEEs (Secret) y otras que interactúan con ella, lo que ilustra una adopción saludable en esa esfera. La modularidad de Cosmos podría permitir más cadenas de este tipo (por ejemplo, uno podría imaginar una zona de Cosmos especializada en oráculos o identidad basados en TEE).

Polkadot y Substrate

El diseño de Polkadot permite que las parachains se especialicen, y de hecho Polkadot alberga múltiples parachains que utilizan TEEs:

  • Sanders Network: Ya descrito; una parachain que ofrece una nube de cómputo basada en TEE. Sanders ha estado en vivo como parachain, proporcionando servicios a otras cadenas a través de XCMP (paso de mensajes entre cadenas). Por ejemplo, otro proyecto de Polkadot puede descargar una tarea confidencial a los trabajadores de Sanders y recibir una prueba o un resultado de vuelta. La economía de tokens nativa de Sanders incentiva la ejecución de nodos TEE, y tiene una comunidad considerable, lo que indica una fuerte adopción.
  • Integritee: Otra parachain que se centra en soluciones empresariales y de privacidad de datos utilizando TEEs. Integritee permite a los equipos desplegar sus propias side-chains privadas (llamadas Teewasms) donde la ejecución se realiza en enclaves. Se dirige a casos de uso como el procesamiento de datos confidenciales para corporaciones que aún desean anclarse a la seguridad de Polkadot.
  • /Root o Crust?: Hubo ideas sobre el uso de TEEs para almacenamiento descentralizado o balizas aleatorias en algunos proyectos relacionados con Polkadot. Por ejemplo, Crust Network (almacenamiento descentralizado) originalmente planeó una prueba de almacenamiento basada en TEE (aunque luego se movió a otro diseño). Y la parachain aleatoria de Polkadot (Entropy) consideró TEEs vs VRFs.

La dependencia de Polkadot de la gobernanza y las actualizaciones en la cadena significa que las parachains pueden incorporar nueva tecnología rápidamente. Tanto Sanders como Integritee han pasado por actualizaciones para mejorar su integración de TEE (como admitir nuevas características de SGX o refinar los métodos de atestación). La Web3 Foundation también financió esfuerzos anteriores en proyectos TEE basados en Substrate como SubstraTEE (un prototipo temprano que mostraba la ejecución de contratos off-chain en TEEs con verificación en la cadena).

El ecosistema de Polkadot muestra así múltiples equipos independientes apostando por la tecnología TEE, lo que indica una tendencia de adopción positiva. Se está convirtiendo en un punto de venta para Polkadot que "si necesitas contratos inteligentes confidenciales o cómputo off-chain, tenemos parachains para eso".

Otros Ecosistemas y Adopción General

  • Empresas y Consorcios: Fuera de la cripto pública, Hyperledger y las cadenas empresariales han adoptado constantemente los TEEs para entornos permisionados. Por ejemplo, el Comité de Basilea probó una blockchain de finanzas comerciales basada en TEE. El patrón general es: donde la privacidad o la confidencialidad de los datos es una necesidad, y los participantes son conocidos (por lo que incluso podrían invertir colectivamente en módulos de seguridad de hardware), los TEEs encuentran un hogar cómodo. Puede que no aparezcan en las noticias de cripto, pero en sectores como la cadena de suministro, los consorcios bancarios o las redes de intercambio de datos de salud, los TEEs son a menudo la opción preferida (como alternativa a simplemente confiar en un tercero o usar criptografía pesada).

  • Capas 1 fuera de Ethereum: Algunas L1 más nuevas han incursionado con TEEs. NEAR Protocol tuvo un concepto temprano de una shard basada en TEE para contratos privados (aún no implementado). Celo consideró los TEEs para pruebas de clientes ligeros (sus pruebas Plumo ahora se basan en snarks, pero en un momento consideraron SGX para comprimir datos de la cadena para móviles). Concordium, una L1 de privacidad regulada, utiliza ZK para el anonimato pero también explora TEEs para la verificación de identidad. Dfinity/Internet Computer utiliza enclaves seguros en sus máquinas de nodos, pero para el arranque de la confianza (no para la ejecución de contratos, ya que su criptografía "Chain Key" se encarga de eso).

  • Bitcoin: Aunque Bitcoin en sí no utiliza TEEs, ha habido proyectos paralelos. Por ejemplo, soluciones de custodia basadas en TEE (como sistemas de Bóveda) para claves de Bitcoin, o ciertas propuestas en DLC (Contratos de Registro Discreto) para usar oráculos que podrían estar asegurados por TEE. Generalmente, la comunidad de Bitcoin es más conservadora y no confiaría fácilmente en Intel como parte del consenso, pero como tecnología auxiliar (billeteras de hardware con elementos seguros) ya está aceptada.

  • Reguladores y Gobiernos: Una faceta interesante de la adopción: algunas investigaciones sobre CBDC (moneda digital de banco central) han considerado los TEEs para hacer cumplir la privacidad mientras permiten la auditabilidad. Por ejemplo, el Banco de Francia realizó experimentos en los que utilizaron un TEE para manejar ciertas verificaciones de cumplimiento en transacciones que de otro modo serían privadas. Esto muestra que incluso los reguladores ven los TEEs como una forma de equilibrar la privacidad con la supervisión: podrías tener una CBDC donde las transacciones están cifradas para el público pero un enclave regulador puede revisarlas bajo ciertas condiciones (esto es hipotético, pero se discute en círculos de políticas).

  • Métricas de Adopción: Es difícil cuantificar la adopción, pero podemos observar indicadores como: número de proyectos, fondos invertidos, disponibilidad de infraestructura. En ese frente, hoy (2025) tenemos: al menos 3-4 cadenas públicas (Secret, Oasis, Sanders, Integritee, Automata como off-chain) que utilizan explícitamente TEEs; las principales redes de oráculos lo incorporan; grandes empresas tecnológicas respaldan la computación confidencial (Microsoft Azure, Google Cloud ofrecen VMs TEE, y estos servicios están siendo utilizados por nodos de blockchain como opciones). El Confidential Computing Consortium ahora incluye miembros centrados en blockchain (Ethereum Foundation, Chainlink, Fortanix, etc.), lo que muestra una colaboración interindustrial. Todo esto apunta a una adopción creciente pero de nicho: los TEEs aún no son ubicuos en Web3, pero han encontrado nichos importantes donde se requiere privacidad y cómputo seguro off-chain.

7. Consideraciones Empresariales y Regulatorias

El uso de TEEs en aplicaciones de blockchain plantea varios puntos empresariales y regulatorios que las partes interesadas deben considerar:

Cumplimiento de la Privacidad y Adopción Institucional

Uno de los impulsores empresariales para la adopción de TEE es la necesidad de cumplir con las regulaciones de privacidad de datos (como GDPR en Europa, HIPAA en los EE. UU. para datos de salud) mientras se aprovecha la tecnología blockchain. Las blockchains públicas por defecto transmiten datos a nivel mundial, lo que entra en conflicto con las regulaciones que requieren que los datos personales sensibles estén protegidos. Los TEEs ofrecen una forma de mantener los datos confidenciales en la cadena y solo compartirlos de manera controlada, permitiendo así el cumplimiento. Como se señaló, "los TEEs facilitan el cumplimiento de las regulaciones de privacidad de datos al aislar los datos sensibles del usuario y garantizar que se manejen de forma segura". Esta capacidad es crucial para atraer a empresas e instituciones a Web3, ya que no pueden arriesgarse a violar las leyes. Por ejemplo, una dApp de atención médica que procesa información de pacientes podría usar TEEs para garantizar que ningún dato bruto de pacientes se filtre en la cadena, satisfaciendo los requisitos de HIPAA de cifrado y control de acceso. De manera similar, un banco europeo podría usar una cadena basada en TEE para tokenizar y comerciar activos sin exponer los detalles personales de los clientes, alineándose con el GDPR.

Esto tiene un ángulo regulatorio positivo: algunos reguladores han indicado que soluciones como los TEEs (y conceptos relacionados de computación confidencial) son favorables porque proporcionan una aplicación técnica de la privacidad. Hemos visto al Foro Económico Mundial y a otros destacar los TEEs como un medio para construir "privacidad por diseño" en los sistemas de blockchain (esencialmente incorporando el cumplimiento a nivel de protocolo). Por lo tanto, desde una perspectiva empresarial, los TEEs pueden acelerar la adopción institucional al eliminar uno de los bloqueadores clave (la confidencialidad de los datos). Las empresas están más dispuestas a usar o construir sobre blockchain si saben que hay una salvaguarda de hardware para sus datos.

Otro aspecto del cumplimiento es la auditabilidad y la supervisión. Las empresas a menudo necesitan registros de auditoría y la capacidad de demostrar a los auditores que tienen el control de los datos. Los TEEs pueden ayudar aquí al producir informes de atestación y registros seguros de lo que se accedió. Por ejemplo, el "registro duradero" de Oasis en un enclave proporciona un registro resistente a la manipulación de operaciones sensibles. Una empresa puede mostrar ese registro a los reguladores para demostrar que, por ejemplo, solo se ejecutó código autorizado y solo se realizaron ciertas consultas sobre los datos de los clientes. Este tipo de auditoría atestiguada podría satisfacer a los reguladores más que un sistema tradicional donde se confía en los registros del administrador del sistema.

Confianza y Responsabilidad

Por otro lado, la introducción de TEEs cambia la estructura de confianza y, por lo tanto, el modelo de responsabilidad en las soluciones de blockchain. Si una plataforma DeFi utiliza un TEE y algo sale mal debido a un fallo de hardware, ¿quién es responsable? Por ejemplo, considera un escenario en el que un error de Intel SGX conduce a una fuga de detalles de transacciones de intercambio secretas, lo que hace que los usuarios pierdan dinero (front-running, etc.). Los usuarios confiaron en las afirmaciones de seguridad de la plataforma. ¿Es culpa de la plataforma o de Intel? Legalmente, los usuarios podrían ir tras la plataforma (quien a su vez podría tener que ir tras Intel). Esto complica las cosas porque tienes un proveedor de tecnología de terceros (el proveedor de la CPU) profundamente involucrado en el modelo de seguridad. Las empresas que utilizan TEEs deben considerar esto en los contratos y las evaluaciones de riesgos. Algunas podrían buscar garantías o soporte de los proveedores de hardware si utilizan sus TEEs en infraestructura crítica.

También está la preocupación por la centralización: si la seguridad de una blockchain depende del hardware de una sola empresa (Intel o AMD), los reguladores podrían verlo con escepticismo. Por ejemplo, ¿podría un gobierno citar o coaccionar a esa empresa para comprometer ciertos enclaves? Esta no es una preocupación puramente teórica; considera las leyes de control de exportaciones: el hardware de cifrado de alto grado puede estar sujeto a regulación. Si una gran parte de la infraestructura cripto depende de los TEEs, es concebible que los gobiernos puedan intentar insertar puertas traseras (aunque no hay evidencia de ello, la percepción importa). Algunos defensores de la privacidad señalan esto a los reguladores: que los TEEs concentran la confianza y, en todo caso, los reguladores deberían examinarlos cuidadosamente. Por el contrario, los reguladores que desean más control podrían preferir los TEEs sobre la privacidad basada en matemáticas como ZK, porque con los TEEs hay al menos una noción de que las fuerzas del orden podrían acercarse al proveedor de hardware con una orden judicial si fuera absolutamente necesario (por ejemplo, para obtener una clave de atestación maestra o algo así, no es que sea fácil o probable, pero es una vía que no existe con ZK). Así que la recepción regulatoria puede dividirse: los reguladores de privacidad (agencias de protección de datos) están a favor de los TEE para el cumplimiento, mientras que las fuerzas del orden podrían ser cautelosamente optimistas ya que los TEEs no están "a oscuras" de la misma manera que el cifrado fuerte; hay una palanca teórica (el hardware) que podrían intentar usar.

