Direkt zum Hauptinhalt

201 Beiträge getaggt mit „Blockchain“

Allgemeine Blockchain-Technologie und Innovation

Alle Tags anzeigen

Navigieren durch die Landschaft der Datenschutztechnologien: FHE, ZK und TEE in der Blockchain

· 10 Min. Lesezeit
Dora Noda
Software Engineer

Als Zama im Juni 2025 das erste "Fully Homomorphic Encryption"-Unicorn wurde – mit einer Bewertung von über 1 Milliarde $ – signalisierte dies etwas Größeres als nur den Erfolg eines einzelnen Unternehmens. Die Blockchain-Industrie hatte endlich eine fundamentale Wahrheit akzeptiert: Privatsphäre ist keine Option, sondern Infrastruktur.

Doch hier ist die unangenehme Realität, mit der Entwickler konfrontiert sind: Es gibt keine einzige "beste" Datenschutztechnologie. Fully Homomorphic Encryption (FHE), Zero-Knowledge Proofs (ZK) und Trusted Execution Environments (TEE) lösen jeweils unterschiedliche Probleme mit unterschiedlichen Kompromissen. Eine falsche Wahl beeinträchtigt nicht nur die Leistung – sie kann das, was Sie aufbauen wollen, fundamental gefährden.

Dieser Leitfaden schlüsselt auf, wann welche Technologie eingesetzt werden sollte, welche Kompromisse Sie tatsächlich eingehen und warum die Zukunft wahrscheinlich darin besteht, dass alle drei zusammenarbeiten.

Die Technologielandschaft der Privatsphäre im Jahr 2026

Der Markt für Blockchain-Datenschutz hat sich von Nischenexperimenten zu einer ernsthaften Infrastruktur entwickelt. ZK-basierte Rollups sichern mittlerweile über 28 Milliarden anTotalValueLocked.AlleinderMarktfu¨rZeroKnowledgeKYCsollPrognosenzufolgevon83,6Millionenan Total Value Locked. Allein der Markt für Zero-Knowledge KYC soll Prognosen zufolge von 83,6 Millionen im Jahr 2025 auf 903,5 Millionen $ bis 2032 wachsen – eine durchschnittliche jährliche Wachstumsrate von 40,5 %.

Aber die Marktgröße allein hilft Ihnen nicht bei der Technologiewahl. Zu verstehen, was jeder Ansatz tatsächlich bewirkt, ist der Ausgangspunkt.

Zero-Knowledge Proofs: Beweisen ohne Preisgabe

ZK-Proofs ermöglichen es einer Partei, die Richtigkeit einer Aussage zu beweisen, ohne Informationen über den Inhalt selbst preiszugeben. Sie können beweisen, dass Sie über 18 Jahre alt sind, ohne Ihr Geburtsdatum zu nennen, oder beweisen, dass eine Transaktion gültig ist, ohne den Betrag offenzulegen.

So funktioniert es: Der Prover (Beweiser) erstellt einen kryptografischen Beweis dafür, dass eine Berechnung korrekt durchgeführt wurde. Der Verifier (Prüfer) kann diesen Beweis schnell überprüfen, ohne die Berechnung erneut auszuführen oder die zugrunde liegenden Daten zu sehen.

Der Haken: ZK ist hervorragend darin, Dinge über Daten zu beweisen, die Sie bereits besitzen. Schwierigkeiten bereitet es bei einem geteilten Status (shared state). Sie können beweisen, dass Ihr Guthaben für eine Transaktion ausreicht, aber Sie können ohne zusätzliche Infrastruktur nicht einfach Fragen stellen wie "Wie viele Betrugsfälle gab es netzwerkweit?" oder "Wer hat diese Auktion mit verdeckten Geboten gewonnen?".

Führende Projekte: Aztec ermöglicht hybride öffentliche/private Smart Contracts, bei denen Benutzer wählen können, ob Transaktionen sichtbar sind. zkSync konzentriert sich primär auf Skalierbarkeit mit unternehmensorientierten "Prividiums" für autorisierten Datenschutz. Railgun und Nocturne bieten geschützte Transaktionspools.

Fully Homomorphic Encryption: Rechnen auf verschlüsselten Daten

FHE wird oft als der "Heilige Gral" der Verschlüsselung bezeichnet, da sie Berechnungen auf verschlüsselten Daten ermöglicht, ohne diese jemals entschlüsseln zu müssen. Die Daten bleiben während der Verarbeitung verschlüsselt, und die Ergebnisse bleiben verschlüsselt – nur die autorisierte Partei kann die Ausgabe entschlüsseln.

So funktioniert es: Mathematische Operationen werden direkt auf Chiffretexten ausgeführt. Additionen und Multiplikationen auf verschlüsselten Werten ergeben verschlüsselte Resultate, die nach der Entschlüsselung genau dem entsprechen, was man bei der Berechnung mit Klartext erhalten würde.

Der Haken: Der Rechenaufwand ist massiv. Selbst mit den jüngsten Optimierungen erreichen FHE-basierte Smart Contracts im Inco-Netzwerk je nach Hardware nur 10–30 TPS – Größenordnungen langsamer als die Ausführung im Klartext.

Führende Projekte: Zama bietet die grundlegende Infrastruktur mit FHEVM (ihrer voll homomorphen EVM). Fhenix entwickelt Anwendungslösungen auf Basis der Zama-Technologie und hat den CoFHE-Coprozessor auf Arbitrum bereitgestellt, mit Entschlüsselungsgeschwindigkeiten, die bis zu 50-mal schneller sind als bei konkurrierenden Ansätzen.

Trusted Execution Environments: Hardwarebasierte Isolierung

TEEs schaffen sichere Enklaven innerhalb von Prozessoren, in denen Berechnungen isoliert stattfinden. Daten innerhalb der Enklave bleiben geschützt, selbst wenn das übergeordnete System kompromittiert wird. Im Gegensatz zu kryptografischen Ansätzen verlassen sich TEEs auf Hardware statt auf mathematische Komplexität.

So funktioniert es: Spezialisierte Hardware (Intel SGX, AMD SEV) erstellt isolierte Speicherbereiche. Code und Daten innerhalb der Enklave sind verschlüsselt und für das Betriebssystem, den Hypervisor oder andere Prozesse unzugänglich – selbst mit Root-Zugriff.

Der Haken: Man vertraut den Hardwareherstellern. Jede einzelne kompromittierte Enklave kann Klartext preisgeben, unabhängig davon, wie viele Knoten teilnehmen. Im Jahr 2022 zwang eine kritische SGX-Schwachstelle zu koordinierten Schlüssel-Updates im gesamten Secret Network, was die betriebliche Komplexität hardwareabhängiger Sicherheit verdeutlichte.

Führende Projekte: Secret Network leistete Pionierarbeit bei privaten Smart Contracts mit Intel SGX. Oasis Networks Sapphire ist die erste vertrauliche EVM im Produktivbetrieb und verarbeitet bis zu 10.000 TPS. Phala Network betreibt über 1.000 TEE-Knoten für vertrauliche KI-Workloads.

Die Tradeoff-Matrix: Leistung, Sicherheit und Vertrauen

Das Verständnis der grundlegenden Kompromisse hilft dabei, die Technologie an den jeweiligen Anwendungsfall anzupassen.

Leistung

TechnologieDurchsatzLatenzKosten
TEENahezu nativ (10.000+ TPS)NiedrigNiedrige Betriebskosten
ZKModerat (variiert je nach Implementierung)Höher (Beweiserstellung)Mittel
FHENiedrig (aktuell 10–30 TPS)HochSehr hohe Betriebskosten

TEEs gewinnen bei der reinen Leistung, da sie im Wesentlichen nativen Code im geschützten Speicher ausführen. ZK führt zu einem Overhead bei der Beweiserstellung, aber die Verifizierung ist schnell. FHE erfordert derzeit intensive Berechnungen, die den praktischen Durchsatz einschränken.

Sicherheitsmodell

TechnologieVertrauensannahmePost-QuantumFehlermodus
TEEHardwareherstellerNicht resistentKompromittierung einer einzelnen Enklave legt alle Daten offen
ZKKryptographisch (oft Trusted Setup)Variiert nach SchemaFehler im Beweissystem können unsichtbar bleiben
FHEKryptographisch (gitterbasiert)ResistentRechenintensiv auszunutzen

TEEs erfordern Vertrauen in Intel, AMD oder den jeweiligen Hardwarehersteller – sowie das Vertrauen darauf, dass keine Firmware-Schwachstellen existieren. ZK-Systeme erfordern oft „Trusted Setup“-Zeremonien, obwohl neuere Schemata dies eliminieren. Die gitterbasierte Kryptographie von FHE gilt als quantenresistent, was sie zur stärksten langfristigen Sicherheitswette macht.

Programmierbarkeit

TechnologieKomponierbarkeitZustands-PrivatsphäreFlexibilität
TEEHochVollständigBegrenzt durch Hardware-Verfügbarkeit
ZKBegrenztLokal (clientseitig)Hoch für die Verifizierung
FHEVollständigGlobalBegrenzt durch Performance

ZK zeichnet sich durch lokale Privatsphäre aus – den Schutz Ihrer Eingaben –, hat aber Schwierigkeiten mit dem gemeinsamen Zustand über Benutzer hinweg. FHE behält die volle Komponierbarkeit bei, da auf verschlüsselten Zuständen von jedem gerechnet werden kann, ohne den Inhalt preiszugeben. TEEs bieten eine hohe Programmierbarkeit, sind jedoch auf Umgebungen mit kompatibler Hardware beschränkt.

Die Wahl der richtigen Technologie: Anwendungsfallanalyse

Unterschiedliche Anwendungen erfordern unterschiedliche Kompromisse. Hier erfahren Sie, wie führende Projekte diese Entscheidungen treffen.

DeFi: MEV-Schutz und privater Handel

Herausforderung: Front-Running und Sandwich-Angriffe entziehen DeFi-Nutzern Milliarden, indem sie sichtbare Mempools ausnutzen.

FHE-Lösung: Die vertrauliche Blockchain von Zama ermöglicht Transaktionen, bei denen die Parameter bis zur Blockaufnahme verschlüsselt bleiben. Front-Running wird mathematisch unmöglich – es gibt keine sichtbaren Daten, die ausgenutzt werden könnten. Der Mainnet-Launch im Dezember 2025 beinhaltete den ersten vertraulichen Stablecoin-Transfer mittels cUSDT.

TEE-Lösung: Sapphire vom Oasis Network ermöglicht vertrauliche Smart Contracts für Dark Pools und privates Order-Matching. Die geringere Latenz macht es für Hochfrequenzhandel-Szenarien geeignet, in denen der Rechenaufwand von FHE zu hoch ist.

Wann zu wählen: FHE für Anwendungen, die die stärksten kryptographischen Garantien und globale Zustands-Privatsphäre erfordern. TEE, wenn die Performance-Anforderungen das übersteigen, was FHE liefern kann, und Hardware-Vertrauen akzeptabel ist.

Identität und Nachweise: Datenschutzfreundliches KYC

Herausforderung: Nachweis von Identitätsmerkmalen (Alter, Staatsbürgerschaft, Akkreditierung), ohne Dokumente offenzulegen.

ZK-Lösung: Zero-Knowledge-Nachweise ermöglichen es Nutzern, „KYC bestanden“ zu beweisen, ohne die zugrunde liegenden Dokumente preiszugeben. Dies erfüllt Compliance-Anforderungen und schützt gleichzeitig die Privatsphäre der Nutzer – ein entscheidendes Gleichgewicht angesichts des zunehmenden regulatorischen Drucks.

Warum ZK hier gewinnt: Bei der Identitätsverifizierung geht es grundlegend darum, Aussagen über persönliche Daten zu beweisen. ZK ist dafür prädestiniert: kompakte Beweise, die verifizieren, ohne etwas preiszugeben. Die Verifizierung ist schnell genug für die Echtzeitnutzung.

Vertrauliche KI und sensible Berechnungen

Herausforderung: Verarbeitung sensibler Daten (Gesundheitswesen, Finanzmodelle) ohne Offenlegung gegenüber den Betreibern.

TEE-Lösung: Die TEE-basierte Cloud von Phala Network verarbeitet LLM-Anfragen ohne Plattformzugriff auf die Eingaben. Mit GPU-TEE-Unterstützung (NVIDIA H100 / H200) laufen vertrauliche KI-Workloads mit praktikabler Geschwindigkeit.

FHE-Potenzial: Mit verbesserter Performance ermöglicht FHE Berechnungen, bei denen selbst der Hardware-Betreiber nicht auf Daten zugreifen kann – wodurch die Vertrauensannahme vollständig entfällt. Aktuelle Einschränkungen beschränken dies auf einfachere Berechnungen.

Hybrider Ansatz: Erste Datenverarbeitung in TEEs für Geschwindigkeit, FHE für die sensibelsten Operationen und Erstellung von ZK-Proofs zur Verifizierung der Ergebnisse.

Die Realität der Schwachstellen

Jede Technologie ist in der Produktion bereits gescheitert – das Verständnis der Fehlermodi ist essenziell.

TEE-Fehler

Im Jahr 2022 betrafen kritische SGX-Schwachstellen mehrere Blockchain-Projekte. Secret Network, Phala, Crust und IntegriTEE erforderten koordinierte Patches. Oasis überlebte, da seine Kernsysteme auf dem älteren SGX v1 laufen (nicht betroffen) und für die Sicherheit der Gelder nicht ausschließlich auf die Geheimhaltung der Enklave angewiesen sind.

Lektion: Die TEE-Sicherheit hängt von Hardware ab, die Sie nicht kontrollieren. Defense-in-Depth (Schlüsselrotation, Schwellenwert-Kryptographie, minimale Vertrauensannahmen) ist zwingend erforderlich.

ZK-Fehler

Am 16. April 2025 patchte Solana eine Zero-Day-Schwachstelle in seiner Funktion für vertrauliche Transfers (Confidential Transfers). Der Fehler hätte eine unbegrenzte Token-Erstellung ermöglichen können. Der gefährliche Aspekt von ZK-Fehlern: Wenn Beweise fehlschlagen, geschieht dies unsichtbar. Man kann nicht sehen, was nicht da sein sollte.

Lektion: ZK-Systeme erfordern umfassende formale Verifizierung und Audits. Die Komplexität von Beweissystemen schafft eine Angriffsfläche, die schwer zu erfassen ist.

FHE-Überlegungen

FHE hat noch keine größeren Produktionsausfälle erlebt – primär, weil es sich noch in einer frühen Phase der Implementierung befindet. Das Risikoprofil unterscheidet sich: FHE ist rechenintensiv anzugreifen, aber Implementierungsfehler in komplexen kryptographischen Bibliotheken könnten subtile Schwachstellen ermöglichen.

Lektion: Neuere Technologie bedeutet weniger Praxistests. Die kryptographischen Garantien sind stark, aber die Implementierungsebene bedarf ständiger Überprüfung.

Hybride Architekturen: Die Zukunft ist kein Entweder-Oder

Die anspruchsvollsten Datenschutzsysteme kombinieren mehrere Technologien und nutzen jede dort, wo sie ihre Stärken hat.

ZK + FHE Integration

Benutzerzustände (Kontostände, Präferenzen) werden mit FHE-Verschlüsselung gespeichert. ZK-Proofs verifizieren gültige Zustandsübergänge, ohne verschlüsselte Werte offenzulegen. Dies ermöglicht eine private Ausführung innerhalb skalierbarer L2-Umgebungen – eine Kombination aus der globalen Zustands-Privatsphäre von FHE und der effizienten Verifizierung von ZK.

TEE + ZK Kombination

TEEs verarbeiten sensible Berechnungen mit nahezu nativer Geschwindigkeit. ZK-Proofs verifizieren, dass die TEE-Ausgaben korrekt sind, wodurch die Vertrauensannahme gegenüber einem einzelnen Betreiber entfällt. Falls die TEE kompromittiert wird, würden ungültige Ausgaben die ZK-Verifizierung nicht bestehen.

Wann man was verwendet

Ein praktischer Entscheidungsrahmen:

Wählen Sie TEE, wenn:

  • Die Performance kritisch ist (Hochfrequenzhandel, Echtzeitanwendungen)
  • Hardware-Vertrauen für Ihr Bedrohungsmodell akzeptabel ist
  • Sie große Datenmengen schnell verarbeiten müssen

Wählen Sie ZK, wenn:

  • Sie Aussagen über vom Client gehaltene Daten beweisen
  • Die Verifizierung schnell und kostengünstig sein muss
  • Sie keine globale Zustands-Privatsphäre benötigen

Wählen Sie FHE, wenn:

  • Der globale Zustand verschlüsselt bleiben muss
  • Post-Quanten-Sicherheit erforderlich ist
  • Die Rechenkomplexität für Ihren Anwendungsfall akzeptabel ist

Wählen Sie Hybrid, wenn:

  • Verschiedene Komponenten unterschiedliche Sicherheitsanforderungen haben
  • Sie Performance mit Sicherheitsgarantien abwägen müssen
  • Regulatorische Compliance nachweisbaren Datenschutz erfordert

Was als Nächstes kommt

Vitalik Buterin plädierte kürzlich für standardisierte „Effizienzverhältnisse“ – den Vergleich der kryptografischen Rechenzeit mit der Klartext-Ausführung. Dies spiegelt die Reife der Branche wider: Wir bewegen uns von der Frage „Funktioniert es?“ hin zu „Wie effizient funktioniert es?“.

Die FHE-Performance verbessert sich stetig. Zamas Mainnet im Dezember 2025 beweist die Produktionsreife für einfache Smart Contracts. Mit der Weiterentwicklung der Hardwarebeschleunigung (GPU-Optimierung, kundenspezifische ASICs) wird sich die Durchsatzlücke zu TEEs verringern.

ZK-Systeme werden ausdrucksstärker. Die Noir-Sprache von Aztec ermöglicht komplexe private Logik, die vor Jahren noch unpraktikabel gewesen wäre. Standards konvergieren langsam und ermöglichen die kettenübergreifende Verifizierung von ZK-Credentials.

Die TEE-Vielfalt geht über Intel SGX hinaus. Implementierungen von AMD SEV, ARM TrustZone und RISC-V reduzieren die Abhängigkeit von einem einzelnen Hersteller. Schwellenwert-Kryptografie über mehrere TEE-Anbieter hinweg könnte das Problem des Single-Point-of-Failure lösen.

Der Aufbau der Datenschutz-Infrastruktur findet jetzt statt. Für Entwickler, die datenschutzrelevante Anwendungen erstellen, geht es bei der Wahl nicht darum, die perfekte Technologie zu finden – sondern darum, die Kompromisse gut genug zu verstehen, um sie intelligent zu kombinieren.


Bauen Sie datenschutzfreundliche Anwendungen auf der Blockchain? BlockEden.xyz bietet Hochleistungs-RPC-Endpunkte über 30+ Netzwerke hinweg, einschließlich datenschutzorientierter Chains. Entdecken Sie unseren API-Marktplatz, um auf die Infrastruktur zuzugreifen, die Ihre vertraulichen Anwendungen benötigen.

Die Blockchain-Performance-Revolution: Wie 2025 Skalierbarkeit und Gebühren neu definiert hat

· 9 Min. Lesezeit
Dora Noda
Software Engineer

Was wäre, wenn sich die Debatten über die Blockchain-Performance von 2021–2023 bereits wie Steinzeit anfühlen würden? Im Jahr 2025 hat die Branche leise eine Schwelle überschritten, von der sowohl Risikokapitalgeber als auch Skeptiker dachten, sie sei noch Jahre entfernt: Mehrere Mainnets verarbeiten mittlerweile routinemäßig Tausende von Transaktionen pro Sekunde, während die Gebühren unter einem Cent bleiben. Die Ära von „Blockchain ist nicht skalierbar“ ist offiziell beendet.

Hier geht es nicht um theoretische Benchmarks oder Testnet-Versprechen. Echte Nutzer, echte Anwendungen und echtes Geld fließen durch Netzwerke, die noch vor zwei Jahren wie Science-Fiction gewirkt hätten. Lassen Sie uns die harten Zahlen hinter der Performance-Revolution der Blockchain untersuchen.

Die neuen TPS-Spitzenreiter: Kein Zweikampf mehr

Die Performance-Landschaft hat sich grundlegend verändert. Während Bitcoin und Ethereum jahrelang die Blockchain-Gespräche dominierten, etablierte 2025 eine neue Generation von Geschwindigkeits-Champions.

Solana stellte am 17. August 2025 den Rekord auf, der Schlagzeilen machte, indem es 107.664 Transaktionen pro Sekunde auf seinem Mainnet verarbeitete – nicht in einem Labor, sondern unter realen Bedingungen. Dies war kein einmaliger Peak; das Netzwerk demonstrierte einen nachhaltig hohen Durchsatz, der jahrelange architektonische Entscheidungen validiert, die Performance priorisierten.

Aber Solanas Erfolg ist nur ein Datenpunkt in einer breiteren Revolution:

  • Aptos hat 13.367 TPS im Mainnet ohne Ausfälle, Verzögerungen oder Gas-Fee-Spitzen demonstriert. Ihre Block-STM Parallel Execution Engine unterstützt theoretisch bis zu 160.000 TPS.
  • Sui hat 297.000 TPS in kontrollierten Tests bewiesen, wobei die Mainnet-Peaks bei typischer Nutzung 822 TPS erreichten und der Mysticeti v2 Konsens eine Latenz von nur 390 ms erzielte.
  • BNB Chain liefert in der Produktion konsistent rund 2.200 TPS, wobei die Hard Forks Lorentz und Maxwell 4x schnellere Blockzeiten ermöglichen.
  • Avalanche verarbeitet 4.500 TPS durch seine einzigartige Subnet-Architektur, die eine horizontale Skalierung über spezialisierte Chains hinweg ermöglicht.

Diese Zahlen stellen eine 10- bis 100-fache Verbesserung gegenüber dem dar, was dieselben Netzwerke im Jahr 2023 erreicht haben. Noch wichtiger ist, dass es sich nicht um theoretische Maximalwerte handelt – es ist beobachtete, überprüfbare Performance unter tatsächlichen Nutzungsbedingungen.

Firedancer: Der Eine-Million-TPS-Client, der alles verändert hat

Der bedeutendste technische Durchbruch des Jahres 2025 war keine neue Blockchain – es war Firedancer, Jump Cryptos vollständige Neuimplementierung des Solana Validator-Clients. Nach drei Jahren Entwicklung ging Firedancer am 12. Dezember 2025 im Mainnet live.

Die Zahlen sind atemberaubend. In Demonstrationen auf der Breakpoint 2024 zeigte Jump's Chief Scientist Kevin Bowers, wie Firedancer über 1 Million Transaktionen pro Sekunde auf Standard-Hardware verarbeitet. Benchmarks zeigten in kontrollierten Tests konsistent 600.000 bis 1.000.000 TPS – 20-mal höher als der nachgewiesene Durchsatz des vorherigen Agave-Clients.

Was macht Firedancer anders? Die Architektur. Im Gegensatz zum monolithischen Design von Agave verwendet Firedancer eine modulare, kachelbasierte Architektur, die Validator-Aufgaben aufteilt, um sie parallel auszuführen. Geschrieben in C statt in Rust, wurde jede Komponente von Grund auf für maximale Performance optimiert.

Die Adoptionskurve spricht für sich. Frankendancer, eine hybride Implementierung, die den Networking-Stack von Firedancer mit der Runtime von Agave kombiniert, läuft nun auf 207 Validatoren, was 20,9 % aller gestakten SOL entspricht – ein Anstieg von nur 8 % im Juni 2025. Dies ist keine experimentelle Software mehr; es ist Infrastruktur, die Milliarden von Dollar sichert.

Das Alpenglow-Upgrade von Solana im September 2025 fügte eine weitere Ebene hinzu, indem die ursprünglichen Proof of History- und TowerBFT-Mechanismen durch die neuen Votor- und Rotor-Systeme ersetzt wurden. Das Ergebnis: 150 ms Block-Finalität und Unterstützung für mehrere gleichzeitige Leader, was eine parallele Ausführung ermöglicht.

Gebühren unter einem Cent: Die stille Revolution von EIP-4844

Während TPS-Zahlen die Schlagzeilen beherrschen, ist die Gebühren-Revolution gleichermaßen transformativ. Ethereums EIP-4844 Upgrade im März 2024 strukturierte grundlegend um, wie Layer-2-Netzwerke für Datenverfügbarkeit bezahlen, und bis 2025 waren die Auswirkungen nicht mehr zu ignorieren.