Las empresas necesitan navegar esto posiblemente participando en certificaciones. Existen certificaciones de seguridad como FIPS 140 o Common Criteria para módulos de hardware. Actualmente, SGX y otros tienen algunas certificaciones (por ejemplo, SGX tuvo certificación Common Criteria EAL para ciertos usos). Si una plataforma de blockchain puede señalar que la tecnología del enclave está certificada con un alto estándar, los reguladores y socios podrían sentirse más cómodos. Por ejemplo, un proyecto de CBDC podría requerir que cualquier TEE utilizado esté certificado por FIPS para confiar en su generación de números aleatorios, etc. Esto introduce un proceso adicional y posiblemente restringe a ciertas versiones de hardware.

Consideraciones de Ecosistema y Costo

Desde una perspectiva empresarial, el uso de TEEs podría afectar la estructura de costos de una operación de blockchain. Los nodos deben tener CPUs específicas (que podrían ser más caras o menos eficientes energéticamente). Esto podría significar facturas de alojamiento en la nube más altas o gastos de capital. Por ejemplo, si un proyecto exige Intel Xeon con SGX para todos los validadores, eso es una restricción: los validadores no pueden ser cualquiera con una Raspberry Pi o una computadora portátil vieja; necesitan ese hardware. Esto puede centralizar quién puede participar (posiblemente favoreciendo a aquellos que pueden permitirse servidores de alta gama o que utilizan proveedores de la nube que ofrecen VMs SGX). En casos extremos, podría empujar a la red a ser más permisionada o a depender de proveedores de la nube, lo cual es un compromiso de descentralización y un compromiso empresarial (la red podría tener que subsidiar a los proveedores de nodos).

Por otro lado, algunas empresas podrían encontrar esto aceptable porque quieren validadores conocidos o tienen una lista blanca (especialmente en consorcios empresariales). Pero en las redes cripto públicas, esto ha causado debates; por ejemplo, cuando se requería SGX, la gente preguntaba "¿significa esto que solo los grandes centros de datos ejecutarán nodos?". Es algo que afecta el sentimiento de la comunidad y, por lo tanto, la adopción del mercado. Por ejemplo, algunos puristas de las criptomonedas podrían evitar una cadena que requiere TEEs, etiquetándola como "menos sin confianza" o demasiado centralizada. Por lo tanto, los proyectos tienen que manejar las relaciones públicas y la educación de la comunidad, dejando claro cuáles son los supuestos de confianza y por qué sigue siendo seguro. Vimos a Secret Network abordar el FUD explicando el riguroso monitoreo de las actualizaciones de Intel y que los validadores son penalizados si no actualizan los enclaves, etc., creando básicamente una capa social de confianza sobre la confianza en el hardware.

Otra consideración son las asociaciones y el soporte. El ecosistema empresarial en torno a los TEEs incluye grandes empresas tecnológicas (Intel, AMD, ARM, Microsoft, Google, etc.). Los proyectos de blockchain que utilizan TEEs a menudo se asocian con estas (por ejemplo, iExec asociándose con Intel, Secret Network trabajando con Intel en mejoras de atestación, Oasis con Microsoft en IA confidencial, etc.). Estas asociaciones pueden proporcionar financiación, asistencia técnica y credibilidad. Es un punto estratégico: alinearse con la industria de la computación confidencial puede abrir puertas (para financiación o pilotos empresariales), pero también significa que un proyecto cripto podría alinearse con grandes corporaciones, lo que tiene implicaciones ideológicas en la comunidad.

Incertidumbres Regulatorias

A medida que crecen las aplicaciones de blockchain que utilizan TEEs, pueden surgir nuevas preguntas regulatorias. Por ejemplo:

  • Jurisdicción de Datos: Si los datos se procesan dentro de un TEE en un país determinado, ¿se considera que se "procesan en ese país" o en ninguna parte (ya que están cifrados)? Algunas leyes de privacidad requieren que los datos de los ciudadanos no salgan de ciertas regiones. Los TEEs podrían difuminar las líneas: podrías tener un enclave en una región de la nube, pero solo entran/salen datos cifrados. Es posible que los reguladores necesiten aclarar cómo ven dicho procesamiento.
  • Controles de Exportación: La tecnología de cifrado avanzada puede estar sujeta a restricciones de exportación. Los TEEs implican el cifrado de la memoria; históricamente esto no ha sido un problema (ya que las CPUs con estas características se venden a nivel mundial), pero si eso cambiara, podría afectar el suministro. Además, algunos países podrían prohibir o desalentar el uso de TEEs extranjeros debido a la seguridad nacional (por ejemplo, China tiene su propio equivalente a SGX, ya que no confían en el de Intel, y podrían no permitir SGX para usos sensibles).
  • Compulsión Legal: Un escenario: ¿podría un gobierno citar a un operador de nodo para extraer datos de un enclave? Normalmente no pueden porque incluso el operador no puede ver dentro. Pero, ¿y si citan a Intel por una clave de atestación específica? El diseño de Intel es tal que ni siquiera ellos pueden descifrar la memoria del enclave (emiten claves a la CPU que hace el trabajo). Pero si existiera una puerta trasera o un firmware especial pudiera ser firmado por Intel para volcar la memoria, esa es una hipótesis que preocupa a la gente. Legalmente, una empresa como Intel podría negarse si se le pidiera socavar su seguridad (probablemente lo harían, para no destruir la confianza en su producto). Pero la mera posibilidad podría aparecer en las discusiones regulatorias sobre el acceso legal. Las empresas que utilizan TEEs deben mantenerse al tanto de cualquier desarrollo de este tipo, aunque actualmente no existe un mecanismo público para que Intel/AMD extraigan datos de enclaves; ese es el punto de los TEEs.

Diferenciación de Mercado y Nuevos Servicios

En el lado positivo para los negocios, los TEEs permiten nuevos productos y servicios que pueden ser monetizados. Por ejemplo:

  • Mercados de datos confidenciales: Como han señalado iExec, Ocean Protocol y otros, las empresas tienen datos valiosos que podrían monetizar si tuvieran garantías de que no se filtrarán. Los TEEs permiten el "alquiler de datos" donde los datos nunca salen del enclave, solo las ideas lo hacen. Esto podría desbloquear nuevas fuentes de ingresos y modelos de negocio. Vemos startups en Web3 que ofrecen servicios de computación confidencial a empresas, esencialmente vendiendo la idea de "obtener ideas de la blockchain o de datos entre empresas sin exponer nada".
  • DeFi Empresarial: Las instituciones financieras a menudo citan la falta de privacidad como una razón para no participar en DeFi o en la blockchain pública. Si los TEEs pueden garantizar la privacidad de sus posiciones o transacciones, podrían participar, trayendo más liquidez y negocio al ecosistema. Los proyectos que atienden a esto (como los préstamos secretos de Secret, o el AMM privado de Oasis con controles de cumplimiento) se están posicionando para atraer a usuarios institucionales. Si tienen éxito, eso puede ser un mercado significativo (imagina pools de AMM institucionales donde las identidades y los montos están protegidos pero un enclave asegura que las verificaciones de cumplimiento como AML se realizan internamente; ese es un producto que podría traer mucho dinero a DeFi con comodidad regulatoria).
  • Seguros y Gestión de Riesgos: Con los TEEs reduciendo ciertos riesgos (como la manipulación de oráculos), podríamos ver primas de seguro más bajas o nuevos productos de seguro para plataformas de contratos inteligentes. Por el contrario, los TEEs introducen nuevos riesgos (como el fallo técnico de los enclaves) que podrían ser eventos asegurables. Hay un área incipiente de seguros cripto; cómo tratan los sistemas dependientes de TEE será interesante. Una plataforma podría comercializar que utiliza TEEs para reducir el riesgo de violación de datos, lo que la haría más fácil/barata de asegurar, dándole una ventaja competitiva.

En conclusión, el panorama empresarial y regulatorio de Web3 habilitado por TEE se trata de equilibrar la confianza y la innovación. Los TEEs ofrecen una ruta para cumplir con las leyes y desbloquear casos de uso empresariales (una gran ventaja para la adopción generalizada), pero también traen una dependencia de los proveedores de hardware y complejidades que deben gestionarse de forma transparente. Las partes interesadas deben interactuar tanto con los gigantes tecnológicos (para obtener soporte) como con los reguladores (para obtener claridad y seguridad) para realizar plenamente el potencial de los TEEs en la blockchain. Si se hace bien, los TEEs podrían ser una piedra angular que permita a la blockchain integrarse profundamente con industrias que manejan datos sensibles, expandiendo así el alcance de Web3 a áreas previamente fuera de los límites debido a preocupaciones de privacidad.

Conclusión

Los Entornos de Ejecución Confiables han surgido como un componente poderoso en la caja de herramientas de Web3, permitiendo una nueva clase de aplicaciones descentralizadas que requieren confidencialidad y computación segura off-chain. Hemos visto que los TEEs, como Intel SGX, ARM TrustZone y AMD SEV, proporcionan una "caja fuerte" aislada por hardware para la computación, y esta propiedad ha sido aprovechada para contratos inteligentes que preservan la privacidad, oráculos verificables, procesamiento escalable off-chain y más. Proyectos en todos los ecosistemas, desde los contratos privados de Secret Network en Cosmos, hasta los ParaTimes confidenciales de Oasis, la nube TEE de Sanders en Polkadot y el mercado off-chain de iExec en Ethereum, demuestran las diversas formas en que los TEEs se están integrando en las plataformas de blockchain.

Técnicamente, los TEEs ofrecen beneficios convincentes de velocidad y fuerte confidencialidad de datos, pero vienen con sus propios desafíos: la necesidad de confiar en los proveedores de hardware, posibles vulnerabilidades de canal lateral y obstáculos en la integración y la composabilidad. Comparamos los TEEs con alternativas criptográficas (ZKPs, FHE, MPC) y encontramos que cada uno tiene su nicho: los TEEs brillan en rendimiento y facilidad de uso, mientras que ZK y FHE proporcionan la máxima falta de confianza a un alto costo, y MPC distribuye la confianza entre los participantes. De hecho, muchas soluciones de vanguardia son híbridas, utilizando TEEs junto con métodos criptográficos para obtener lo mejor de ambos mundos.

La adopción de soluciones basadas en TEE está creciendo constantemente. Las dApps de Ethereum aprovechan los TEEs para la seguridad de los oráculos y los cálculos privados, Cosmos y Polkadot tienen soporte nativo a través de cadenas especializadas, y los esfuerzos de blockchain empresarial están adoptando los TEEs para el cumplimiento. Desde el punto de vista empresarial, los TEEs pueden ser un puente entre la tecnología descentralizada y la regulación, permitiendo que los datos sensibles se manejen en la cadena bajo las salvaguardas de la seguridad del hardware, lo que abre la puerta al uso institucional y a nuevos servicios. Al mismo tiempo, usar TEEs significa comprometerse con nuevos paradigmas de confianza y garantizar que el ethos de descentralización de la blockchain no se vea socavado por un silicio opaco.

En resumen, los Entornos de Ejecución Confiables están desempeñando un papel crucial en la evolución de Web3: abordan algunas de las preocupaciones más apremiantes de privacidad y escalabilidad, y aunque no son una panacea (y no están exentos de controversia), expanden significativamente lo que las aplicaciones descentralizadas pueden hacer. A medida que la tecnología madura, con mejoras en la seguridad del hardware y estándares para la atestación, y a medida que más proyectos demuestran su valor, podemos esperar que los TEEs (junto con la tecnología criptográfica complementaria) se conviertan en un componente estándar de las arquitecturas de blockchain destinadas a desbloquear todo el potencial de Web3 de una manera segura y confiable. El futuro probablemente depara soluciones en capas donde el hardware y la criptografía trabajen de la mano para ofrecer sistemas que sean tanto performantes como demostrablemente seguros, satisfaciendo las necesidades de usuarios, desarrolladores y reguladores por igual.

Fuentes: La información de este informe se recopiló de una variedad de fuentes actualizadas, incluyendo documentación y blogs oficiales de proyectos, análisis de la industria e investigación académica, como se cita a lo largo del texto. Las referencias notables incluyen la guía de Metaschool 2025 sobre TEEs en Web3, comparaciones de Sanders Network, conocimientos técnicos de ChainCatcher y otros sobre FHE/TEE/ZKP/MPC, y declaraciones sobre cumplimiento regulatorio de Binance Research, entre muchos otros. Estas fuentes proporcionan más detalles y se recomiendan para los lectores que deseen explorar aspectos específicos con mayor profundidad.

Stablecoins en los Negocios: Puntos de Dolor y Oportunidades

· 57 min de lectura
Dora Noda
Software Engineer

Introducción

Las stablecoins —monedas digitales vinculadas a activos estables como el dólar estadounidense— prometen agilizar las transacciones comerciales con liquidación casi instantánea, comisiones bajas y alcance global. En teoría, combinan la eficiencia de las criptomonedas con la familiaridad del dinero fiduciario, lo que las hace ideales para pagos transfronterizos y comercio. El mercado global de pagos B2B supera los 125 billones de anualesyestaˊplagadodealtascomisionesyliquidacioneslentas.Lasstablecoinsyahanvistomaˊsde10billonesdeanuales y está plagado de altas comisiones y liquidaciones lentas. Las stablecoins ya han visto **más de 10 billones de en volumen de transacciones en 2023**, y su uso está creciendo. Sin embargo, a pesar de este potencial, la adopción generalizada en los negocios sigue siendo limitada. Las empresas se enfrentan a puntos de dolor significativos —desde obstáculos regulatorios hasta brechas en las herramientas— que frustran el uso de stablecoins en las operaciones diarias. Identificar estos puntos de fricción y los segmentos desatendidos afectados puede resaltar oportunidades al alcance de la mano para que los desarrolladores construyan herramientas y servicios que liberen el valor de las stablecoins.

Este informe analiza los mayores desafíos que las empresas encuentran con las stablecoins, los mercados desatendidos con necesidades no satisfechas y los casos de uso prácticos donde la adopción está bloqueada por fricciones solucionables. También señalamos las brechas en la infraestructura actual (p. ej., contabilidad, cumplimiento, facturación, soporte multidivisa) y sugerimos dónde las soluciones amigables para desarrolladores (APIs, integraciones, wallets) podrían generar un ROI significativo. El enfoque está en ideas prácticas, ejemplos concretos y áreas donde herramientas simples podrían marcar una gran diferencia.

Puntos Clave de Dolor para las Empresas que Usan Stablecoins

Incertidumbre Regulatoria y Cargas de Cumplimiento

Una de las barreras más importantes es el entorno regulatorio incierto que rodea a las stablecoins. Las reglas difieren entre jurisdicciones y están en constante evolución, dejando a las empresas sin saber cómo cumplir. Las regulaciones inconsistentes o poco claras se citan con frecuencia como un obstáculo importante para la adopción de stablecoins. Por ejemplo, la nueva regulación MiCA de la UE impondrá requisitos de cumplimiento específicos a los emisores de stablecoins y proveedores de servicios en Europa. Las empresas deben navegar por las reglas de licencias, informes y protección al consumidor que pueden aplicarse a las transacciones con stablecoins, lo que puede ser abrumador.

Además, a las empresas les preocupan las obligaciones de KYC/AML (Conozca a su Cliente / Lucha contra el Blanqueo de Capitales) al usar stablecoins. Realizar transacciones en blockchains públicas significa tratar con direcciones seudónimas, lo que plantea preocupaciones sobre finanzas ilícitas. Las empresas necesitan asegurarse de que no están recibiendo o enviando stablecoins desde fuentes sancionadas o criminales. Sin embargo, la mayoría de las stablecoins y wallets de criptomonedas no proporcionan verificaciones KYC/AML de forma nativa, por lo que las empresas deben añadir sus propios procesos de cumplimiento. Este es un punto de dolor especialmente para las empresas más pequeñas que carecen de departamentos de cumplimiento. Sin herramientas robustas, las stablecoins pueden facilitar transferencias anónimas, creando un riesgo de AML del que los reguladores son cada vez más cautelosos.

El cumplimiento fiscal y contable añade otra capa de complejidad. En muchas jurisdicciones (p. ej., EE. UU.), las stablecoins no se tratan legalmente como "dinero" o moneda de curso legal para fines fiscales, sino como propiedad o activos financieros. Esto significa que usar una stablecoin para hacer un pago podría desencadenar la obligación de informar impuestos de manera similar a la venta de un activo, incluso si su valor se mantiene en 1 $. Las empresas deben rastrear la base de costos y las posibles ganancias/pérdidas en las transacciones con stablecoins, lo cual es engorroso. Las normas contables tampoco se han puesto al día por completo: las empresas deben determinar si las tenencias de stablecoins cuentan como efectivo, instrumentos financieros o intangibles en su balance. Esta incertidumbre pone nerviosos a los directores financieros y auditores. En resumen, la carga regulatoria y de cumplimiento —desde licencias, pasando por KYC/AML, hasta el tratamiento fiscal— sigue siendo un punto de dolor principal que mantiene a las empresas al margen. Las herramientas para desarrolladores que automaticen el cumplimiento (verificaciones KYC, cribado de direcciones, cálculos de impuestos) podrían reducir en gran medida esta fricción.

Integración con Sistemas y Flujos de Trabajo Heredados

Incluso cuando una empresa está dispuesta a usar stablecoins, integrarlas en los sistemas existentes es un desafío. La infraestructura de pagos tradicional y los sistemas de contabilidad no están diseñados para las criptomonedas. Las empresas no pueden simplemente "conectar y usar" (plug and play) las stablecoins en sus flujos de trabajo de facturación, ERP o tesorería. PYMNTS señala que adoptar pagos con stablecoins a menudo "requiere actualizaciones tecnológicas, capacitación del personal y garantías" para integrarse con los sistemas heredados. Por ejemplo, un sistema de cuentas por cobrar podría necesitar modificaciones para registrar los pagos entrantes de USDC, o un proceso de pago de comercio electrónico podría necesitar una API para aceptar transacciones con stablecoins junto con las tarjetas de crédito. Estas integraciones pueden ser complejas y costosas, especialmente para empresas sin experiencia interna en criptomonedas.

Otro problema es la falta de estandarización e interoperabilidad. Existen muchos protocolos de stablecoins y blockchains, pero no hay un estándar universal con el que los sistemas heredados puedan interactuar fácilmente. Un proveedor de pagos lo describió como tener que "unir diferentes ecosistemas que realmente no se comunican entre sí" al conectar el fiat y las stablecoins. Si una empresa paga a sus proveedores en stablecoin pero gestiona el efectivo en un software bancario, hay una brecha. La compatibilidad multicadena también es un dolor de cabeza: USDC existe en Ethereum, Solana, Tron, etc., y diferentes socios pueden insistir en diferentes cadenas. La interoperabilidad entre cadenas sigue siendo un desafío, lo que significa que una empresa podría necesitar soportar múltiples wallets o usar servicios de puente para acomodar a todas las contrapartes. Esto añade complejidad operativa y riesgo.

Fundamentalmente, las empresas exigen que cualquier nuevo método de pago se integre con su flujo de trabajo más amplio. Necesitan APIs, SDKs y software que sincronicen las transacciones de stablecoins con sus bases de datos, libros de contabilidad e interfaces de usuario. Hoy en día, esas herramientas son incipientes. Una transacción de stablecoin en la blockchain podría requerir pasos manuales para conciliar (p. ej., verificar un explorador de bloques y actualizar el estado de una factura a mano). Hasta que la integración sea perfecta, muchas empresas se quedarán con lo que ya está conectado (bancos, Swift, procesadores de tarjetas). Oportunidad para desarrolladores: construir middleware y herramientas de integración que conecten los pagos on-chain con los sistemas empresariales off-chain (por ejemplo, software que registre automáticamente los pagos con stablecoins en QuickBooks). Como enfatizó un informe, los proveedores de servicios de pago deben crear APIs y herramientas que simplifiquen la incorporación de stablecoins en los flujos de trabajo empresariales. Resolver el dolor de la integración a través de la tecnología es clave para un uso más amplio de las stablecoins.

Liquidez, Conversión y Fricciones Financieras

Aunque las stablecoins están diseñadas para mantener un valor estable, las empresas todavía enfrentan fricciones financieras en torno a la liquidez y la conversión. Por un lado, convertir grandes sumas de stablecoins a moneda fiduciaria real (o viceversa) no siempre es trivial. La liquidez para grandes transacciones puede ser limitada, especialmente en ciertas stablecoins o en ciertos exchanges. Un CEO de una fintech señaló que al mover "dinero de nivel empresarial" (cientos de miles de dólares) a través de las fronteras mediante stablecoins, las empresas encuentran tres puntos de dolor principales: liquidez limitada para grandes transacciones, largos tiempos de liquidación e integraciones complejas. En otras palabras, si una corporación intentara pagar una factura de 5 millones de $ con stablecoins, podría tener dificultades para cambiar ese volumen de vuelta a fiat rápidamente sin mover los mercados o incurrir en deslizamiento (slippage), a menos que tengan socios de exchange de primer nivel. Las stablecoins en sí se liquidan on-chain en minutos, pero retirar un pago grande a una cuenta bancaria (off-ramping) todavía puede llevar tiempo, especialmente si hay socios bancarios locales involucrados (p. ej., esperar a que un exchange transfiera los fondos).

En muchos mercados emergentes, las rampas de entrada/salida de fiat están subdesarrolladas. Una empresa en Vietnam que recibe USDC podría necesitar encontrar un exchange de criptomonedas o un bróker OTC para convertir a Dong vietnamita, un proceso que puede ser informal, lento o costoso si los reguladores locales restringen el comercio de criptomonedas. Esta falta de infraestructura de conversión local es un cuello de botella para el uso de stablecoins en la última milla. Las empresas prefieren transacciones que lleguen directamente a su banco en moneda local; con las stablecoins, se necesita un paso de conversión adicional que a menudo recae en el destinatario. Las soluciones para desarrolladores que incorporen la conversión (para que los destinatarios puedan cambiar automáticamente la stablecoin a la moneda de su elección) abordarían esta necesidad. De hecho, están surgiendo plataformas que combinan la infraestructura fiduciaria tradicional con los rieles de las stablecoins para hacer la conversión fluida; por ejemplo, la reciente adquisición de Stripe de la plataforma de stablecoins Bridge tiene como objetivo conectar los pagos con stablecoins con los canales de pago estándar.

Otra fricción es elegir la stablecoin "correcta". El mercado ofrece una plétora —USDT, USDC, BUSD, DAI, TrueUSD y más— cada una con diferentes emisores y perfiles de riesgo. Esta abundancia "simplemente confunde a los usuarios potenciales, y va a alejar a algunos" negocios. Un ejecutivo de pagos señaló que muchos dueños de negocios se preguntan: "¿Por qué hay tantas stablecoins y cuál es más segura?". Determinar en qué stablecoin confiar (en términos de respaldo de reservas y estabilidad) no es trivial. Algunas empresas pueden sentirse cómodas solo con monedas totalmente reguladas (como USDC con atestaciones mensuales), mientras que otras podrían priorizar la que usan sus socios (a menudo USDT debido a la liquidez). El riesgo de contraparte y la confianza en el emisor es un punto de dolor; por ejemplo, el USDT de Tether tiene una vasta adopción pero un historial de reservas menos transparente, mientras que el USDC de Circle es transparente pero se vio afectado temporalmente por un susto de pérdida de paridad (depeg) cuando una parte de las reservas quedó atrapada durante una quiebra bancaria. Las empresas no quieren mantener un valor significativo en una stablecoin que podría perder repentinamente su paridad o ser congelada por un emisor. Este riesgo fue destacado en un análisis de Deloitte: la pérdida de paridad y la solvencia del emisor son riesgos clave que las empresas deben considerar con las stablecoins. Gestionar estos riesgos (quizás diversificando las stablecoins o teniendo conversión instantánea a fiat) es una tarea adicional para las empresas.