Der Mechanismus ist elegant: Blob-Transaktionen bieten temporären Datenspeicher für Rollups zu einem Bruchteil der bisherigen Kosten. Wo Layer 2s früher um teuren Calldata-Platz konkurrierten, bieten Blobs eine 18-tägige temporäre Speicherung, die Rollups tatsächlich benötigen.

Die Auswirkungen auf die Gebühren waren unmittelbar und dramatisch:

  • Arbitrum-Gebühren sanken von 0,37 auf0,012auf 0,012 pro Transaktion.
  • Optimism fiel von 0,32 auf0,009auf 0,009.
  • Base erreichte Gebühren von nur 0,01 $.

Dies sind keine Aktionspreise oder subventionierten Transaktionen – es sind nachhaltige Betriebskosten, die durch architektonische Verbesserungen ermöglicht wurden. Ethereum bietet nun effektiv eine 10- bis 100-mal günstigere Datenspeicherung für Layer-2-Lösungen an.

Der Anstieg der Aktivitäten folgte erwartungsgemäß. Base verzeichnete nach dem Upgrade einen Anstieg der täglichen Transaktionen um 319,3 %, Arbitrum stieg um 45,7 % und Optimism um 29,8 %. Nutzer und Entwickler reagierten genau so, wie es die Wirtschaftswissenschaft vorausgesagt hat: Wenn Transaktionen billig genug werden, explodiert die Nutzung.

Das Pectra-Upgrade im Mai 2025 ging noch weiter, indem es den Blob-Durchsatz von 6 auf 9 Blobs pro Block erhöhte und das Gas-Limit auf 37,3 Millionen anhob. Ethereums effektive TPS über Layer 2s übersteigt nun 100.000, wobei die durchschnittlichen Transaktionskosten in L2-Netzwerken auf 0,08 $ gesunken sind.

Die Performance-Lücke in der realen Welt

Hier ist das, was die Benchmarks Ihnen nicht verraten: Theoretische TPS und beobachtete TPS bleiben sehr unterschiedliche Zahlen. Diese Lücke offenbart wichtige Wahrheiten über die Reife der Blockchain.

Betrachten wir Avalanche. Während das Netzwerk theoretisch 4.500 TPS unterstützt, liegt die beobachtete Aktivität im Durchschnitt bei etwa 18 TPS, wobei die C-Chain eher bei 3-4 TPS liegt. Sui demonstriert in Tests 297.000 TPS, erreicht aber im Mainnet Spitzenwerte von 822 TPS.

Dies ist kein Misserfolg – es ist der Beweis für Kapazitätsreserven. Diese Netzwerke können massive Nachfragespitzen ohne Leistungseinbußen bewältigen. Wenn der nächste NFT-Hype oder DeFi-Sommer kommt, wird die Infrastruktur nicht einknicken.

Die praktischen Auswirkungen sind für Entwickler enorm:

  • Gaming-Anwendungen benötigen konsistente niedrige Latenzzeiten mehr als Spitzen-TPS.
  • DeFi-Protokolle erfordern vorhersehbare Gebühren während Phasen hoher Volatilität.
  • Zahlungssysteme verlangen einen zuverlässigen Durchsatz während der Einkaufshochzeiten an Feiertagen.
  • Unternehmensanwendungen benötigen garantierte SLAs, unabhängig von den Netzwerkbedingungen.

Netzwerke mit signifikanten Kapazitätsreserven können diese Garantien bieten. Netzwerke, die nahe an ihrer Kapazitätsgrenze arbeiten, können dies nicht.

Move VM Chains: Der Vorteil der Performance-Architektur

Bei der Untersuchung der Top-Performer des Jahres 2025 zeichnet sich ein Muster ab: Die Programmiersprache Move taucht immer wieder auf. Sowohl Sui als auch Aptos, die von Teams mit Facebook/Diem-Hintergrund entwickelt wurden, nutzen das objektzentrierte Datenmodell von Move für Parallelisierungsvorteile, die in Blockchains mit Account-Modell unmöglich sind.

Die Block-STM-Engine von Aptos demonstriert dies deutlich. Durch die gleichzeitige statt sequentielle Verarbeitung von Transaktionen erreichte das Netzwerk in Spitzenzeiten 326 Millionen erfolgreiche Transaktionen an einem einzigen Tag – bei durchschnittlichen Gebühren von etwa 0,002 $.

Der Ansatz von Sui unterscheidet sich, folgt aber ähnlichen Prinzipien. Das Mysticeti-Konsensprotokoll erreicht eine Latenz von 390 ms, indem es Objekte anstelle von Konten als fundamentale Einheit behandelt. Transaktionen, die nicht dieselben Objekte berühren, werden automatisch parallel ausgeführt.

Beide Netzwerke zogen im Jahr 2025 signifikantes Kapital an. Der BUIDL-Fonds von BlackRock fügte Aptos im Oktober tokenisierte Vermögenswerte im Wert von 500 Millionen $ hinzu, was es zur zweitgrößten BUIDL-Chain macht. Aptos betrieb auch das offizielle digitale Wallet für die Expo 2025 in Osaka, verarbeitete über 558.000 Transaktionen und band mehr als 133.000 Nutzer an – eine praxisnahe Validierung in großem Maßstab.

Was hohe TPS tatsächlich ermöglichen

Was ermöglichen Tausende von TPS über das Prestige hinaus?

Settlement auf institutionellem Niveau: Bei der Verarbeitung von über 2.000 TPS mit Finalität im Sub-Sekunden-Bereich konkurrieren Blockchains direkt mit traditionellen Zahlungsschienen. Die Lorentz- und Maxwell-Upgrades der BNB Chain zielten spezifisch auf ein "Settlement auf Nasdaq-Niveau" für institutionelles DeFi ab.

Wirtschaftlichkeit von Mikrotransaktionen: Bei 0,01 proTransaktionwerdenGescha¨ftsmodelleprofitabel,diebeiGebu¨hrenvon5pro Transaktion werden Geschäftsmodelle profitabel, die bei Gebühren von 5 unmöglich wären. Streaming-Zahlungen, Abrechnungen pro API-Aufruf und granulare Lizenzgebührenverteilung erfordern alle eine Ökonomie im Bereich von Bruchteilen eines Cents.

Synchronisierung von Spielzuständen: Blockchain-Gaming erfordert die Aktualisierung von Spielerzuständen hunderte Male pro Sitzung. Die Performance-Level von 2025 ermöglichen endlich echtes On-Chain-Gaming anstelle der reinen Settlement-Modelle früherer Jahre.

IoT und Sensornetzwerke: Wenn Geräte für Bruchteile eines Cents transagieren können, werden Lieferkettenverfolgung, Umweltüberwachung und Maschine-zu-Maschine-Zahlungen wirtschaftlich rentabel.

Der rote Faden: Die Performance-Verbesserungen von 2025 haben bestehende Anwendungen nicht nur schneller gemacht – sie haben völlig neue Kategorien der Blockchain-Nutzung ermöglicht.

Die Debatte über den Dezentralisierungs-Kompromiss

Kritiker stellen zu Recht fest, dass rohe TPS oft mit einer verringerten Dezentralisierung korrelieren. Solana betreibt weniger Validatoren als Ethereum. Aptos und Sui erfordern teurere Hardware. Diese Kompromisse sind real.

Aber 2025 hat auch gezeigt, dass die binäre Wahl zwischen Geschwindigkeit und Dezentralisierung falsch ist. Das Layer-2-Ökosystem von Ethereum liefert über 100.000 effektive TPS und übernimmt dabei die Sicherheitsgarantien von Ethereum. Firedancer verbessert den Durchsatz von Solana, ohne die Anzahl der Validatoren zu verringern.

Die Branche lernt, sich zu spezialisieren: Settlement-Layer optimieren für Sicherheit, Ausführungs-Layer optimieren für Geschwindigkeit und ordnungsgemäßes Bridging verbindet sie. Dieser modulare Ansatz – Datenverfügbarkeit von Celestia, Ausführung durch Rollups, Settlement auf Ethereum – erreicht Geschwindigkeit, Sicherheit und Dezentralisierung durch Komposition statt durch Kompromisse.

Ausblick: Das Millionen-TPS Mainnet

Wenn 2025 High-TPS-Mainnets als Realität statt als Versprechen etabliert hat, was kommt als Nächstes?

Das Fusaka-Upgrade von Ethereum wird vollständiges Danksharding über PeerDAS einführen, was potenziell Millionen von TPS über Rollups hinweg ermöglicht. Der Produktionseinsatz von Firedancer soll Solana in Richtung seiner getesteten Kapazität von 1 Million TPS treiben. Neue Marktteilnehmer tauchen weiterhin mit neuartigen Architekturen auf.

Noch wichtiger ist, dass die Entwicklererfahrung gereift ist. Das Erstellen von Anwendungen, die Tausende von TPS erfordern, ist kein Forschungsprojekt mehr – es ist Standardpraxis. Das Tooling, die Dokumentation und die Infrastruktur, die die Entwicklung von Hochleistungs-Blockchains im Jahr 2025 unterstützen, wären für einen Entwickler aus dem Jahr 2021 nicht wiederzuerkennen.

Die Frage ist nicht mehr, ob die Blockchain skalieren kann. Die Frage ist, was wir bauen werden, jetzt wo sie es kann.


BlockEden.xyz bietet RPC- und API-Zugang auf Unternehmensniveau für Hochleistungs-Chains wie Sui, Aptos und Solana. Wenn Ihre Anwendung den Durchsatz und die Zuverlässigkeit erfordert, die die Performance-Revolution von 2025 ermöglicht, erkunden Sie unsere Infrastruktur, die für die Blockchain-Entwicklung auf Produktionsniveau konzipiert wurde.

PeerDAS erklärt: Wie Ethereum Daten verifiziert, ohne alles herunterzuladen

· 9 Min. Lesezeit
Dora Noda
Software Engineer

Was wäre, wenn Sie die Existenz eines 500-seitigen Buches verifizieren könnten, ohne eine einzige Seite zu lesen? Genau das hat Ethereum mit PeerDAS gelernt – und es gestaltet im Stillen neu, wie Blockchains skalieren können, ohne die Dezentralisierung zu opfern.

Am 3. Dezember 2025 aktivierte Ethereum das Fusaka-Upgrade und führte PeerDAS (Peer Data Availability Sampling) als Hauptfeature ein. Während sich die meisten Schlagzeilen auf die Senkung der Gebühren für Layer 2-Netzwerke um 40 - 60 % konzentrierten, stellt der zugrunde liegende Mechanismus etwas viel Bedeutenderes dar: einen grundlegenden Wandel in der Art und Weise, wie Blockchain-Nodes die Existenz von Daten beweisen, ohne diese tatsächlich vollständig zu speichern.

Pharos Network: Wie Veteranen der Ant Group die „GPU der Blockchains“ für einen 10 Billionen Dollar schweren RWA-Markt bauen

· 8 Min. Lesezeit
Dora Noda
Software Engineer

Als der ehemalige CTO von Ant Chain und der Chief Security Officer der Web3-Abteilung von Ant Financial eines der weltweit größten Fintech-Unternehmen verließen, um eine Blockchain von Grund auf neu zu entwickeln, horchte die Branche auf. Ihre Wette? Dass der 24 Milliarden Dollar schwere Markt für tokenisierte Real-World Assets (RWA) kurz davor steht, in die Billionen zu explodieren — und bestehende Blockchains nicht darauf vorbereitet sind.

Pharos Network, die hochperformante Layer 1, die sie aufbauen, hat gerade eine Seed-Finanzierungsrunde in Höhe von 8 Millionen Dollar abgeschlossen, angeführt von Lightspeed Faction und Hack VC. Die interessantere Zahl ist jedoch die angekündigte RWA-Pipeline im Wert von 1,5 Milliarden Dollar in Zusammenarbeit mit Ant Digital Technologies, dem Web3-Arm ihres früheren Arbeitgebers. Dies ist kein spekulatives DeFi-Projekt — es ist eine Wette auf eine Infrastruktur auf institutionellem Niveau, die von Experten unterstützt wird, die bereits Finanzsysteme für Milliarden von Transaktionen entwickelt haben.