Finalmente, las implicaciones del cambio de divisas (FX) pueden ser un problema. La mayoría de las stablecoins están vinculadas al USD, lo cual es útil a nivel mundial, pero no es una panacea. Si los libros de una empresa europea están en EUR, aceptar stablecoins en USD introduce una exposición al FX (aunque leve en comparación con aceptar criptomonedas volátiles). Podrían preferir una stablecoin vinculada al EUR para las facturas, pero esas (p. ej., stablecoins de EUR) tienen mucha menos liquidez y aceptación. Del mismo modo, las empresas en países con monedas únicas a menudo no tienen una opción de stablecoin en su moneda local. Esto significa que usan stablecoins en USD como un valor intermedio, lo que ayuda a evitar la inflación local, pero eventualmente necesitan convertir para pagar los gastos locales. Hasta que los ecosistemas de stablecoins multidivisa maduren, los desarrolladores podrían agregar valor construyendo herramientas de conversión de FX fáciles (para que un pago en USDC pueda cambiarse rápidamente a, digamos, una stablecoin de EUR o NGN, o a fiat). En resumen, los cuellos de botella de liquidez y conversión —particularmente para grandes cantidades y monedas no USD— siguen siendo un punto de dolor. Cualquier servicio que mejore la convertibilidad (a través de mejores pools de liquidez, creación de mercado o integración con redes bancarias) aliviaría una fricción clave.

Experiencia de Usuario y Desafíos Operativos

Para muchas empresas, el lado operativo del uso de stablecoins es una nueva frontera llena de desafíos prácticos. A diferencia de la banca tradicional, usar stablecoins significa lidiar con wallets de blockchain, claves privadas y comisiones de transacción, elementos con los que la mayoría de los equipos financieros tienen poca experiencia. Los problemas de experiencia de usuario (UX) son una barrera notable: "Las comisiones de gas y las complejidades de la incorporación siguen siendo barreras" para una adopción más amplia de las stablecoins. Si una empresa intenta usar stablecoins en Ethereum, por ejemplo, debe gestionar ETH para el gas o usar una solución de capa 2, detalles que añaden fricción y confusión. Las altas comisiones de red en ocasiones pueden erosionar la ventaja de costos para pagos pequeños. Aunque existen blockchains más nuevas con comisiones más bajas, elegirlas y navegar por ellas puede ser abrumador para un usuario empresarial no experto en criptomonedas.

También está el desafío de la gestión de wallets y la seguridad. Mantener stablecoins requiere una cuenta de custodia segura o la autocustodia de las claves privadas. La autocustodia puede ser arriesgada sin el conocimiento adecuado: perder una clave significa perder los fondos, y las transacciones son irreversibles. Las empresas están acostumbradas a llamar a un banco para que les ayude si ocurre un error; en el mundo cripto, los errores pueden ser definitivos. Existen wallets multifirma y proveedores de custodia (como Fireblocks, BitGo, etc.) para añadir seguridad a las empresas, pero pueden ser costosos o estar orientados a instituciones más grandes. Muchas PYMES no encuentran una solución de wallet fácil de usar y asequible que proporcione controles corporativos (p. ej., acceso multiusuario con aprobaciones) y seguro sobre las tenencias. Esta brecha en la UX de wallets amigables para empresas hace que el manejo de stablecoins sea intimidante. Una aplicación de wallet simple y segura, diseñada para empresas (con permisos, límites de gasto y opciones de recuperación), sigue siendo una necesidad no satisfecha.

Otro problema operativo es el manejo de transacciones y la reversibilidad. En los pagos tradicionales, si se comete un error (cantidad o destinatario incorrectos), los bancos o las redes de tarjetas a menudo pueden revertir o reembolsar la transacción. Los pagos con stablecoins son finales una vez confirmados on-chain; no hay una resolución de disputas incorporada. Para las transacciones B2B entre partes de confianza, esto puede ser aceptable (pueden comunicarse y reembolsar manualmente si es necesario), pero para los pagos de clientes plantea un problema. Por ejemplo, un pequeño minorista que acepta stablecoins no tiene recurso si un cliente paga de menos o envía a la dirección incorrecta, excepto confiar en que el cliente lo arregle. La gestión de fraudes y errores se convierte así en responsabilidad de la empresa, mientras que hoy en día los procesadores de tarjetas se encargan de gran parte de la detección de fraudes y asumen el costo de los contracargos. Como señaló un comentarista, las stablecoins por sí solas no resuelven las "tareas a realizar" auxiliares en los pagos, como la gestión de fraudes, la coordinación de disputas y el cumplimiento normativo. Los comerciantes y las empresas necesitarían nuevas herramientas o servicios para cubrir estas funciones si se pasaran a los pagos directos con stablecoins. Esta falta de una red de seguridad es un punto de dolor que hace que algunas empresas duden en usar stablecoins más allá de situaciones controladas.

Finalmente, las barreras educativas y culturales caen dentro de los desafíos de UX. Muchos responsables de la toma de decisiones simplemente no entienden cómo funcionan las stablecoins, y esa falta de comprensión genera desconfianza. Si un gerente financiero no comprende las claves privadas o no está seguro de cómo explicar una transacción de stablecoin a los auditores, es probable que la evite. Del mismo modo, si las contrapartes (proveedores, clientes) no piden pagar o ser pagados en stablecoin, una empresa tiene pocos incentivos inmediatos para ofrecerlo. De hecho, un panel reciente de la industria observó que "en este momento, simplemente no hay demanda por parte de los beneficiarios para recibir fondos en stablecoins" para muchas pequeñas empresas y consumidores. Esto indica un escenario del huevo y la gallina: sin experiencias de usuario fáciles, la demanda general se mantiene baja, y sin demanda, las empresas no ven razón para impulsar las opciones de stablecoins. Superar los obstáculos de UX —a través de mejores interfaces, educación y quizás abstrayendo la "rareza" de las criptomonedas— es necesario para desbloquear una adopción más amplia.

Complicaciones de Contabilidad e Informes

El uso de stablecoins también se topa con complicaciones administrativas en la contabilidad, teneduría de libros e informes. Los sistemas financieros tradicionales esperan transacciones en monedas gubernamentales; insertar un token digital que se comporta como efectivo pero que oficialmente no lo es, crea dolores de cabeza en la conciliación. Un punto de dolor clave es la falta de herramientas y estándares contables para las stablecoins. Las empresas necesitan rastrear las transacciones de stablecoins, valorar las tenencias e informarlas correctamente en los estados financieros. Sin embargo, la orientación ha sido poco clara: dependiendo de las circunstancias, las stablecoins podrían tratarse como activos financieros o como intangibles según las normas contables. Si se tratan como un activo intangible (como ha sido el caso de Bitcoin bajo los U.S. GAAP históricamente), cualquier disminución en el valor por debajo del costo debe ser deteriorada en los libros, pero los aumentos de valor no se reconocen, un tratamiento desfavorable para algo que se supone que debe mantenerse en 1 $. Recientemente ha habido esfuerzos para permitir la contabilidad a valor razonable para los activos digitales, lo que ayudaría, pero las políticas internas de muchas empresas aún no se han adaptado. Hasta que quede meridianamente claro que una stablecoin de USD es tan buena como un dólar para fines contables, los equipos financieros estarán inquietos.

La generación de informes y el rastro de auditoría es otro problema. Las transacciones de stablecoins en la blockchain son transparentes en teoría, pero vincularlas a facturas o contratos específicos requiere un mantenimiento de registros cuidadoso. Los auditores pedirán ver pruebas de pago y propiedad, lo que puede implicar mostrar transacciones de la blockchain, pruebas de propiedad de la wallet y registros de conversión. La mayoría de las empresas carecen de la experiencia interna para preparar dicha documentación de auditoría. Herramientas como los exploradores de bloques son útiles pero no están integradas con los sistemas internos. Además, valorar las tenencias al final del período (incluso si son estables en 1 $, puede haber ligeras desviaciones del mercado o intereses ganados en algunos casos) puede ser confuso. También puede haber cuestiones de política de tesorería, por ejemplo, ¿puede una empresa contar el USDC como parte de sus reservas de efectivo para los ratios de liquidez? Es probable que muchas lo hagan, pero los auditores conservadores podrían no darle todo el crédito.

En el lado del software, los paquetes de contabilidad comunes (QuickBooks, Xero, Oracle Netsuite, etc.) no admiten de forma nativa las transacciones de criptomonedas. Las empresas terminan usando soluciones alternativas: asientos de diario manuales para registrar los movimientos de stablecoins, o software de contabilidad de criptomonedas de terceros (como Bitwave, Gilded o Cryptio) que puede sincronizar los datos de la blockchain con sus libros mayores. Estas son soluciones emergentes, pero la adopción aún es baja, y algunas se centran en empresas más grandes. Las pequeñas empresas a menudo se quedan haciendo la conciliación manual —p. ej., un contable copiando los ID de transacción en Excel— lo cual es propenso a errores e ineficiente. Esta falta de una fácil integración contable es una clara necesidad no satisfecha. Como ejemplo, una plataforma de contabilidad de criptomonedas anuncia cómo puede integrar los pagos con stablecoins en los sistemas ERP y gestionar la custodia y el seguimiento de wallets, subrayando que se está formando un mercado para tales herramientas.

En resumen, desde una perspectiva contable, las stablecoins actualmente introducen incertidumbre y trabajo extra. Las empresas anhelan claridad y automatización: quieren que las transacciones con stablecoins sean tan fáciles de contabilizar como las transacciones bancarias. Hasta que eso suceda, esto sigue siendo un punto de dolor. Las herramientas que concilien automáticamente los pagos con stablecoins con las facturas, mantengan rastros de auditoría (con URL a las pruebas de la blockchain) y generen informes que cumplan con las normas contables reducirían significativamente esta fricción. Asegurarse de que se maneje la declaración de impuestos (por ejemplo, emitiendo formularios 1099 para pagos con stablecoins si así lo exigen las nuevas reglas del IRS) es otra área en la que una herramienta podría ayudar. Los desarrolladores que puedan cerrar la brecha entre los registros de la blockchain y los registros contables ayudarán a eliminar un gran obstáculo para el uso corporativo de las stablecoins.

Segmentos de Mercado Desatendidos y Casos de Uso Bloqueados

A pesar de los desafíos anteriores, ciertos segmentos del mercado pueden beneficiarse enormemente de las stablecoins, y muchos ya están experimentando por necesidad. Estos segmentos a menudo enfrentan puntos de dolor agudos con los servicios financieros actuales, lo que significa que las stablecoins podrían cambiar las reglas del juego si se resuelven fricciones específicas. A continuación, destacamos algunos segmentos o casos de uso desatendidos, donde existen claras necesidades no satisfechas que las soluciones impulsadas por desarrolladores podrían abordar.

PYMES en Mercados Emergentes (Pagos Transfronterizos)

Las pequeñas y medianas empresas (PYMES) en mercados emergentes se encuentran entre las más perjudicadas por el statu quo en los pagos, y por lo tanto, son candidatas ideales para la adopción de stablecoins. Estas empresas a menudo realizan transacciones transfronterizas —pagando a proveedores, recibiendo pagos de clientes o remesas— y sufren de altas comisiones, procesamiento lento y un acceso deficiente a la banca. Por ejemplo, un pago de un pequeño fabricante en México a un proveedor en Vietnam podría pasar por más de 4 intermediarios (bancos locales, bancos corresponsales, corredores de divisas), tardando de 3 a 7 días y costando entre 14 y 150 porcada1000por cada 1000 enviados. Esto es lento y caro, perjudicando el flujo de caja y los márgenes de la PYME.

En regiones con una infraestructura bancaria débil o controles de capital (partes de América Latina, África, Sudeste Asiático), las PYMES a menudo tienen dificultades incluso para realizar pagos internacionales. Recurren a canales informales o a transmisores de dinero costosos. Las stablecoins ofrecen un salvavidas: un token vinculado al dólar que puede moverse a través de las fronteras en minutos, evitando las cadenas de bancos corresponsales. Como señala a16z, enviar 200 desdeEE.UU.aColombiaatraveˊsdeunastablecoinpuedecostarmenosde0.01desde EE. UU. a Colombia a través de una stablecoin puede costar menos de 0.01, mientras que los rieles tradicionales cuestan alrededor de 12 $. Esos ahorros cambian la vida de las PYMES que operan con márgenes ajustados. Además, las stablecoins pueden ser accesibles donde las cuentas bancarias en dólares no lo son, proporcionando un medio resistente a la inflación en países con monedas volátiles. Empresas en lugares como Argentina o Nigeria ya usan stablecoins de USD informalmente para almacenar valor y realizar transacciones, porque la devaluación de la moneda local es extrema.

Sin embargo, estas PYMES de mercados emergentes están en gran medida desatendidas por los servicios actuales de stablecoins. Enfrentan la fricción de convertir entre fiat y stablecoin, como se discutió, y a menudo carecen de plataformas de confianza para facilitar esto. Muchas simplemente mantienen las stablecoins en cuentas de exchange o wallets móviles, sin integración en sus sistemas de facturación. Se necesitan herramientas fáciles: por ejemplo, una plataforma de facturación multidivisa que permita a una PYME facturar a un cliente extranjero en su moneda local, pero recibir el pago en stablecoins (convertidas automáticamente desde, digamos, la tarjeta de crédito del cliente o una transferencia bancaria local). La PYME podría entonces cambiar rápidamente las stablecoins a fiat local o gastarlas. Dichas herramientas ocultarían la complejidad de las criptomonedas y presentarían las stablecoins como una opción de moneda más.

Geográficamente, regiones como América Latina, África Subsahariana, Oriente Medio y partes del Sudeste Asiático tienen un próspero uso informal de stablecoins pero una infraestructura formal mínima. Un informe sobre stablecoins e inclusión financiera señala que, si bien las stablecoins se utilizan en economías con alta inflación, la adopción se ve obstaculizada en áreas con baja penetración de internet o alfabetización digital. Eso sugiere la necesidad de aplicaciones móviles fáciles de usar y educación dirigidas a estos mercados. Si, por ejemplo, una empresa de importación/exportación nigeriana pudiera usar una aplicación simple para enviar USDC a un proveedor chino (y ese proveedor recibe RMB en su banco a través de una rampa de salida integrada), llenaría un vacío enorme. Hoy en día, algunas fintechs de criptomonedas (como Bitso en LATAM o wallets de cripto tipo MPesa en África) se están moviendo en esta dirección, pero hay un amplio espacio para más jugadores centrados en los casos de uso de las PYMES.

En resumen, las PYMES de mercados emergentes son un segmento desatendido donde las stablecoins resuelven problemas reales —inestabilidad monetaria y costosos pagos transfronterizos— pero la adopción está bloqueada por la falta de soporte local y herramientas fáciles. Los desarrolladores pueden aprovechar esto construyendo soluciones localizadas: pasarelas de pago con stablecoins que se conecten a bancos locales/dinero móvil, wallets amigables para PYMES con soporte en el idioma local, y plataformas para convertir automáticamente monedas exóticas a stablecoins y luego a monedas principales. Esto es precisamente lo que hizo una fintech, Orbital: comenzó ayudando a los comerciantes a repatriar ganancias de mercados emergentes usando stablecoins, reduciendo la liquidación de 5 días al mismo día. El éxito de tales modelos muestra que la demanda está ahí si se abordan los puntos de dolor.

Comercio Transfronterizo y Financiación de la Cadena de Suministro

El comercio global implica innumerables pagos B2B entre importadores, exportadores, empresas de transporte y proveedores. Estas son típicamente transacciones de alto valor y sensibles al tiempo. Las stablecoins son muy prometedoras en este dominio porque pueden eliminar los retrasos y las dependencias bancarias que plagan los pagos comerciales. Por ejemplo, un exportador que envía mercancías a menudo espera días o semanas para que se liquide una carta de crédito o una transferencia bancaria. Con las stablecoins, el pago podría liberarse tan pronto como se entreguen las mercancías (casi instantáneamente, incluso a través de zonas horarias). Esto mejora el flujo de caja para los proveedores y puede reducir la necesidad de financiación comercial.

Un caso de uso concreto: Una empresa de logística en Alemania utiliza stablecoins para cobrar pagos de minoristas en el Sudeste Asiático, los convierte inmediatamente a EUR y luego paga a sus contratistas en Europa del Este el mismo día. Este flujo de transacciones de tres continentes (Asia → Europa → Europa del Este) se puede lograr a través de stablecoins de manera mucho más eficiente que a través de los bancos. En el ejemplo de Orbital, el proceso incluyó la conversión automática de varias monedas a stablecoin y de vuelta a EUR, simplificando un flujo de trabajo de FX transfronterizo que antes era engorroso. Del mismo modo, las empresas pueden probar entrar en un nuevo mercado sin una integración bancaria inicial; por ejemplo, una empresa comercial que prueba en Brasil podría aceptar depósitos en stablecoins de clientes brasileños en lugar de integrarse con la red bancaria local PIX, ahorrando costos y tiempo para una prueba de mercado. Estos escenarios destacan a las stablecoins actuando como una capa de liquidación universal para el comercio, evitando el mosaico de sistemas de pago locales.

A pesar de los claros beneficios, la mayoría de las empresas tradicionales de importación/exportación no han adoptado las stablecoins todavía. Este es un nicho desatendido en gran parte debido al conservadurismo y la falta de soluciones a medida. Las grandes multinacionales tienen departamentos de tesorería que cubren divisas y usan bancos; los pequeños importadores/exportadores a menudo simplemente asumen las comisiones o usan corredores. Si hubiera plataformas fáciles de usar que integren las stablecoins en los procesos de financiación comercial (por ejemplo, vinculando los pagos en custodia (escrow) de stablecoins a documentos de envío o sensores de IoT para la entrega), podría ganar tracción. Un obstáculo es que las transacciones comerciales a menudo requieren contratos y marcos de confianza (las cartas de crédito aseguran que las mercancías y el pago se intercambien correctamente). Los contratos inteligentes en stablecoins podrían replicar parte de esto: una stablecoin podría ponerse en custodia y liberarse automáticamente tras la confirmación de la entrega. Sin embargo, construir tales sistemas de una manera fácil de usar es un desafío para los desarrolladores que pocos han abordado a escala.

Otro aspecto desatendido es el de los pagos de la cadena de suministro a países con controles de capital o sanciones. Las empresas que hacen negocios en mercados bajo sanciones o con una banca inestable (p. ej., ciertos países africanos o de Asia Central) luchan por mover dinero para el comercio legítimo. Las stablecoins pueden proporcionar un canal si se hace con cuidado bajo las concesiones regulatorias (p. ej., bienes humanitarios o comercio exento). Hay una oportunidad para facilitadores comerciales especializados que usan stablecoins para cerrar brechas cuando los bancos no pueden operar, todo mientras garantizan el cumplimiento.

En resumen, el comercio transfronterizo está maduro para las soluciones de stablecoins, pero necesita plataformas integradas que unan lo antiguo y lo nuevo. La asociación de Visa y Circle para usar USDC en la liquidación global muestra el interés institucional en esta dirección. Hasta ahora, la adopción de stablecoins centrada en el comercio se ha limitado a empresas expertas en criptomonedas y programas piloto. Los desarrolladores pueden apuntar a este caso de uso desatendido construyendo herramientas como servicios de custodia de stablecoins, integraciones entre software de logística y pagos en blockchain, e interfaces simplificadas para que los proveedores soliciten pagos en stablecoins (con conversión de un solo clic a su moneda local). El valor desbloqueado —una rotación más rápida del capital, comisiones más bajas (potencialmente hasta un 80% de reducción de costos en transacciones) y un comercio global más inclusivo— representa una oportunidad significativa.

Freelancers Globales, Contratistas y Nóminas

En la era del trabajo remoto y la economía gig, las empresas necesitan con frecuencia pagar a personas a través de las fronteras: freelancers, contratistas o incluso empleados a tiempo completo que trabajan en el extranjero. La nómina y la banca tradicionales a menudo fallan aquí: las comisiones de las transferencias internacionales, los retrasos y las conversiones de moneda merman los pagos. Los freelancers en países con una banca débil pueden esperar semanas para recibir un cheque o una transferencia de PayPal, y perder una parte en comisiones. Las stablecoins presentan una alternativa atractiva: una empresa puede pagar a un contratista en stablecoin de USD en minutos, que el contratista puede mantener como valor en USD o convertir a moneda local. Esto es especialmente valioso en países donde la moneda local se está depreciando; muchos trabajadores prefieren el USD estable al dinero local volátil.

Algunas empresas y plataformas con visión de futuro han comenzado a ofrecer opciones de pago en criptomonedas. Por ejemplo, ciertas plataformas de trabajo freelance permiten el pago en USDC o Bitcoin. Sin embargo, esto aún no es la norma, y muchas empresas más pequeñas carecen de una forma sencilla de gestionar la nómina a través de stablecoins. Es una necesidad desatendida porque la demanda existe —la evidencia anecdótica muestra un número creciente de freelancers que solicitan el pago en cripto para evitar las molestias bancarias— pero las soluciones están fragmentadas. Cada empresa podría improvisar su propio proceso (p. ej., enviando manualmente USDC desde una cuenta de un exchange de criptomonedas), lo cual no escala ni se integra con los sistemas de nómina.

Las fricciones clave que deben resolverse en este segmento incluyen: generar recibos de pago o facturas para pagos con stablecoins, manejar deducciones de impuestos o beneficios si es necesario, y rastrear los pagos para múltiples destinatarios fácilmente. Una empresa que paga a 50 contratistas en stablecoin podría querer un proceso por lotes en lugar de 50 transferencias manuales. También necesitan recopilar direcciones de wallet de forma segura (y asegurarse de que pertenecen a la persona correcta, vinculando la identidad a la dirección para evitar pagos erróneos). Además, el cumplimiento es crucial: las empresas deben informar estos pagos y posiblemente asegurarse de que el destinatario no se encuentre en una región sancionada.

Una oportunidad aquí es que los desarrolladores creen plataformas de nómina en criptomonedas. Imagine un servicio donde una empresa sube un CSV de nómina, y la plataforma se encarga de enviar stablecoins a la wallet de cada destinatario, les envía por correo electrónico una confirmación de pago o recibo, y registra los detalles de la transacción para la contabilidad. La plataforma podría incluso manejar la conversión de moneda si la empresa quiere pagar 1,000 $ pero el freelancer pide recibir en stablecoin de moneda local o fiat, actuando efectivamente como un procesador de nómina global impulsado por cripto. Algunas startups (p. ej., Request Finance, o Franklin como se menciona en los resultados de búsqueda) están comenzando a hacer esto, pero ningún jugador dominante ha surgido. La integración con software popular de RR. HH. o contabilidad también facilitaría la adopción (para que pagar una factura en stablecoin sea tan fácil como cualquier otro método de pago).