Die DNA der Ant Group: Bauen für eine Skalierbarkeit, die sie bereits kennen

Alex Zhang, CEO von Pharos, war jahrelang CTO von Ant Chain und überwachte die Blockchain-Infrastruktur, die Transaktionen für Hunderte Millionen Nutzer im Alibaba-Ökosystem verarbeitete. Mitgründer und CTO Meng Wu war für die Sicherheit der Web3-Abteilung von Ant Financial verantwortlich und schützte einige der wertvollsten Finanzinfrastrukturen in Asien.

Ihre Diagnose der aktuellen Blockchain-Landschaft ist ungeschönt: Bestehende Netzwerke wurden nicht für die tatsächlichen Anforderungen der Finanzindustrie konzipiert. Solana optimiert auf Geschwindigkeit, lässt aber die Compliance-Primitiven vermissen, die Institutionen benötigen. Ethereum priorisiert Dezentralisierung, kann aber nicht die Finalität im Sub-Sekunden-Bereich liefern, die Echtzeitzahlungen erfordern. Das „institutionelle Solana“ existiert noch nicht.

Pharos möchte diese Lücke mit einer sogenannten „Full-Stack Parallel Blockchain“ schließen — einem Netzwerk, das von Grund auf für die spezifischen Anforderungen tokenisierter Vermögenswerte, grenzüberschreitender Zahlungen und Enterprise DeFi entwickelt wurde.

Die technische Architektur: Über die sequenzielle Verarbeitung hinaus

Die meisten Blockchains verarbeiten Transaktionen sequenziell, wie eine einzelne Warteschlange in einer Bank. Selbst die jüngsten Upgrades von Ethereum und die parallele Verarbeitung von Solana behandeln die Blockchain als ein vereinheitlichtes System mit fundamentalen Durchsatzgrenzen. Pharos verfolgt einen anderen Ansatz und implementiert eine Optimierung des „Grads der Parallelisierung“ (Degree of Parallelism) — im Wesentlichen wird die Blockchain eher wie eine GPU als eine CPU behandelt.

Das Drei-Schichten-Design:

  • L1-Base: Bietet Datenverfügbarkeit mit Hardwarebeschleunigung und verarbeitet die Rohspeicherung sowie den Abruf von Blockchain-Daten in Geschwindigkeiten, die herkömmliche Netzwerke nicht erreichen können.

  • L1-Core: Implementiert einen neuartigen BFT-Konsens, der es mehreren Validator-Knoten ermöglicht, Transaktionen gleichzeitig vorzuschlagen, zu validieren und zu bestätigen. Im Gegensatz zu klassischen BFT-Implementierungen, die feste Leader-Rollen und rundenbasierte Kommunikation erfordern, arbeiten Pharos-Validatoren parallel.

  • L1-Extension: Ermöglicht „Special Processing Networks“ (SPNs) — maßgeschneiderte Ausführungsumgebungen für spezifische Anwendungsfälle wie Hochfrequenzhandel oder die Ausführung von KI-Modellen. Man kann es sich wie dedizierte Überholspuren für verschiedene Arten von Finanzaktivitäten vorstellen.

Die Execution Engine:

Das Herzstück von Pharos ist sein paralleles Ausführungssystem, das eine LLVM-basierte Konvertierung der Zwischendarstellung mit spekulativer paralleler Verarbeitung kombiniert. Zu den technischen Innovationen gehören:

  • Smart Access List Inference (SALI): Statische und dynamische Analysen zur Identifizierung der Status-Einträge, auf die ein Smart Contract zugreifen wird, wodurch Transaktionen mit nicht überschneidendem Status gleichzeitig ausgeführt werden können.

  • Dual VM Support: Unterstützung sowohl für EVM- als auch für WASM-Virtual-Machines, was die Solidity-Kompatibilität sicherstellt und gleichzeitig eine hochperformante Ausführung für Verträge ermöglicht, die in Rust oder anderen Sprachen geschrieben wurden.

  • Pipelined Block Processing: Inspiriert von superskalaren Prozessoren, wird der Block-Lebenszyklus in parallele Phasen unterteilt — Konsens-Anordnung, Datenbank-Preloading, Ausführung, Merkleisierung und Flushing erfolgen alle gleichzeitig.

Das Ergebnis? Ihr Testnet hat über 30.000 TPS mit Blockzeiten von 0,5 Sekunden demonstriert, wobei die Ziele für das Mainnet bei 50.000 TPS und einer Finalität im Sub-Sekunden-Bereich liegen. Zum Vergleich: Visa verarbeitet im Durchschnitt etwa 1.700 TPS.

Warum RWA-Tokenisierung eine andere Infrastruktur benötigt

Der Markt für tokenisierte Real-World Assets ist von 85 Millionen Dollar im Jahr 2020 auf über 24 Milliarden Dollar bis Mitte 2025 gewachsen — eine 245-fache Steigerung in nur fünf Jahren. McKinsey prognostiziert 2 Billionen Dollar bis 2030; Standard Chartered schätzt 30 Billionen Dollar bis 2034. Einige Analysten erwarten bis zum Ende des Jahrzehnts ein jährliches RWA-Handelsvolumen von 50 Billionen Dollar.

Doch hier liegt die Diskrepanz: Der Großteil dieses Wachstums fand auf Chains statt, die nicht dafür konzipiert wurden. Private Kredite dominieren den aktuellen Markt mit 17 Milliarden Dollar, gefolgt von US-Staatsanleihen mit 7,3 Milliarden Dollar. Dies sind keine spekulativen Token — es sind regulierte Finanzinstrumente, die Folgendes erfordern:

  • Identitätsprüfung, die KYC/AML-Anforderungen über verschiedene Gerichtsbarkeiten hinweg erfüllt
  • Compliance-Primitive, die direkt in die Protokollschicht eingebaut sind und nicht erst nachträglich hinzugefügt werden
  • Abrechnung im Sub-Sekunden-Bereich für Echtzeit-Zahlungsanwendungen
  • Sicherheit auf institutionellem Niveau mit formaler Verifizierung und hardwaregestütztem Schutz

Pharos adressiert diese Anforderungen mit nativer zkDID-Authentifizierung und On-Chain / Off-Chain-Kreditsystemen. Wenn sie davon sprechen, „TradFi und Web3 zu verbinden“, meinen sie den Einbau der Compliance-Schienen direkt in die Infrastruktur selbst.

Die Ant Digital Partnerschaft: 1,5 Milliarden $ in Real Assets

Die strategische Partnerschaft mit ZAN – der Web3-Marke von Ant Digital Technologies – ist nicht nur eine Pressemitteilung. Sie repräsentiert eine Pipeline von 1,5 Milliarden $ an RWA-Vermögenswerten aus dem Bereich der erneuerbaren Energien, die zum Start des Pharos-Mainnets geplant sind.

Die Zusammenarbeit konzentriert sich auf drei Bereiche:

  1. Node-Dienste und Infrastruktur: ZANs Node-Operationen auf Unternehmensebene unterstützen das Validator-Netzwerk von Pharos.
  2. Sicherheit und Hardware-Beschleunigung: Nutzung der Erfahrung von Ant mit hardwaregesicherten Finanzsystemen.
  3. Entwicklung von RWA-Anwendungsfällen: Einbringung tatsächlicher tokenisierter Vermögenswerte – keine hypothetischen – in das Netzwerk vom ersten Tag an.

Das Pharos-Team verfügt über Erfahrung bei der Implementierung von Tokenisierungsprojekten, darunter Xiexin Energy Technology und die Langxin Group. Sie erlernen die RWA-Tokenisierung nicht erst auf Pharos – sie wenden Fachwissen an, das innerhalb eines der weltweit größten Fintech-Ökosysteme entwickelt wurde.

Vom Testnet zum Mainnet: Der Start im 1. Quartal 2026

Pharos startete sein AtlanticOcean-Testnetz mit beeindruckenden Kennzahlen: fast 3 Milliarden Transaktionen in 23 Millionen Blöcken seit Mai, allesamt mit Blockzeiten von 0,5 Sekunden. Das Testnetz führte ein:

  • Hybride parallele Ausführung basierend auf DAG und Block-STM V1
  • Offizielle PoS-Tokenomics mit einem Angebot von 1 Milliarde Token
  • Modulare Architektur, die Konsens-, Ausführungs- und Speicherschichten entkoppelt
  • Integration mit führenden Wallets, einschließlich OKX Wallet und Bitget Wallet

Das Mainnet ist für das 1. Quartal 2026 geplant, zeitgleich mit dem Token Generation Event (TGE). Die Stiftungscharta wird nach dem TGE veröffentlicht und legt den Governance-Rahmen für das fest, was trotz seines institutionellen Fokus ein wahrhaft dezentrales Netzwerk werden soll.

Das Projekt hat über 1,4 Millionen Testnetz-Nutzer angezogen – eine bedeutende Community für ein Pre-Mainnet-Netzwerk, was auf ein starkes Interesse an dem RWA-fokussierten Narrativ hindeutet.

Die Wettbewerbslandschaft: Wo ordnet sich Pharos ein?

Der Bereich der RWA-Tokenisierung wird immer voller. Provenance führt mit über 12 Milliarden anVermo¨genswertenan.EthereumbeherbergtgroßeEmittentenwieBlackRockundOndo.DasCantonNetworkunterstu¨tztvonGoldmanSachs,BNPParibasundDTCCverarbeitetmonatlichu¨ber4Billionenan Vermögenswerten an. Ethereum beherbergt große Emittenten wie BlackRock und Ondo. Das Canton Network – unterstützt von Goldman Sachs, BNP Paribas und DTCC – verarbeitet monatlich über 4 Billionen an tokenisierten Transaktionen.

Pharos’ Positionierung ist klar abgegrenzt:

  • Gegenüber Canton: Canton ist permissioned (zugangsbeschränkt); Pharos strebt eine vertrauenslose Dezentralisierung mit Compliance-Primitiven an.
  • Gegenüber Ethereum: Pharos bietet den 50-fachen Durchsatz mit nativer RWA-Infrastruktur.
  • Gegenüber Solana: Pharos priorisiert institutionelle Compliance gegenüber reinem DeFi-Durchsatz.
  • Gegenüber Plume Network: Beide zielen auf RWA ab, aber Pharos bringt die Enterprise-DNA der Ant Group und eine bestehende Asset-Pipeline mit.

Die Herkunft der Ant Group ist hier von Bedeutung. Der Aufbau einer Finanzinfrastruktur betrifft nicht nur die technische Architektur – es geht darum, regulatorische Anforderungen, institutionelles Risikomanagement und die tatsächlichen Arbeitsabläufe von Finanzdienstleistungen zu verstehen. Das Pharos-Team hat diese Systeme im großen Stil aufgebaut.

Was das für das RWA-Narrativ bedeutet

Die RWA-Tokenisierungs-These ist simpel: Ein Großteil des weltweiten Wertes existiert in illiquiden Vermögenswerten, die von der Abrechnungseffizienz, Programmierbarkeit und globalen Zugänglichkeit der Blockchain profitieren könnten. Immobilien, Privatkredite, Rohstoffe, Infrastruktur – diese Märkte stellen die gesamte Marktkapitalisierung von Kryptowährungen in den Schatten.

Aber die Infrastrukturlücke war real. Die Tokenisierung einer Schatzanweisung (Treasury Bill) auf Ethereum funktioniert; die Tokenisierung von 300 Millionen $ an Vermögenswerten im Bereich erneuerbarer Energien erfordert Compliance-Schienen, Sicherheit auf institutionellem Niveau und einen Durchsatz, der unter realen Transaktionsvolumina nicht zusammenbricht.

Pharos repräsentiert eine neue Kategorie von Blockchain: keine Allzweck-Smart-Contract-Plattform, die auf DeFi-Komponierbarkeit optimiert ist, sondern eine spezialisierte Finanzinfrastrukturschicht, die für die spezifischen Anforderungen tokenisierter Real-World Assets entwickelt wurde.

Ob sie erfolgreich sein werden, hängt von der Ausführung ab – im wahrsten Sinne des Wortes. Können sie 50.000 TPS im Mainnet liefern? Werden Institutionen tatsächlich Vermögenswerte auf dem Netzwerk bereitstellen? Erfüllt der Compliance-Rahmen die Anforderungen der Regulierungsbehörden in verschiedenen Rechtsordnungen?