Otro grupo desatendido son las ONGs y organizaciones sin fines de lucro que pagan al personal o a los beneficiarios en entornos desafiantes. Las stablecoins se han utilizado, por ejemplo, para pagar a trabajadores humanitarios en regiones donde los sistemas bancarios están caídos, o para entregar ayuda directamente a los beneficiarios. El principio es similar: un dólar digital confiable que se puede recibir en un teléfono. Las herramientas desarrolladas para que las empresas gestionen los pagos con stablecoins a menudo también pueden aplicarse aquí, ampliando el impacto.

En resumen, la nómina global y los pagos a contratistas representan un caso de uso con beneficios claros pero una ejecución actualmente torpe. Al resolver los puntos de dolor (gestión de direcciones, pagos por lotes, cálculos de retenciones/impuestos, registros para el cumplimiento), los desarrolladores pueden desbloquear las stablecoins como una opción de nómina normal. Notablemente, estos pagos suelen ser de valor bajo a medio pero de alto volumen, lo que juega a favor de las fortalezas de las stablecoins (micro-comisiones, velocidad). Una plataforma gig que usa stablecoins informó que podían pagar a miles de freelancers a nivel mundial en minutos, reduciendo retrasos y comisiones, y accediendo a un grupo de talentos más amplio sin fricciones bancarias. Eso ilustra el potencial si la infraestructura adecuada está en su lugar.

Pequeños Minoristas e Industrias con Altas Comisiones

Las pequeñas empresas que atienden a clientes —como tiendas minoristas, cafeterías, restaurantes y vendedores de comercio electrónico— operan con márgenes ajustados y a menudo se sienten desproporcionadamente agobiadas por las comisiones de pago. Cada pasada de tarjeta se lleva ~2-3% más una tarifa fija, lo que para un café de 2 puedeserel15puede ser el 15% de la transacción. Estas comisiones gravan fuertemente las transacciones pequeñas, perjudicando a las tiendas familiares y a los negocios de servicio rápido. Las stablecoins ofrecen una visión de **pagos sin comisiones (o con comisiones muy bajas)** que podrían ahorrar a estas empresas una cantidad significativa de dinero. Si una cafetería pudiera aceptar un pago con stablecoin sin intermediarios, esos ~0.30 en una compra de 2 $ podrían ahorrarse como ganancia, aumentando potencialmente su resultado final de manera notable con el tiempo.

Sin embargo, este segmento está actualmente muy desatendido por las soluciones de stablecoins, porque cerrar la brecha entre las criptomonedas y los consumidores cotidianos es difícil. El cliente promedio no lleva una wallet de criptomonedas para comprar café, y el comerciante no sabría cómo manejar la volatilidad de los precios; solo quieren un valor de 2 $. Algunas cafeterías expertas en tecnología (en ciudades como San Francisco o Berlín) han experimentado con la aceptación de criptomonedas, pero es un nicho. La oportunidad aquí es crear soluciones de pago que oculten la parte cripto tanto para el comerciante como para el cliente, pero que aprovechen las stablecoins por debajo para ahorrar costos. Por ejemplo, un sistema de punto de venta (POS) que permita a un cliente escanear un código QR y pagar a través de una wallet de stablecoin (o incluso convertir desde su banco sobre la marcha), y el comerciante ve instantáneamente el pago confirmado en su moneda. Servicios como este están comenzando: p. ej., empresas como Stripe han anunciado soporte para pagos con stablecoins con comisiones más bajas (1.5% vs ~2.9% para tarjetas), lo que demuestra que incluso los grandes procesadores de pagos ven una demanda para reducir costos. El enfoque de Stripe probablemente convierte la stablecoin a fiat para el comerciante al instante, simplificando las cosas.

Aún así, fuera de los pilotos iniciales, pocos pequeños minoristas tienen los medios para aceptar stablecoins directamente. ¿Por qué? Más allá de la adopción por parte del consumidor, las razones incluyen la falta de aplicaciones fáciles de usar, el miedo a la reputación de las criptomonedas y la ausencia de integración con sus sistemas de ventas. Una cafetería utiliza un simple lector de tarjetas o terminal POS que se conecta con el inventario y la contabilidad; cualquier solución de cripto debe encajar perfectamente en esa configuración para ser viable. Eso significa que los desarrolladores deben centrarse en integraciones con el software minorista existente (POS, plugins de comercio electrónico). Es alentador que existan plugins de comercio electrónico para WooCommerce, Magento, etc., que permiten pagos con stablecoins. Un minorista en línea europeo utilizó dichos plugins para aceptar stablecoins de clientes latinoamericanos que carecían de opciones de pago tradicionales confiables, y descubrió que "impulsaba las ventas" con pagos más rápidos y baratos convertidos automáticamente a EUR. Este ejemplo muestra que, cuando se implementa bien, la aceptación de stablecoins puede expandir el mercado de una empresa (aquí, llegando a clientes que de otro modo no podrían comprar debido a problemas de pago locales).

Las industrias con altas comisiones como los juegos en línea, el contenido digital o las industrias para adultos (que se ven afectadas por altas comisiones de procesadores de pago o prohibiciones) también son segmentos desatendidos que podrían adoptar las stablecoins si se reduce la fricción. Estas industrias a menudo tienen bases de usuarios globales y enfrentan problemas de contracargos/fraude que las stablecoins podrían aliviar (no hay contracargos en cripto). Para ellas, las stablecoins podrían resolver tanto el costo como el acceso (p. ej., las plataformas de contenido para adultos han sido desbancarizadas, por lo que las criptomonedas son una alternativa). Los puntos de dolor reflejan los de los pequeños minoristas: necesidad de interfaces de pago discretas y fáciles de usar y mecanismos de confianza/reembolso, ya que las protecciones de las tarjetas no se aplicarían.

En general, aunque los pagos de consumidores/minoristas con stablecoins todavía son incipientes, el segmento representa una gran oportunidad una vez que se aborden las fricciones de nivel base (UX de la wallet, integración en el punto de venta, mecanismos de protección del comprador). Los primeros en moverse probablemente serán las PYMES con comunidades de clientes fuertes y altos costos de pago; como predice a16z, las cafeterías, restaurantes y tiendas con audiencias cautivas pueden liderar el camino en 2025, aprovechando las stablecoins para ahorrar en comisiones. Estos primeros adoptantes necesitarán apoyo en forma de aplicaciones confiables y quizás garantías (tal vez un tercero que asegure contra ciertos fraudes). Los desarrolladores pueden proporcionar eso construyendo el "Stripe para stablecoins" o el "terminal Square de cripto" como plugins fáciles. La recompensa es significativa: si los pagos con stablecoins reducen los costos incluso en un 1-2%, eso puede aumentar las ganancias de una pequeña empresa en porcentajes de dos dígitos, una propuesta de valor enorme.

Brechas en las Herramientas e Infraestructura Actuales

A partir de los puntos de dolor y los casos de uso anteriores, está claro que muchas brechas de infraestructura están impidiendo que las stablecoins alcancen su plena utilidad para las empresas. Estas brechas representan áreas donde se necesitan nuevas herramientas, servicios o plataformas. A continuación se presentan algunas de las deficiencias más evidentes en el ecosistema actual de stablecoins para uso empresarial, junto con el potencial que cada una tiene para mejorar:

  • Herramientas de Contabilidad e Informes Financieros: El software de contabilidad tradicional no maneja bien las criptomonedas, lo que obliga a soluciones torpes. Las empresas carecen de herramientas fáciles para registrar automáticamente las transacciones de stablecoins, rastrear valoraciones y producir informes conformes. Oportunidad: Desarrollar integraciones (o plugins) para sistemas de contabilidad populares (QuickBooks, Xero, SAP) que traten las transacciones de stablecoins como transacciones bancarias regulares. Esto incluye obtener transacciones de la blockchain, asignarlas a facturas o cuentas y actualizar los saldos en tiempo real. También debería manejar la clasificación (p. ej., marcar las stablecoins como equivalentes de efectivo o inventario según corresponda) de acuerdo con las últimas normas contables. Dado que los tenedores de stablecoins deben evaluar cómo clasificarlas en los estados financieros, el software podría guiar a los usuarios a través de eso y aplicar reglas consistentes. Además, proporcionar registros de auditoría que vinculen cada entrada del libro mayor a un hash de transacción de la blockchain simplificaría las auditorías. Algunas startups (Gilded, Bitwave) están trabajando en esto, pero gran parte del mercado (especialmente las empresas medianas) aún no ha sido explotado.

  • Soluciones de Cumplimiento Fiscal y Regulatorio: Al igual que con la contabilidad, el cumplimiento fiscal para las transacciones de stablecoins es en gran medida manual hoy en día. Herramientas como TaxBit y CoinTracker existen para las criptomonedas, pero las empresas podrían usar características especializadas para las stablecoins dado que el volumen de transacciones puede ser alto. Por ejemplo, calcular automáticamente cualquier ganancia/pérdida en las disposiciones de stablecoins (que podría ser casi cero la mayor parte del tiempo, pero aún así reportable), generar el Formulario 1099-DA del IRS o equivalente para los pagos realizados en activos digitales, y monitorear las transacciones contra listas de sanciones. Las herramientas KYC/AML son otra brecha: las empresas necesitan una forma de identificar fácilmente a las contrapartes en las transacciones con stablecoins. Si bien los grandes exchanges y algunas fintechs tienen APIs de cumplimiento, un desarrollador podría crear una API o software ligero que escanee las direcciones de wallet en busca de riesgos (usando datos públicos o asociándose con análisis de blockchain) y proporcione un panel simple para el oficial de cumplimiento de una empresa. Esto permitiría incluso a las empresas más pequeñas aceptar stablecoins con confianza, sabiendo que serán alertadas de cualquier señal de alerta (p. ej., si un pago entrante provino de una wallet vinculada a hackeos o listas negras). En esencia, hacer que el cumplimiento sea "plug-and-play" para las transacciones de stablecoins eliminaría una gran carga para las empresas que no quieren convertirse en expertas en cumplimiento de criptomonedas.

  • Plataformas de Facturación y Solicitud de Pago: A diferencia de los pagos con tarjeta de crédito o bancarios, no existe una forma ubicua y fácil de usar para solicitar un pago con stablecoin a un cliente. Muchas empresas recurren a enviar por correo electrónico una dirección de wallet o un código QR y pedir al pagador que confirme una vez enviado. Esto es propenso a errores y poco profesional. Una brecha clara es una plataforma de facturación para stablecoins: un servicio donde una empresa puede emitir una factura (denominada en fiat o stablecoin), y el pagador puede hacer clic en un enlace para pagar con stablecoins fácilmente. Tras el pago, la plataforma notificaría a ambas partes y actualizaría el estado de la factura. Idealmente, también manejaría cosas como el bloqueo del tipo de cambio: p. ej., si una factura está en EUR pero se paga en USDC, calcula la cantidad correcta de USDC en ese momento y quizás ofrece una breve ventana donde esa cotización es válida. Al manejar estos detalles, elimina la fricción y la incertidumbre (no más preocupaciones de "¿envié la cantidad correcta?"). Dichas herramientas también podrían integrar una pasarela de pago que acepte múltiples tipos de stablecoins, dando flexibilidad al pagador. Por ejemplo, un freelancer podría facturar 500 $ y el cliente podría pagar con USDC, USDT o DAI en varias redes, con la plataforma convirtiendo y entregando una stablecoin consolidada a la cuenta del freelancer. Este tipo de facturación multiopción aún no es común, pero es un fruto maduro dado que la tecnología existe en gran medida (se trata de empaquetarla de manera ordenada para los usuarios).

  • Soporte Multidivisa y de Conversión de FX: La infraestructura actual de stablecoins está muy centrada en el USD. Las empresas que operan internacionalmente a menudo manejan USD, EUR, GBP, etc. Hay una brecha en las herramientas que manejan operaciones con stablecoins multidivisa de manera fluida. Por ejemplo, una empresa podría querer mantener un saldo en stablecoins de USD pero también convertir fácilmente a stablecoin de Euro cuando sea necesario para pagar a socios europeos, todo dentro de una sola plataforma. Si bien los exchanges permiten el comercio, una herramienta dedicada para empresas podría presentar esto como una simple conversión de moneda dentro de su wallet, abstrayendo el aspecto comercial. Además, una plataforma que elija automáticamente el mejor riel de stablecoin para un corredor dado podría ser valiosa; p. ej., si se envía valor a un socio en Brasil, la herramienta podría convertir la stablecoin de USD a una stablecoin vinculada al BRL o a USDC e instruir la conversión a BRL a través de un exchange local. En este momento, las empresas tendrían que averiguar estos pasos manualmente. Oportunidad para desarrolladores: Crear servicios que agrupen la liquidez de múltiples fuentes y ofrezcan conversión de un solo clic entre fiat y varias stablecoins (y entre diferentes stablecoins). Esto se puede ofrecer a través de una API para que otras fintechs también lo integren. Esencialmente, convertirse en el "Wise (TransferWise) de las stablecoins", optimizando las rutas de FX pero usando rieles de cripto donde sea ventajoso. Algunas fintechs como MuralPay anuncian soporte para facturas y pagos multidivisa aprovechando las stablecoins, lo que indica la demanda. Pero se necesita más competencia y expansión a nuevos corredores de divisas para servir verdaderamente a las necesidades empresariales globales.

  • Wallets Empresariales y Soluciones de Custodia: Como se señaló anteriormente, la gestión de wallets de stablecoins no es trivial para las empresas. Hay una brecha en wallets empresariales seguras y fáciles de usar que permitan múltiples usuarios y permisos. Los custodios de criptomonedas empresariales actuales se centran en grandes instituciones y a menudo requieren altas comisiones. Las empresas más pequeñas podrían usar una wallet que, por ejemplo, permita al equipo financiero ver los saldos, al director financiero aprobar grandes pagos y a un empleado iniciar transacciones, todo con las salvaguardas adecuadas. Además, la integración de mecanismos de respaldo y recuperación (como la recuperación social o la fragmentación de claves de hardware) abordaría los temores de pérdida de acceso. Existen algunas soluciones como Gnosis Safe (wallet multifirma), pero sus interfaces todavía son bastante técnicas. Los desarrolladores podrían construir sobre estos protocolos para crear una aplicación pulida y adaptada a las empresas. Otro aspecto es el seguro de custodia: las empresas están acostumbradas a que los depósitos bancarios estén asegurados (FDIC, etc.). Los depósitos de criptomonedas no lo están, pero una solución de wallet que incluya una póliza de seguro o garantía para las stablecoins mantenidas (hasta un límite) podría atraer a las empresas que están indecisas debido al riesgo. Esto podría implicar asociaciones con aseguradoras, pero ofrecerlo a través de una interfaz simple llenaría una brecha de confianza.

  • Servicios de Gestión de Fraudes y Disputas: A medida que las stablecoins despeguen en los pagos, habrá una necesidad de servicios de terceros que proporcionen algunas de las protecciones de las redes de pago tradicionales. Por ejemplo, un servicio de custodia que pueda retener stablecoins para una transacción y liberarlas cuando tanto el comprador como el vendedor estén satisfechos (útil para mercados o comercio para mitigar el fraude). O un protocolo de resolución de disputas donde una parte neutral (o un algoritmo) pueda arbitrar si se justifica un reembolso. Estos son más complejos de construir (a menudo más proceso de negocio que tecnología), pero los desarrolladores podrían crear herramientas que se integren con los flujos de pago de stablecoins para agregar una capa opcional de protección. Esto ayudaría particularmente con los casos de uso orientados al consumidor, donde la falta de contracargos se ve actualmente como algo negativo. Si bien no es una brecha de "herramientas" en el sentido puramente tecnológico, es una brecha de infraestructura/servicio que, si se llena, haría que las empresas se sintieran más cómodas usando stablecoins a escala.

En esencia, la infraestructura actual de stablecoins se ha construido principalmente para comerciantes de criptomonedas y usuarios de finanzas descentralizadas, no para las operaciones comerciales cotidianas. Cerrar esa brecha requiere construir el mismo tipo de infraestructura circundante que tiene el dinero fiduciario: sistemas de contabilidad, controles de cumplimiento, facturación, nómina, gestión de tesorería y custodia fácil de usar. Cada brecha identificada anteriormente es una oportunidad para que los desarrolladores y emprendedores creen valor al llevar los sistemas basados en stablecoins a la par con la conveniencia de las finanzas tradicionales (mientras conservan las ventajas de velocidad, costo y apertura).

Oportunidades para Desarrolladores: Frutos Maduros con Alto ROI

Dados los puntos de dolor y las brechas discutidas, existen varias áreas prometedoras donde los desarrolladores pueden construir soluciones que agreguen valor rápidamente. Estos son "frutos maduros" en el sentido de que la necesidad es clara y apremiante, y las soluciones están al alcance utilizando la tecnología actual. Al apuntar a estas áreas, los desarrolladores no solo pueden resolver problemas reales (y potencialmente capturar una base de usuarios leales), sino también acelerar la adopción de stablecoins en el mundo empresarial. Aquí están algunas de las oportunidades más viables:

  • Pasarelas de Pago de Stablecoins Fluidas: Desarrollar una pasarela de pago fácil de integrar (como un módulo de Stripe o PayPal) que permita a las empresas aceptar pagos con stablecoins en su sitio web o aplicación. La pasarela debe manejar múltiples stablecoins y redes, abstrayendo esa complejidad del comerciante. Crucialmente, debe ofrecer conversión instantánea a fiat (o a la stablecoin deseada por el comerciante) para mitigar la volatilidad y simplificar la contabilidad. Al proporcionar una API y un panel estables, los desarrolladores pueden permitir que las empresas agreguen una opción de "Pagar con USDC/USDT" con una codificación mínima. Esto aborda directamente el dolor de la integración y abre a los comerciantes a nuevos clientes. Por ejemplo, una tienda en línea que utilice dicha pasarela podría comenzar a vender fácilmente a clientes en países donde las tarjetas de crédito no funcionan bien, porque ahora esos clientes pueden usar stablecoins. El ROI para los comerciantes es tangible: menores comisiones de transacción y posiblemente nuevas ventas. Como se citó anteriormente, un minorista de la UE llegó a compradores latinoamericanos agregando el pago con stablecoins, evitando métodos de pago locales costosos. Un desarrollador que proporcione esa capacidad de manera amplia podría acceder a un mercado global de empresas de comercio electrónico y SaaS que buscan opciones de pago más baratas y globales.

  • APIs de Rampa de Entrada/Salida de Stablecoin a Fiat: Una gran fricción es meter y sacar dinero de las stablecoins. Una oportunidad para los desarrolladores es construir servicios robustos de rampa de entrada/salida con una API. Esto permitiría a cualquier aplicación convertir programáticamente fiat a stablecoin o viceversa, a través de transferencias bancarias locales, tarjetas o wallets móviles. Esencialmente, actuando como un puente entre los sistemas bancarios y la blockchain. Una empresa podría integrar esta API para retirar automáticamente las stablecoins a su banco al final del día, o para financiar una wallet desde su banco cuando necesiten hacer un pago. Al manejar el cumplimiento (KYC/AML) en segundo plano, dicho servicio eliminaría una barrera enorme. Empresas como Circle y startups fintech están trabajando en esto (p. ej., las APIs de Circle para USDC, o jugadores regionales como Bitso para LATAM), pero persisten las brechas, especialmente en monedas y países desatendidos. Podría requerirse una red de socios locales, pero incluso centrarse en unos pocos corredores de alta necesidad (digamos, USDC a Naira nigeriana, o Euro a USDC) puede capturar un volumen significativo. Cada PYME que actualmente pasa por un proceso complicado en un exchange para convertir fondos preferiría una solución de un solo clic integrada en su software financiero.

  • Software de Facturación y Cobro en Criptomonedas: Como se describió, hay demanda de herramientas para crear y gestionar facturas que se pagarán en stablecoins. Un desarrollador podría crear una aplicación web (o un complemento para un software de facturación existente) que permita a las empresas emitir facturas profesionales donde el método de pago es una transacción de stablecoin. El software puede generar una dirección de depósito única o un enlace de pago para cada factura y monitorear la blockchain en busca del pago. Una vez detectado, puede marcar automáticamente la factura como pagada e incluso iniciar una conversión a fiat si la empresa lo desea. Al preservar el formato familiar de las facturas y simplemente cambiar el riel de pago, requiere poco aprendizaje nuevo por parte de las empresas y sus clientes. Esto aborda una necesidad muy específica pero común —cómo solicitar dinero en stablecoin— que actualmente se resuelve con comunicación manual ad-hoc. Ejemplo concreto: un freelancer envía una factura de 1,000 $ a un cliente; el cliente abre un enlace, ve una solicitud de 1,000 USDC (con el equivalente actual en su moneda preferida, si es necesario), y lo envía; ambos reciben un recibo. Este proceso podría ahorrar días de espera en comparación con las transferencias bancarias internacionales y reducir las comisiones drásticamente. Dado el auge del trabajo freelance y de consultoría a través de las fronteras, una herramienta de este tipo podría ver una rápida adopción en esas comunidades.

  • Sistemas de Nómina y Pagos Masivos con Stablecoins: Otra oportunidad accionable es construir una plataforma para pagos masivos en stablecoins, diseñada para nóminas o pagos a proveedores. Esto permitiría a una empresa cargar una lista (o integrarse a través de una API) de a quién pagar y cuánto, y la plataforma se encarga del resto: convertir monedas si es necesario y distribuir stablecoins a la wallet de cada destinatario. También puede encargarse de enviar correos electrónicos de notificación con recibos de pago o detalles del pago. Al integrar controles de cumplimiento (verificar que la wallet pertenece al destinatario previsto, cribado contra listas de sanciones, etc.), da a las empresas la confianza para usarlo a escala. Este tipo de solución apuntaría directamente al dolor de las empresas que tienen múltiples contratistas internacionales o empleados remotos, reemplazando un proceso que podría implicar múltiples transferencias bancarias o servicios de altas comisiones. Una plataforma llamada Transfi, por ejemplo, destaca que las soluciones de pago con stablecoins se utilizan cada vez más para complementar las transacciones transfronterizas Swift debido a los beneficios de velocidad y costo. Una solución de desarrollador aquí podría conectarse a los sistemas existentes de RR. HH. o cuentas por pagar, facilitando la adopción por parte del equipo financiero de una empresa. Hay potencial para un modelo de negocio de suscripción o de comisión por transacción, dado el valor ahorrado. Además, al manejar el cambio a fiat local para aquellos que lo deseen, puede atender a destinatarios que no son expertos en cripto: simplemente ven que les han pagado, con las stablecoins como el vehículo detrás de escena.