Die Antworten werden sich im Laufe des Jahres 2026 zeigen. Aber mit 8 Millionen anFinanzierung,einerangeku¨ndigtenAssetPipelinevon1,5Milliardenan Finanzierung, einer angekündigten Asset-Pipeline von 1,5 Milliarden und einem Team, das bereits Finanzsysteme in der Größenordnung der Ant Group aufgebaut hat, verfügt Pharos über die Ressourcen und die Glaubwürdigkeit, um es herauszufinden.


BlockEden.xyz bietet Blockchain-Infrastruktur auf Unternehmensebene für die nächste Generation von Web3-Anwendungen. Da die RWA-Tokenisierung das globale Finanzwesen transformiert, werden zuverlässige Node-Dienste und API-Zugang zu kritischer Infrastruktur. Erkunden Sie unseren API-Marktplatz, um auf Fundamenten aufzubauen, die für Anwendungen auf institutionellem Niveau konzipiert sind.

Polkadots JAM: Neudefinition der Blockchain-Architektur mit RISC-V

· 10 Min. Lesezeit
Dora Noda
Software Engineer

Im April 2025 schlug Vitalik Buterin etwas vor, das ein Jahr zuvor noch als ketzerisch gegolten hätte: den Ersatz der EVM von Ethereum durch RISC-V. Der Vorschlag löste sofortige Debatten aus. Doch was die meisten Kommentatoren übersahen, war, dass Polkadot bereits seit über einem Jahr an genau dieser Architektur gearbeitet hatte – und nur noch Monate von der Einführung in die Produktion entfernt war.

Polkadots JAM (Join-Accumulate Machine) ist nicht einfach nur ein weiteres Blockchain-Upgrade. Es stellt ein grundlegendes Überdenken dessen dar, was eine „Blockchain“ überhaupt bedeutet. Während sich das Weltbild von Ethereum um eine globale virtuelle Maschine dreht, die Transaktionen verarbeitet, eliminiert JAM das Transaktionskonzept auf seiner Kernebene vollständig und ersetzt es durch ein Rechenmodell, das eine Datenverfügbarkeit von 850 MB/s verspricht – das 42-fache der bisherigen Kapazität von Polkadot und das 650-fache der 1,3 MB/s von Ethereum.

Die Auswirkungen gehen weit über Performance-Benchmarks hinaus. JAM ist vielleicht die bisher klarste Formulierung eines Post-Ethereum-Paradigmas für die Blockchain-Architektur.

Das Gray Paper: Gavin Woods dritter Akt

Dr. Gavin Wood schrieb 2014 das Ethereum Yellow Paper und lieferte damit die formale Spezifikation, die Ethereum erst möglich machte. 2016 folgte das Polkadot White Paper, das heterogenes Sharding und Shared Security einführte. Im April 2024 veröffentlichte er auf der Token2049 in Dubai das JAM Gray Paper – und vervollständigte damit eine Trilogie, die die gesamte Geschichte programmierbarer Blockchains umspannt.

Das Gray Paper beschreibt JAM als „eine globale, zustandslose (singleton), erlaubnisfreie Objektumgebung – ähnlich der Smart-Contract-Umgebung von Ethereum – gepaart mit sicherer Sideband-Berechnung, die über ein skalierbares Knotennetzwerk parallelisiert wird.“ Doch das untertreibt den konzeptionellen Wandel.

JAM verbessert nicht nur bestehende Blockchain-Designs. Es stellt die Frage: Was wäre, wenn wir aufhören würden, Blockchains ausschließlich als virtuelle Maschinen zu betrachten?

Das Transaktionsproblem

Traditionelle Blockchains – einschließlich Ethereum – sind im Kern Transaktionsverarbeitungssysteme. Benutzer senden Transaktionen, Validatoren ordnen und führen sie aus, und die Blockchain zeichnet Zustandsänderungen auf. Dieses Modell hat gute Dienste geleistet, bringt jedoch inhärente Einschränkungen mit sich:

  • Sequenzielle Engpässe: Transaktionen müssen geordnet werden, was Durchsatzbeschränkungen schafft.
  • Globaler Statuskonflikt (State Contention): Jede Transaktion berührt potenziell den gemeinsamen Status.
  • Ausführungskopplung: Konsens und Berechnung sind eng miteinander verknüpft.

JAM entkoppelt diese Bereiche durch das, was Wood das „Refine-Accumulate“-Paradigma nennt. Das System arbeitet in zwei Phasen:

Refine: Die Berechnung erfolgt parallel im gesamten Netzwerk. Die Arbeit wird in unabhängige Einheiten unterteilt, die gleichzeitig und ohne Koordination ausgeführt werden können.

Accumulate: Ergebnisse werden gesammelt und im globalen Status zusammengeführt. Nur diese Phase erfordert einen Konsens über die Reihenfolge.

Das Ergebnis ist ein „transaktionsloses“ Kernprotokoll. JAM selbst verarbeitet keine Transaktionen – das erledigen die auf JAM aufgebauten Anwendungen. Diese Trennung ermöglicht es dem Base Layer, sich rein auf sichere, parallele Berechnungen zu konzentrieren.

PolkaVM: Warum RISC-V wichtig ist

Das Herzstück von JAM ist PolkaVM, eine spezialisierte virtuelle Maschine, die auf dem RISC-V-Befehlssatz basiert. Diese Wahl hat tiefgreifende Auswirkungen auf die Blockchain-Berechnung.

Die architektonischen Schulden der EVM

Die EVM von Ethereum wurde 2013–2014 entworfen, noch bevor viele moderne Annahmen über die Blockchain-Ausführung verstanden wurden. Ihre Architektur spiegelt diese Ära wider:

  • Stack-basierte Ausführung: Operationen schieben Werte auf einen unbegrenzten Stack und nehmen sie wieder herunter, was eine komplexe Nachverfolgung erfordert.
  • 256-Bit-Wortbreite: Aus kryptografischer Bequemlichkeit gewählt, aber für die meisten Operationen verschwenderisch.
  • Eindimensionales Gas: Eine einzige Kennzahl versucht, völlig unterschiedliche Rechenressourcen zu bepreisen.
  • Nur Interpretation: EVM-Bytecode kann nicht effizient in nativen Code kompiliert werden.

Diese Designentscheidungen waren als erste Schritte sinnvoll, führen jedoch zu anhaltenden Leistungseinbußen.

Die Vorteile von RISC-V

PolkaVM verfolgt einen grundlegend anderen Ansatz:

Registerbasierte Architektur: Wie moderne CPUs verwendet PolkaVM einen begrenzten Satz an Registern für die Argumentübergabe. Dies entspricht der tatsächlichen Hardware und ermöglicht eine effiziente Übersetzung in native Befehlssätze.

64-Bit-Wortbreite: Moderne Prozessoren arbeiten mit 64 Bit. Die Verwendung einer passenden Wortbreite eliminiert den Overhead bei der Emulation von 256-Bit-Operationen für den Großteil der Berechnungen.

Mehrdimensionales Gas: Verschiedene Ressourcen (Berechnung, Speicherung, Bandbreite) werden unabhängig voneinander bepreist, was die tatsächlichen Kosten besser widerspiegelt und Angriffe durch falsche Preisgestaltung verhindert.

Duale Ausführungsmodi: Code kann zur sofortigen Ausführung interpretiert oder für eine optimierte Leistung JIT-kompiliert (Just-In-Time) werden. Das System wählt den geeigneten Modus basierend auf den Merkmalen der Arbeitslast.

Auswirkungen auf die Performance

Die architektonischen Unterschiede schlagen sich in echten Performance-Gewinnen nieder. Benchmarks zeigen, dass PolkaVM bei arithmetikintensiven Contracts Verbesserungen von mehr als dem 10-fachen gegenüber WebAssembly erzielt – und die EVM ist noch langsamer. Bei komplexen Interaktionen zwischen mehreren Contracts vergrößert sich der Abstand weiter, da die JIT-Kompilierung die Setup-Kosten amortisiert.

Was vielleicht noch wichtiger ist: PolkaVM unterstützt jede Sprache, die nach RISC-V kompiliert werden kann. Während EVM-Entwickler auf Solidity, Vyper und eine Handvoll spezialisierter Sprachen beschränkt sind, PolkaVM öffnet die Tür für Rust, C++ und letztlich jede von LLVM unterstützte Sprache. Dies erweitert den potenziellen Entwicklerkreis drastisch.

Aufrechterhaltung der Developer Experience

Trotz der architektonischen Überholung bewahrt PolkaVM die Kompatibilität mit bestehenden Workflows. Der Revive-Compiler bietet vollständige Solidity-Unterstützung, einschließlich Inline-Assembler. Entwickler können weiterhin Hardhat, Remix und MetaMask verwenden, ohne ihre Prozesse ändern zu müssen.

Das Papermoon-Team demonstrierte diese Kompatibilität durch die erfolgreiche Migration des Uniswap V2-Contract-Codes in das PolkaVM-Testnetz – ein Beweis dafür, dass selbst komplexer, praxiserprobter DeFi-Code ohne Neuschreibungen migriert werden kann.

JAMs Leistungsziele

Die Zahlen, die Wood für JAM prognostiziert, sind nach heutigen Blockchain-Standards atemberaubend.

Datenverfügbarkeit (Data Availability)

JAM strebt eine Datenverfügbarkeit von 850 MB / s an – etwa das 42-Fache der ursprünglichen Polkadot-Kapazität vor den jüngsten Optimierungen und das 650-Fache der 1,3 MB / s von Ethereum. Zum Vergleich: Dies nähert sich dem Durchsatz von Enterprise-Datenbanksystemen an.

Rechenkapazität (Computational Throughput)

Das Gray Paper schätzt, dass JAM bei voller Auslastung etwa 150 Milliarden Gas pro Sekunde erreichen kann. Die Umrechnung von Gas in Transaktionen ist unpräzise, aber der theoretische maximale Durchsatz erreicht basierend auf dem Ziel der Datenverfügbarkeit über 3,4 Millionen TPS.

Validierung in der Praxis

Dies sind keine rein theoretischen Zahlen. Stresstests haben die Architektur bestätigt:

  • Kusama (August 2025): Erreichte 143.000 TPS bei nur 23 % Auslastung
  • Polkadot „Spammening“ (2024): Erreichte 623.000 TPS in kontrollierten Tests

Diese Zahlen stellen den echten Transaktionsdurchsatz dar, nicht optimistische Prognosen oder Testnetzbedingungen, die keine Produktionsumgebungen widerspiegeln.

Entwicklungsstand und Zeitplan

Die JAM-Entwicklung folgt einem strukturierten Meilensteinsystem, wobei 43 Implementierungsteams um einen Preispool von über 60 Millionen US-Dollar (10 Millionen DOT + 100.000 KSM) konkurrieren.

Aktueller Fortschritt (Ende 2025)

Das Ökosystem hat mehrere kritische Meilensteine erreicht:

  • Mehrere Teams haben eine 100%ige Konformität mit den Testvektoren der Web3 Foundation erreicht.
  • Die Entwicklung ist durch die Gray Paper Versionen 0.6.2 bis 0.8.0 vorangeschritten und nähert sich v1.0.
  • Die Konferenz „JAM Experience“ in Lissabon (Mai 2025) brachte Implementierungsteams für eine tiefgreifende technische Zusammenarbeit zusammen.
  • Universitätstouren erreichten über 1.300 Teilnehmer an neun globalen Standorten, darunter Cambridge, die Universität Peking und die Fudan-Universität.

Meilensteinstruktur

Die Teams durchlaufen eine Reihe von Meilensteinen:

  1. IMPORTER (M1): Bestehen von Konformitätstests für Zustandsübergänge (State Transitions) und Importieren von Blöcken.
  2. AUTHORER (M2): Volle Konformität einschließlich Blockproduktion, Networking und Off-Chain-Komponenten.
  3. HALF-SPEED (M3): Erreichen der Performance-Stufe von Kusama, mit Zugang zum „JAM Toaster“ für Tests in vollem Umfang.
  4. FULL-SPEED (M4): Performance-Stufe des Polkadot-Mainnets mit professionellen Sicherheitsaudits.

Mehrere Teams haben M1 abgeschlossen, wobei einige bereits auf M2 hinarbeiten.