  • Herramientas Integradas de Cumplimiento y Monitoreo: A muchas empresas les preocupa el aspecto del cumplimiento al usar stablecoins: "¿Se nos permite hacer esto? ¿Qué pasa si los fondos están contaminados?" Los desarrolladores pueden aprovechar la oportunidad ofreciendo cumplimiento como servicio para transacciones de stablecoins. Esto podría ser una API o un software que verifique automáticamente cada transacción contra ciertas reglas: p. ej., puede marcar si un pago con stablecoin provino de una wallet asociada con fraude conocido o si excedió un cierto umbral que requiere KYC. También podría ayudar a generar informes necesarios para los reguladores (como un registro de todas las transacciones de activos digitales en el trimestre). Al empaquetar esto en una herramienta fácil, los desarrolladores quitan una tarea compleja de encima a la empresa. Piense en ello como el equivalente de Plaid o Alloy (APIs de cumplimiento fintech) para los pagos on-chain. A medida que la regulación se endurezca, tales herramientas se volverán no solo deseables sino necesarias, especialmente si los gobiernos exigen más informes sobre las transacciones de criptomonedas. Los primeros en moverse en proporcionar soluciones de cumplimiento se convertirán en los proveedores de referencia que otros servicios integrarán. Esto podría no ser un producto orientado al consumidor, sino más bien al desarrollador (una API), pero es crucial para permitir que otros productos (como las pasarelas de pago y los sistemas de nómina mencionados anteriormente) sean legalmente viables para las empresas. En resumen, resolver el dolor del cumplimiento a través de la tecnología desbloquea la capacidad de las empresas para usar stablecoins sin miedo.

  • Agregadores Multirred y de Stablecoins: Dada la fragmentación (tantas stablecoins y blockchains), un proyecto de desarrollador útil es un agregador que soporte todos los principales tipos de stablecoins y redes bajo una única interfaz o API. Este servicio permitiría a una empresa aceptar o enviar stablecoins sin preocuparse por el tipo específico. Por ejemplo, una empresa podría decir "solo me importa recibir valor en USD": el agregador podría proporcionar una dirección que acepte USDC, USDT, DAI, etc., en varias cadenas, detectar el pago entrante y consolidarlo para el usuario, convirtiendo si es necesario. Esto elimina el dolor de cabeza de "¿qué stablecoin soportamos?" y permite a las empresas aceptar de forma segura lo que sea que tenga el pagador, lo que aumenta la flexibilidad. Lo mismo para enviar: una empresa podría introducir un destino (quizás la preferencia del destinatario o dejar que el servicio encuentre la forma más barata de entregar X $ a ese país) y el agregador se encarga de elegir la stablecoin/cadena y la ejecución. Dicha herramienta reduce la confusión y el error (no más enviar el token incorrecto a la red incorrecta). Podría cobrar una pequeña comisión o un diferencial en la conversión por la conveniencia. Con la plétora de stablecoins que probablemente persistirá (como se señaló, tener muchas opciones confunde a los usuarios), un agregador se vuelve bastante valioso. Esencialmente, ofrece interoperabilidad como servicio, algo que el artículo de Orbital citó como un área donde los desarrollos tempranos ofrecen esperanza. Al ser agnóstico a la cadena, esto también prepara a las empresas para el futuro contra los cambios en el mercado de stablecoins (si una moneda cae en desgracia, el agregador simplemente usa otra por debajo).

  • Servicios de Financiación y Crédito con Stablecoins: Esto está un poco más alejado de solo los pagos, pero vale la pena señalarlo: los desarrolladores podrían construir servicios en torno al capital de trabajo y el crédito utilizando stablecoins. Por ejemplo, permitir que las empresas obtengan rendimiento de los saldos de stablecoins inactivos (a través de préstamos DeFi seguros o cuentas que generan intereses) para mejorar los ingresos de tesorería. O proporcionar crédito a corto plazo en stablecoins para proveedores que necesitan liquidez (algo así como el factoring de facturas pero a través de cripto). Estas son oportunidades más complejas pero podrían ser muy valiosas en mercados desatendidos donde obtener un préstamo bancario es difícil pero un protocolo DeFi podría proporcionar un adelanto contra las cuentas por cobrar en stablecoins. Tales innovaciones pueden impulsar la adopción porque ofrecen algo más allá de lo que hacen las finanzas tradicionales. Si un pequeño exportador sabe que al usar pagos con stablecoins también obtiene acceso a una línea de crédito rápida u opciones de rendimiento, tiene un incentivo adicional para cambiar. Los desarrolladores en el espacio cripto están explorando "DeFi para empresas" y esto podría integrarse con las plataformas de pago de stablecoins.

Para ilustrar el impacto potencial de capturar estas oportunidades: considere las comisiones de transacción y los ahorros de costos. Si la solución de un desarrollador permite incluso una reducción del 1% en los costos de pago, eso puede traducirse en enormes ahorros a escala; p. ej., Walmart podría ahorrar del orden de 10 mil millones de $ en comisiones de tarjetas por año, aumentando teóricamente la rentabilidad en más del 60% si dichos costos se eliminaran. Si bien ese es un ejemplo extremo, muestra la magnitud del valor en reemplazar los pagos heredados. Siendo realistas, las soluciones de stablecoins podrían reducir los costos en un 20-50% en varios escenarios, lo que sigue siendo significativo. Los desarrolladores pueden capturar una porción de ese valor (p. ej., cobrar el 0.1% de las transacciones) y aún así hacer que los clientes estén mejor.

Además, el momento estratégico es bueno. Grandes jugadores como Visa, Mastercard, Stripe y PayPal están haciendo movimientos hacia las stablecoins (Visa liquidando en USDC, Stripe con pagos en stablecoins, PayPal lanzando su propia stablecoin de USD, etc.). Esto valida el mercado y aumentará la confianza. Pero esos grandes jugadores probablemente servirán primero a otras grandes empresas; las empresas más pequeñas y los segmentos de nicho podrían ser pasados por alto inicialmente, que es donde los desarrolladores independientes pueden brillar al centrarse en esos nichos y proporcionar soluciones a medida. Una vez construidas, estas herramientas podrían convertirse en objetivos de adquisición (como Stripe adquirió una startup de stablecoins por 1 mil millones de $), lo que indica un fuerte potencial de ROI para productos exitosos.

En resumen, al apuntar a las brechas de integración, cumplimiento y usabilidad, los desarrolladores pueden crear los picos y palas necesarios para que las empresas usen stablecoins cómodamente. Estas oportunidades no solo prometen un retorno financiero para los constructores, sino que también avanzan el ecosistema en general, haciendo que las stablecoins sean más prácticas y confiables en el comercio diario.

Conclusión

Las stablecoins han demostrado una inmensa promesa al ofrecer transacciones globales rápidas y de bajo costo, una mejora convincente sobre los rieles de pago tradicionales sumidos en comisiones y retrasos. Para las empresas, el atractivo es sencillo: pagos transfronterizos casi instantáneos, costos de transacción reducidos (a menudo en un 50-80%) y acceso a una economía del dólar digital que opera 24/7. Estos beneficios abordan directamente puntos de dolor de larga data en áreas como los pagos B2B, el comercio internacional y las transacciones de pequeñas empresas. Sin embargo, como hemos explorado, la adopción generalizada por parte de las empresas se ha visto frenada por desafíos igualmente reales. La incertidumbre regulatoria, los obstáculos de integración, los problemas de liquidez y FX, las brechas en la experiencia del usuario y la falta de herramientas listas para la empresa forman un muro entre la promesa de las stablecoins y la realidad sobre el terreno.

Crucialmente, dentro de estos desafíos se encuentran oportunidades claras. Muchas de las barreras son fricciones solucionables, del tipo que las herramientas y servicios innovadores pueden superar. Los segmentos de mercado desatendidos, como las PYMES de mercados emergentes, los freelancers globales y los pequeños minoristas, están ávidos de mejores soluciones de pago, pero necesitan que se les construyan los puentes para cruzar al mundo de las stablecoins. Los desarrolladores y emprendedores que se centren en estos puntos de dolor pueden convertirse en los constructores de puentes. Ya sea una API que conecta las stablecoins con el software financiero existente, o una aplicación que simplifica el KYC para las transacciones de criptomonedas, o una plataforma que permite a una cafetería aceptar dólares digitales por lattes, cada solución va eliminando las barreras. Con el tiempo, estas mejoras incrementales pueden reducir el umbral lo suficiente como para que incluso las empresas no expertas en criptomonedas den el paso y prueben las stablecoins.

También vale la pena señalar que las stablecoins no existen en el vacío; son parte de una pila financiera más amplia. Para desbloquear verdaderamente su valor, los servicios circundantes (cumplimiento, seguridad, resolución de disputas, etc.) deben evolucionar en paralelo. Como señaló un analista, los ahorros de costos de las stablecoins provienen de eliminar intermediarios, pero las empresas todavía necesitan a alguien o algo que realice los "trabajos" que esos intermediarios hacían: prevención de fraudes, coordinación, cumplimiento normativo. Aquí es donde pueden intervenir nuevos proveedores de servicios: por cada función que un banco o una red de tarjetas solía manejar, hay una oportunidad para que una solución nativa de cripto la maneje de manera más eficiente o de una forma más impulsada por el usuario. La maduración del ecosistema de stablecoins verá el surgimiento de estos servicios complementarios, muchos probablemente construidos por startups ágiles.

Desde una perspectiva estratégica, centrarse en los frutos maduros no solo significa victorias rápidas, sino que significa sentar las bases para cambios más grandes. Resolver problemas prácticos para mercados de nicho puede ser la cuña que lleve el uso de stablecoins a la corriente principal. Por ejemplo, un sistema robusto de facturación con stablecoins para freelancers podría expandirse más tarde a la nómina de las PYMES, y luego a los pagos a proveedores de empresas. Cada paso genera confianza y un historial. Al enfatizar las mejoras accionables y el ROI, los desarrolladores pueden convencer a las empresas de dar ese primer paso. Las historias de éxito tempranas (como empresas que redujeron los costos de remesas en un 80%, o un minorista que ganó nuevos clientes a través de pagos con stablecoins) a su vez inspirarán a otros a explorar estas herramientas.

En conclusión, el camino hacia la adopción de stablecoins en los negocios no está exento de obstáculos, pero ninguno de los obstáculos es insuperable. Los puntos de dolor están bien definidos; muchos ya están siendo abordados en partes por empresas y proyectos con visión de futuro. Lo que se necesita ahora es un esfuerzo concertado para abordar estas brechas con soluciones prácticas y fáciles de usar. Al apuntar a segmentos desatendidos y sus necesidades específicas, y al desarrollar el "pegamento" que conecta las stablecoins con las operaciones comerciales cotidianas, los desarrolladores pueden desbloquear un valor significativo, para ellos mismos, para las empresas y para la economía en general. El año 2025 y más allá está preparado para ser un punto de inflexión donde las stablecoins se muevan de la periferia de las finanzas a sus flujos de trabajo centrales. Aquellos que construyan los picos y palas para esta fiebre del oro digital pueden cosechar recompensas sustanciales, al tiempo que avanzan en la innovación financiera. En otras palabras, resolver estos puntos de dolor no son solo buenas acciones, es un buen negocio.

Fuentes:

  • PYMNTS – Stablecoins Keep Racking Up Milestones, but Can They Crack B2B Payments?
  • PYMNTS – Interview with Stable Sea CEO on cross-border payment pain points
  • Orbital (Alexandra Lartey) – Stablecoins: Solving Real-World Challenges in B2B Payments (use cases and adoption hurdles)
  • a16z (Sam Broner) – How stablecoins will eat payments (stablecoin benefits for SMEs, payment cost analysis)
  • Banking Dive – Stablecoins face obstacles to widespread adoption (Money20/20 panel insights)
  • Fintech Takes (Alex Johnson) – The Trouble With Stablecoins (critical analysis of stablecoin payments vs. card networks)
  • Deloitte – 2025 – The year of payment stablecoins (risk, accounting, and tax considerations)
  • Transfi – Efficient Stablecoin Payout Solutions: A Comprehensive Guide (stablecoin payout mechanics and benefits)
  • Orbital – example of cost savings via stablecoins in B2B FX processes and e-commerce plugins boosting sales
  • a16z – stablecoin vs traditional remittance cost comparison and Stripe stablecoin fee initiative .