Zeitplan bis zum Mainnet

  • Ende 2025: Letzte Gray Paper Überarbeitungen, fortlaufende Meilenstein-Einreichungen, erweiterte Testnetz-Teilnahme.
  • Q1 2026: JAM-Mainnet-Upgrade auf Polkadot nach Genehmigung durch die Governance via OpenGov-Referendum.
  • 2026: Bereitstellung von CoreChain Phase 1, offizielles öffentliches JAM-Testnetz, vollständiger Netzwerkübergang.

Der Governance-Prozess hat bereits eine starke Unterstützung der Community gezeigt. Eine fast einstimmige Abstimmung der DOT-Inhaber im Mai 2024 genehmigte die Richtung des Upgrades.

JAM vs. Ethereum: Ergänzung oder Konkurrenz?

Die Frage, ob JAM ein „Ethereum-Killer“ ist, verkennt die architektonischen Nuancen.

Unterschiedliche Designphilosophien

Ethereum baut auf einem monolithischen Fundament auf. Die EVM bietet eine globale Ausführungsumgebung, und Skalierungslösungen – L2s, Rollups, Sharding – werden darauf aufgesetzt. Dieser Ansatz hat ein riesiges Ökosystem geschaffen, aber auch technische Schulden angehäuft.

JAM hat Modularität im Kern. Die Trennung der Phasen „Refine“ und „Accumulate“, die domänenspezifische Optimierung für die Handhabung von Rollups und der transaktionslose Base Layer spiegeln ein von Grund auf für Skalierbarkeit konzipiertes Design wider.

Konvergente technische Entscheidungen

Trotz unterschiedlicher Ausgangspunkte kommen die Projekte zu ähnlichen Schlussfolgerungen. Vitaliks RISC-V-Vorschlag vom April 2025 erkannte an, dass die Architektur der EVM die langfristige Performance einschränkt. Polkadot hatte die RISC-V-Unterstützung bereits Monate zuvor im Testnetz implementiert.

Diese Konvergenz bestätigt das technische Urteilsvermögen beider Projekte und verdeutlicht gleichzeitig die Lücke in der Ausführung: Polkadot liefert das, was Ethereum vorschlägt.

Realitäten des Ökosystems

Technische Überlegenheit führt nicht automatisch zur Dominanz des Ökosystems. Die Entwickler-Community von Ethereum, die Vielfalt der Anwendungen und die Liquiditätstiefe stellen beträchtliche Netzwerkeffekte dar, die nicht über Nacht repliziert werden können.

Das wahrscheinlichere Ergebnis ist kein Ersatz, sondern eine Spezialisierung. Die Architektur von JAM ist für bestimmte Workloads optimiert – insbesondere für Anwendungen mit hohem Durchsatz und Rollup-Infrastruktur – während Ethereum Vorteile bei der Reife des Ökosystems und der Kapitalbildung behält.

Im Jahr 2026 sehen sie weniger wie Konkurrenten aus, sondern eher wie komplementäre Layer eines Multi-Chain-Internets.

Was JAM für die Blockchain-Architektur bedeutet

Die Bedeutung von JAM geht über Polkadot hinaus. Es stellt die klarste Ausprägung eines Post-EVM-Paradigmas dar, das andere Projekte studieren und selektiv übernehmen werden.

Kernprinzipien

Rechen-Trennung: Die Entkoppelung von Ausführung und Konsens ermöglicht parallele Verarbeitung auf dem Base-Layer, nicht als nachträglicher Einfall.

Domänenspezifische Optimierung: Anstatt eine Allzweck-VM zu bauen und auf Skalierbarkeit zu hoffen, ist JAM gezielt für die Arbeitslasten konzipiert, die Blockchains tatsächlich ausführen.

Hardware-Ausrichtung: Die Verwendung von RISC-V und 64-Bit-Wörtern richtet die Architektur der virtuellen Maschine an physischer Hardware aus und eliminiert so den Emulations-Overhead.

Transaktionsabstraktion: Die Verlagerung der Transaktionsabwicklung auf die Anwendungsebene ermöglicht es dem Protokoll, sich auf Berechnung und Zustandsverwaltung zu konzentrieren.

Auswirkungen auf die Branche

Unabhängig davon, ob JAM kommerziell erfolgreich ist oder scheitert, werden diese architektonischen Entscheidungen das Blockchain-Design des nächsten Jahrzehnts beeinflussen. Das Gray Paper bietet eine formale Spezifikation, die andere Projekte studieren, kritisieren und selektiv implementieren können.

Ethereums RISC-V-Vorschlag zeigt bereits diesen Einfluss. Die Frage ist nicht, ob sich diese Ideen verbreiten werden, sondern wie schnell und in welcher Form.

Der Weg in die Zukunft

JAM stellt Gavin Woods ambitionierteste technische Vision seit Polkadot selbst dar. Der Einsatz entspricht der Ambition: Ein Erfolg würde einen völlig anderen Ansatz für die Blockchain-Architektur validieren, während ein Scheitern Polkadot im Wettbewerb mit neueren L1s ohne ein differenziertes technisches Narrativ zurücklassen würde.

Die nächsten 18 Monate werden zeigen, ob sich die theoretischen Vorteile von JAM in die Produktionsrealität übertragen lassen. Mit 43 Implementierungsteams, einem neunstelligen Preispool und einer klaren Roadmap zum Mainnet verfügt das Projekt über Ressourcen und Dynamik. Es bleibt abzuwarten, ob die Komplexität des Refine-Accumulate-Paradigmas Woods Vision eines „verteilten Computers, der fast jede Art von Aufgabe ausführen kann“, erfüllen kann.

Für Entwickler und Projekte, die Blockchain-Infrastruktur evaluieren, verdient JAM ernsthafte Aufmerksamkeit – nicht als Hype, sondern als technisch fundierter Versuch, Probleme zu lösen, mit denen jede große Blockchain konfrontiert ist. Das Blockchain-als-virtuelle-Maschine-Paradigma hat der Branche ein Jahrzehnt lang gute Dienste geleistet. JAM setzt darauf, dass das nächste Jahrzehnt etwas grundlegend anderes erfordert.


Bauen Sie auf einer Blockchain-Infrastruktur der nächsten Generation? BlockEden.xyz bietet leistungsstarke RPC-Endpunkte im gesamten Polkadot-Ökosystem und über 30 weiteren Netzwerken. Erkunden Sie unseren API-Marktplatz, um auf Infrastruktur der Enterprise-Klasse für Ihre Anwendungen zuzugreifen.

Der Aufstieg regionaler Zahlungsnetzwerke: Wie Stablecoins Visa und Mastercard überholten

· 12 Min. Lesezeit
Dora Noda
Software Engineer

Als Stablecoin-Übertragungen im Jahr 2024 stillschweigend 27,6 Billionen US-Dollar verarbeiteten – und damit das kombinierte Volumen von Visa und Mastercard um fast 8 % übertrafen – übersahen die meisten Schlagzeilen die wahre Geschichte. Der Wandel vollzog sich nicht in den Vorstandsetagen des Silicon Valley oder an den Handelstischen der Wall Street. Er entfaltete sich bei QR-Code-fähigen Straßenhändlern in Lagos, mobilen Geldkiosken in Nairobi und Scan-to-Pay-Terminals in ganz Südostasien.

Willkommen im Zeitalter regionaler Zahlungsnetzwerke, in dem eine Konstellation spezialisierter Akteure systematisch die Annahme demontiert, dass globale Zahlungen globale Unternehmen erfordern.

Das 27-Billionen-Dollar-Signal

Jahrzehntelang waren grenzüberschreitende Zahlungen die exklusive Domäne einiger weniger Giganten. Visa verarbeitet Transaktionen in über 200 Ländern. Mastercard bedient weltweit 150 Millionen Händler. Das Netzwerk von PayPal erstreckt sich über 200 Märkte. Diese Zahlen schienen unüberwindbar – bis sie es nicht mehr waren.

Laut CEX.IO-Forschung haben USD-gestützte Stablecoins Visa und Mastercard in allen vier Quartalen des Jahres 2024 übertroffen und setzten ihre Dominanz bis ins erste Quartal 2025 fort. Doch die interessantere Erkenntnis ist nicht das Volumen – sondern woher dieses Volumen stammt.

Der Chainalysis 2024 Global Adoption Index zeigt, dass Zentral- und Südasien sowie Ozeanien (CSAO) bei der weltweiten Einführung von Kryptowährungen führend sind, wobei sich sieben der Top-20-Länder in dieser Region befinden. Subsahara-Afrika verzeichnete ein „signifikantes“ DeFi-Wachstum, wobei Südafrika als wichtiges Zentrum für Krypto-Zahlungen im Einzelhandel hervorging.

Dies ist kein Zufall. Es ist das Ergebnis regionaler Netzwerke, die eine Infrastruktur aufbauen, die tatsächlich den lokalen Bedürfnissen entspricht.

AEON: 50 Millionen Händler in 18 Monaten

Betrachten wir AEON, ein Zahlungsnetzwerk, von dem die meisten westlichen Beobachter noch nie gehört haben. Innerhalb von 18 Monaten nach dem Start hat AEON über 50 Millionen Händler in Schwellenländern vernetzt, primär in Südostasien, Afrika und Lateinamerika.

Die Zahlen erzählen eine beeindruckende Geschichte:

  • Über 20 Millionen gewonnene Händler innerhalb von vier Monaten nach dem Start
  • Über 994.000 verarbeitete Transaktionen im Wert von über 29 Millionen US-Dollar an frühem Volumen
  • Über 200.000 aktive Nutzer, welche die Scan-to-Pay-Funktionalität nutzen

Der Ansatz von AEON umgeht das traditionelle Kartennetzwerkmodell vollständig. Anstatt Upgrades von POS-Terminals oder Händlerverträge über Acquirer-Banken zu erfordern, ermöglicht AEON Zahlungen über QR-Codes – dieselbe Schnittstelle, die bereits den Zahlungsverkehr in Asien dominiert. Im Dezember 2025 integrierte AEON X Layer, den Ethereum Layer 2 von OKX, und brachte die Scan-to-Pay-Funktion direkt zur Händlerbasis des Netzwerks.

Die Roadmap des Netzwerks für 2026 ist noch ambitionierter: Die Etablierung von Industriestandards für Zahlungen durch KI-Agenten mit „Know Your Agent“-Authentifizierungs-Frameworks, die AEON zur Standard-Settlement-Ebene für den autonomen Handel machen könnten.

Gnosis Pay: Self-Custody trifft auf Visa-Infrastruktur

Während AEON eine parallele Infrastruktur aufbaut, verfolgt Gnosis Pay einen anderen Ansatz: Die Nutzung bestehender Schienen bei gleichzeitiger Wahrung des Kernversprechens von Krypto.

Die Gnosis Pay Visa-Debitkarte startete im Februar 2024 europaweit mit einem Alleinstellungsmerkmal – sie ist echtes Self-Custodial. Im Gegensatz zu praktisch jeder anderen Krypto-Karte, die das Einzahlen von Geldern auf ein Custodial-Konto erfordert, behalten Gnosis Pay-Nutzer die Kontrolle über ihre Private Keys. Die Gelder verbleiben bis zum Zeitpunkt des Kaufs in einer Safe-Wallet auf der Gnosis Chain.

Die Wirtschaftlichkeit ist ebenso markant:

  • Null Transaktionsgebühren bei jedem der über 80 Millionen weltweiten Visa-Händler
  • Null Fremdwährungsgebühren bei internationalen Einkäufen
  • Null Off-Ramping-Gebühren, die normalerweise 1–3 % jeder Transaktion verschlingen

Für europäische Nutzer bietet Gnosis Pay eine estnische IBAN durch eine Partnerschaft mit Monerium an, was SEPA-Überweisungen und Gehaltseingänge ermöglicht. Es ist effektiv ein traditionelles Bankkonto, das durch Self-Custodial-Krypto abgesichert ist.

Das gestaffelte Cashback-System – das basierend auf den GNO-Token-Beständen von 1 % bis 5 % reicht – schafft eine Übereinstimmung zwischen den Nutzern und dem Netzwerk. Aber die wahre Innovation ist der Beweis, dass Kartennetzwerke und Self-Custody sich nicht gegenseitig ausschließen. Gnosis Pay hat gezeigt, dass Krypto-Zahlungen in bestehende Infrastrukturen integriert werden können, ohne die Eigenschaften zu opfern, die Krypto wertvoll machen.

Die geografischen Expansionspläne für 2026 umfassen die USA, Mexiko, Kolumbien, Australien, Singapur, Thailand, Japan, Indonesien und Indien – im Wesentlichen dieselben Schwellenländer, in denen AEON alternative Schienen baut.

M-Pesa: 60 Millionen Nutzer gehen On-Chain

Wenn AEON neue Marktteilnehmer und Gnosis Pay krypto-native Innovationen repräsentieren, steht M-Pesa für etwas potenziell noch Bedeutenderes: die Adaption durch etablierte Unternehmen.

Im Januar 2026 gab M-Pesa – Afrikas dominierende mobile Geldplattform mit über 60 Millionen monatlichen Nutzern – eine Partnerschaft mit der ADI Foundation bekannt, um eine Blockchain-Infrastruktur in acht afrikanischen Ländern bereitzustellen: Kenia, die DR Kongo, Ägypten, Äthiopien, Ghana, Lesotho, Mosambik und Tansania.

Der Zeitpunkt fällt mit Kenias Virtual Asset Service Providers Act zusammen, der im November 2025 als Afrikas umfassendster Regulierungsrahmen für Kryptowährungen in Kraft trat. Die Partnerschaft wird einen an den VAE-Dirham gekoppelten Stablecoin einführen – ausgegeben von der First Abu Dhabi Bank unter Aufsicht der Zentralbank der VAE –, der den Nutzern eine Absicherung gegen die Volatilität der lokalen Währungen bietet.

Die Chance ist beträchtlich. Allein in Kenia wurden im Jahr bis Juni 2024 Stablecoin-Transaktionen im Wert von 3,3 Milliarden US-Dollar abgewickelt, womit das Land an vierter Stelle der afrikanischen Nationen liegt. Der Kryptowährungsmarkt in Subsahara-Afrika wuchs im Jahresvergleich um 52 % und erreichte zwischen Juli 2024 und Juni 2025 über 205 Milliarden US-Dollar.

Doch das Volumen erzählt nur einen Teil der Geschichte. Die beeindruckendere Statistik: 42 % der Erwachsenen in Subsahara-Afrika haben nach wie vor kein Bankkonto. Die Blockchain-Integration von M-Pesa verdrängt nicht einfach Finanzdienstleistungen – sie bietet sie zum ersten Mal für Bevölkerungsgruppen an, die von traditionellen Banken systematisch ignoriert wurden.

Die Kostenarbitrage

Warum sind regionale Netzwerke dort erfolgreich, wo globale Akteure seit Jahrzehnten scheitern? Die Antwort liegt in der Ökonomie, die globale Zahlungsriesen bei grenzüberschreitenden Überweisungen strukturell wettbewerbsunfähig macht.

Traditionelle Überweisungskosten:

  • Durchschnitt in Subsahara-Afrika: 8,78 % des Transaktionswerts (Q1 2025, Weltbank)
  • Globaler Durchschnitt: 6 %+ für grenzüberschreitende Überweisungen
  • Bearbeitungszeit für Banküberweisungen: 3–5 Werktage

Stablecoin-Transferkosten:

Bei einer Überweisung von 200 nachKeniaistdieRechnungeindeutig:EinetraditionelleU¨berweisungko¨nnte17,56nach Kenia ist die Rechnung eindeutig: Eine traditionelle Überweisung könnte 17,56 an Gebühren kosten; ein Stablecoin-Transfer kostet etwa 1–2 $. Wenn globale Überweisungen jährlich 800 Milliarden US-Dollar überschreiten, entspricht dieser Kostenunterschied potenziellen Einsparungen in zweistelliger Milliardenhöhe – Geld, das derzeit an Vermittler statt an die Empfänger fließt.

Regionale Netzwerke nutzen diese Arbitrage, weil sie genau dafür gebaut wurden. Sie tragen weder die Kosten für veraltete Infrastrukturen korrespondierender Bankbeziehungen noch den Compliance-Aufwand für den gleichzeitigen Betrieb in 200 Märkten.

Die B2B-Explosion

Verbraucherzahlungen machen Schlagzeilen, aber das schneller wachsende Segment ist B2B. Das monatliche B2B-Stablecoin-Zahlungsvolumen stieg von unter 100 Millionen US-Dollar Anfang 2023 auf über 3 Milliarden US-Dollar bis 2025 – eine 30-fache Steigerung in zwei Jahren.

Unternehmen in Lateinamerika, Afrika und Südostasien nutzen Stablecoins zunehmend für globale Gehaltsabrechnungen, Lieferantenzahlungen und FX-Optimierung. Bitso, die lateinamerikanische Krypto-Plattform, meldete signifikante B2B-Flüsse, die ausschließlich durch Stablecoin-Abwicklungen getrieben wurden.

Eine Analyse von 31 Stablecoin-Zahlungsunternehmen zeigt, dass von Januar 2023 bis Februar 2025 über 94,2 Milliarden US-Dollar an Zahlungen abgewickelt wurden. Dabei handelt es sich nicht um spekulative Transaktionen, sondern um gewöhnliche Geschäftszahlungen, die außerhalb der traditionellen Bankwege ablaufen.

Der Reiz ist offensichtlich: Unternehmen in Schwellenländern sind oft mit unzuverlässigen Korrespondenzbankbeziehungen, mehrtägigen Abwicklungszeiten und intransparenten Gebühren konfrontiert. Stablecoins bieten sofortige Endgültigkeit und kalkulierbare Kosten, unabhängig davon, welche Länder an der Transaktion beteiligt sind.

Wie traditionelle Giganten reagieren

Visa und Mastercard ignorieren die Bedrohung nicht. Mastercard ging eine Partnerschaft mit MoonPay ein, um Stablecoin-Zahlungen bei 150 Millionen Händlern zu ermöglichen. Visa testet Stablecoin-Dienste in sechs lateinamerikanischen Ländern und unterstützt über 130 mit Stablecoins verknüpfte Kartenprogramme in mehr als 40 Ländern.

Doch ihre Reaktion offenbart die strukturelle Herausforderung. Traditionelle Netzwerke fügen Krypto als optionales Overlay zu ihrer bestehenden Infrastruktur hinzu. Regionale Netzwerke bauen eine krypto-native Infrastruktur von Grund auf neu auf.

Dieser Unterschied ist entscheidend. Wenn Gnosis Pay keine Gebühren verlangt, dann deshalb, weil die zugrunde liegende Gnosis Chain für eine effiziente Abwicklung konzipiert wurde. Wenn Visa Stablecoin-Unterstützung anbietet, erfolgt das Routing über dasselbe Korrespondenzbankensystem, das traditionelle Überweisungen teuer macht. Die Infrastruktur bestimmt die Ökonomie.

2026 : Das Jahr der Konvergenz

Mehrere Trends laufen zusammen , um die Einführung regionaler Netzwerke zu beschleunigen :

** Regulatorische Klarheit : ** Kenias VASP Act , das MiCA-Framework der EU und Brasiliens Stablecoin-Vorschriften schaffen Compliance-Pfade , die noch vor 18 Monaten fehlten .

** Reife der Infrastruktur : ** Der Markt für digitale Zahlungen in Südostasien wird bis Ende 2025 voraussichtlich 3 Billionen $ erreichen und wächst jährlich um 18 % . Das ist eine Infrastruktur , die regionale Krypto-Netzwerke nutzen können , anstatt sie von Grund auf neu aufzubauen .

** Mobile Durchdringung : ** Afrikas Mobile-Money-Ökosystem erreichte im Jahr 2025 562 Millionen Nutzer und wickelt jährlich Transaktionen im Wert von 495 Milliarden $ ab . Jedes Smartphone wird zu einem potenziellen Krypto-Zahlungsterminal .

** Nutzervolumen : ** Über 560 Millionen Menschen weltweit besitzen Kryptowährungen ( Stand Anfang 2025 ) , wobei sich das Wachstum auf dieselben Regionen konzentriert , in denen das traditionelle Bankwesen versagt .

Die erste Welle der Skalierung der Stablecoin-Infrastruktur wird laut dem globalen Leiter der Finanzdienstleistungsberatung von AArete wirklich im Jahr 2026 stattfinden . Die Akzeptanz von Krypto-Zahlungen wird bis 2026 voraussichtlich um 85 % wachsen , angetrieben durch regulatorische Unterstützung und skalierbare Infrastruktur .

Der Vorteil der Lokalisierung

Der vielleicht am meisten unterschätzte Vorteil regionaler Netzwerke ist die Lokalisierung — nicht nur in der Sprache , sondern im Zahlungsverhalten .

QR-Codes dominieren den Zahlungsverkehr in ganz Asien aus kulturellen und praktischen Gründen , die sich vom kartenorientierten Westen unterscheiden . Das Agent-Netzwerkmodell von M-Pesa funktioniert in Afrika , weil es bestehende informelle Wirtschaftsstrukturen widerspiegelt . Lateinamerikas Vorliebe für Banküberweisungen gegenüber Karten spiegelt jahrzehntelange Bedenken hinsichtlich Kreditkartenbetrugs wider .

Regionale Netzwerke verstehen diese Nuancen , weil sie von Teams aufgebaut werden , die in den lokalen Märkten verwurzelt sind . Die Gründer von AEON verstehen das südostasiatische Zahlungsverhalten . Das Team von Gnosis Pay versteht die europäischen regulatorischen Anforderungen . Die Betreiber von M-Pesa verfügen über 15 Jahre Erfahrung im afrikanischen Mobile Money .

Globale Netzwerke hingegen optimieren für den Durchschnittsfall . Sie stellen Lagos dieselben POS-Terminals zur Verfügung wie London , die gleichen Onboarding-Flows für Jakarta wie für New York . Das Ergebnis ist eine Infrastruktur , die überall akzeptabel , aber nirgendwo optimal funktioniert .

Was das für die Zukunft bedeutet

Die Auswirkungen gehen über den Zahlungsverkehr hinaus . Regionale Netzwerke beweisen , dass kritische Finanzinfrastrukturen keine globale Skalierung benötigen , um wertvoll zu sein — sie benötigen eine lokale Passform .

Dies deutet auf eine Zukunft hin , in der sich der Zahlungsverkehr in regionale Netzwerke aufteilt , die durch Interoperabilitätsprotokolle verbunden sind , anstatt sich unter wenigen globalen Anbietern zu konsolidieren . Es ist ein Modell , das eher dem Internet ähnelt — mehrere Netzwerke , die durch gemeinsame Standards verbunden sind — als dem aktuellen Kreditkarten-Duopol .

Für Bevölkerungen in Schwellenländern stellt dieser Wandel etwas Bedeutenderes dar : die erste glaubwürdige Alternative zu Finanzsystemen , die jahrzehntelang Gebühren extrahiert und gleichzeitig minimale Dienstleistungen erbracht haben .

Für traditionelle Zahlungsriesen stellt dies eine existenzielle strategische Frage dar : Können sie ihre Infrastruktur schnell genug anpassen , oder werden regionale Netzwerke die nächsten Milliarden Zahlungsnutzer erobern , bevor sie reagieren können ?

Die nächsten 24 Monate werden die Antwort liefern .


  • Für Entwickler , die im Bereich der Web3-Zahlungen tätig sind , ist eine robuste Infrastruktur die Grundlage für alles . BlockEden.xyz bietet API-Zugriff auf Unternehmensebene über wichtige Blockchain-Netzwerke hinweg , einschließlich Ethereum , Solana und Sui — dieselben Chains , die die nächste Generation von Zahlungsanwendungen antreiben . Erkunden Sie unseren API-Marktplatz , um auf einer Infrastruktur aufzubauen , die für die Größenordnung dieser Anforderungen ausgelegt ist . *

Dezentrale KI: Bittensor vs. Sahara AI im Rennen um Open Intelligence

· 10 Min. Lesezeit
Dora Noda
Software Engineer

Was wäre, wenn die Zukunft der künstlichen Intelligenz nicht von einer Handvoll Billionen-Dollar-Unternehmen kontrolliert würde, sondern von Millionen von Mitwirkenden, die Token für das Training von Modellen und das Teilen von Daten verdienen? Zwei Projekte liefern sich ein Wettrennen, um diese Vision Wirklichkeit werden zu lassen — und sie könnten in ihrem Ansatz nicht unterschiedlicher sein.

Bittensor hat mit seiner von Bitcoin inspirierten Tokenomics und dem Proof-of-Intelligence-Mining ein Ökosystem im Wert von 2,9 Milliarden aufgebaut,indemKIModelleumBelohnungenkonkurrieren.SaharaAI,unterstu¨tztdurch49Millionenaufgebaut, in dem KI-Modelle um Belohnungen konkurrieren. Sahara AI, unterstützt durch 49 Millionen von Pantera und Binance Labs, baut eine Full-Stack-Blockchain auf, bei der Dateneigentum und Urheberrechtsschutz an erster Stelle stehen. Das eine belohnt den Output an roher Intelligenz; das andere schützt die Menschen hinter den Daten.

Während zentralisierte KI-Giganten wie OpenAI und Google dem Ziel der künstlichen allgemeinen Intelligenz (AGI) entgegenstürmen, setzen diese dezentralen Alternativen darauf, dass die Zukunft offenen, erlaubnisfreien Systemen gehört. Doch welche Vision wird sich durchsetzen?

Das Zentralisierungsproblem der KI

Die KI-Branche steht vor einer massiven Machtkonzentration. Das Training von Frontier-Modellen erfordert eine Recheninfrastruktur in Milliardenhöhe, wobei Cluster aus Tausenden von GPUs monatelang laufen. Nur eine Handvoll Unternehmen — OpenAI, Google, Anthropic, Meta — können sich diesen Umfang leisten. DeepMind-CEO Demis Hassabis beschrieb dies kürzlich als "das intensivste Wettbewerbsumfeld", das erfahrene Technologen je gesehen haben.

Diese Konzentration schafft kaskadierende Probleme. Datenlieferanten — die Künstler, Autoren und Programmierer, deren Arbeit diese Modelle trainiert — erhalten weder Vergütung noch Namensnennung. Kleine Entwickler können nicht gegen proprietäre Barrieren konkurrieren. Und die Nutzer haben keine andere Wahl, als darauf zu vertrauen, dass zentralisierte Anbieter verantwortungsvoll mit ihren Daten und Ergebnissen umgehen.

Dezentrale KI-Protokolle bieten eine alternative Architektur. Durch die Verteilung von Rechenleistung, Daten und Belohnungen über globale Netzwerke zielen sie darauf ab, den Zugang zu demokratisieren und gleichzeitig eine faire Vergütung zu gewährleisten. Aber der Gestaltungsraum ist riesig, und zwei führende Projekte haben radikal unterschiedliche Wege gewählt.

Bittensor: Das Proof-of-Intelligence-Mining-Netzwerk

Bittensor funktioniert wie ein "Bitcoin für KI" — ein erlaubnisfreies Netzwerk, in dem Teilnehmer TAO-Token verdienen, indem sie wertvolle Machine-Learning-Ergebnisse beisteuern. Anstatt willkürliche kryptografische Rätsel zu lösen, betreiben Miner KI-Modelle und beantworten Anfragen. Je besser ihre Antworten sind, desto mehr verdienen sie.

Wie es funktioniert

Das Netzwerk besteht aus spezialisierten Subnetzen (Subnets), von denen sich jedes auf eine bestimmte KI-Aufgabe konzentriert: Textgenerierung, Bildsynthese, Handelssignale, Proteinfaltung, Code-Vervollständigung. Bis Anfang 2026 beherbergt Bittensor über 129 aktive Subnetze, gegenüber 32 in der Anfangsphase.

Innerhalb jedes Subnetzes interagieren drei Rollen:

  • Miner betreiben KI-Modelle und beantworten Anfragen, wobei sie TAO basierend auf der Output-Qualität verdienen.
  • Validatoren bewerten die Antworten der Miner und vergeben Punkte unter Verwendung des Yuma-Konsens-Algorithmus.
  • Subnet-Besitzer kuratieren die Aufgabenspezifikationen und erhalten einen Teil der Emissionen.

Die Aufteilung der Emissionen beträgt 41 % an Miner, 41 % an Validatoren und 18 % an Subnet-Besitzer. Dies schafft ein marktgetriebenes System, in dem die besten KI-Beiträge die höchsten Belohnungen verdienen — eine Meritokratie, die durch kryptografischen Konsens statt durch unternehmenseigene Hierarchien durchgesetzt wird.

Die TAO-Token-Ökonomie

TAO spiegelt die Tokenomics von Bitcoin wider: eine feste Obergrenze von 21 Millionen Token, regelmäßige Halving-Ereignisse und kein Pre-Mine oder ICO. Am 12. Dezember 2025 schloss Bittensor sein erstes Halving ab, wodurch die täglichen Emissionen von 7.200 auf 3.600 TAO gesenkt wurden.

Das Upgrade auf dynamisches TAO (dTAO) im Februar 2025 führte eine marktgetriebene Preisgestaltung für Subnetze ein. Wenn Staker in den Alpha-Token eines Subnetzes investieren, stimmen sie mit ihrem TAO über den Wert dieses Subnetzes ab. Höhere Nachfrage bedeutet höhere Emissionen — ein Preisfindungsmechanismus für KI-Fähigkeiten.

Derzeit sind rund 73 % des TAO-Angebots gestakt, was eine starke langfristige Überzeugung signalisiert. Der GTAO-Trust von Grayscale beantragte im Dezember 2025 die Umwandlung an der NYSE, was potenziell die Tür für einen TAO-ETF und einen breiteren institutionellen Zugang öffnet.

Netzwerkskalierung und Akzeptanz

Die Zahlen erzählen eine Geschichte von schnellem Wachstum:

  • 121.567 einzigartige Wallets über alle Subnetze hinweg
  • 106.839 Miner und 37.642 Validatoren
  • Marktkapitalisierung von etwa 2,9 Milliarden $
  • EVM-Kompatibilität ermöglicht Smart Contracts auf Subnetzen

Die These von Bittensor ist einfach: Wenn man die richtigen Anreize schafft, wird Intelligenz aus dem Netzwerk entstehen. Kein zentraler Koordinator erforderlich.

Sahara AI: Die Full-Stack-Plattform für Datensouveränität

Während sich Bittensor auf die Incentivierung von KI-Outputs konzentriert, befasst sich Sahara AI mit dem Input-Problem: Wem gehören die Daten, mit denen diese Modelle trainiert werden, und wie werden die Mitwirkenden bezahlt?

Gegründet von Forschern des MIT und der USC, hat Sahara in Finanzierungsrunden unter der Leitung von Pantera Capital, Binance Labs und Polychain Capital 49 Millionen eingesammelt.IhrIDOimJahr2025aufBuidlpadzog103.000Teilnehmeraus118La¨ndernanundsammelteu¨ber74Millioneneingesammelt. Ihr IDO im Jahr 2025 auf Buidlpad zog 103.000 Teilnehmer aus 118 Ländern an und sammelte über 74 Millionen ein — wobei 79 % in der USD1-Stablecoin von World Liberty Financial gezahlt wurden.

Die drei Säulen

Sahara AI basiert auf drei grundlegenden Prinzipien:

1. Souveränität und Provenienz: Jeder Datenbeitrag wird On-Chain mit unveränderlicher Zuordnung aufgezeichnet. Selbst nachdem Daten während des Trainings in KI-Modelle eingespeist wurden, behalten die Mitwirkenden das verifizierbare Eigentum. Die Plattform ist SOC2-zertifiziert für Sicherheit und Compliance.

2. KI-Nutzen: Der Sahara-Marktplatz ( gestartet in der offenen Beta im Juni 2025 ) ermöglicht es Nutzern, KI-Modelle, Datensätze und Rechenressourcen zu kaufen, zu verkaufen und zu lizenzieren. Jede Transaktion wird auf der Blockchain mit transparenter Umsatzbeteiligung aufgezeichnet.

3. Kollaborative Ökonomie: Hochwertige Mitwirkende erhalten Soulbound-Token ( nicht übertragbare Reputationsmarker ), die Premium-Rollen und Governance-Rechte freischalten. Token-Inhaber stimmen über Plattform-Upgrades und Mittelzuweisungen ab.

Datendienste-Plattform

Saharas Datendienste-Plattform, die im Dezember 2024 gestartet wurde, ermöglicht es jedem, Geld durch das Erstellen von Datensätzen für das KI-Training zu verdienen. Über 200.000 globale KI-Trainer und 35 Unternehmenskunden nutzen die Plattform, wobei mehr als 3 Millionen Datenannotationen verarbeitet wurden.

Dies adressiert eine grundlegende Asymmetrie in der KI-Entwicklung: Unternehmen wie OpenAI durchsuchen das Internet nach Trainingsdaten, aber die ursprünglichen Ersteller gehen leer aus. Sahara stellt sicher, dass Datenmitwirkende – ob sie nun Bilder beschriften, Code schreiben oder Texte annotieren – eine direkte Vergütung durch SAHARA-Token-Zahlungen erhalten.

Technische Architektur

Sahara Chain verwendet CometBFT ( ein Fork von Tendermint Core ) für den byzantinisch-fehlertoleranten Konsens. Das Design priorisiert Datenschutz, Provenienz und Leistung für KI-Anwendungen, die eine sichere Datenhandhabung erfordern.

Die Token-Ökonomie umfasst:

  • Zahlungen pro Inferenz in SAHARA
  • Proof-of-Stake-Validierung mit Staking-Belohnungen
  • Dezentrale Governance für Protokollentscheidungen
  • 10 Milliarden maximale Versorgungsmenge mit TGE im Juni 2025

Der Mainnet-Launch erfolgte im 3. Quartal 2025, wobei das Team 1,4 Millionen täglich aktive Konten im Testnet und Partnerschaften mit Microsoft, AWS und Google Cloud meldete.

Im direkten Vergleich: Die Visionen gegenübergestellt

DimensionBittensorSahara AI
HauptfokusQualität des KI-OutputsSouveränität des Dateneingangs
KonsensProof of Intelligence ( Yuma )Proof of Stake ( CometBFT )
Token-Angebot21 Mio. Hard Cap10 Mrd. Maximum
Mining-ModellKompetitiv ( beste Ergebnisse gewinnen )Kollaborativ ( alle Mitwirkenden werden bezahlt )
SchlüsselkennzahlIntelligenz pro TokenDatenprovenienz pro Transaktion
Marktkapitalisierung ( Jan. 2026 )~ 2,9 Mrd. $~ 71 Mio. $
Institutionelles SignalGrayscale ETF-AntragUnterstützung durch Binance / Pantera
HauptunterscheidungsmerkmalSubnet-VielfaltUrheberschutz

Unterschiedliche Probleme, unterschiedliche Lösungen

Bittensor fragt: Wie incentivieren wir die Produktion der besten KI-Ergebnisse? Die Antwort ist Marktwettbewerb – Miner kämpfen um Belohnungen, und Qualität wird entstehen.

Sahara AI fragt: Wie vergüten wir jeden fair, der zu KI beiträgt? Die Antwort ist Provenienz – jeder Beitrag wird On-Chain verfolgt, um sicherzustellen, dass die Ersteller bezahlt werden.

Dies sind keine widersprüchlichen Visionen; sie sind komplementäre Schichten eines potenziellen dezentralen KI-Stacks. Bittensor optimiert die Modellqualität durch Wettbewerb. Sahara optimiert die Datenqualität durch faire Vergütung.

Die Urheberrechtsfrage

Eines der umstrittensten Themen der KI sind die Rechte an Trainingsdaten. Große Klagen von Künstlern, Autoren und Verlagen argumentieren, dass das Scrapen von urheberrechtlich geschützten Inhalten für das Training eine Verletzung darstellt.

Sahara adressiert dies direkt mit On-Chain-Provenienz. Wenn ein Datensatz in das System gelangt, wird das Eigentum des Mitwirkenden kryptografisch aufgezeichnet. Wenn diese Daten zum Trainieren eines Modells verwendet werden, bleibt die Zuordnung bestehen – und Lizenzzahlungen können automatisch fließen.

Bittensor hingegen ist agnostisch gegenüber der Herkunft der Trainingsdaten der Miner. Das Netzwerk belohnt die Output-Qualität, nicht die Input-Provenienz. Dies macht es flexibler, aber auch anfälliger für dieselben Urheberrechtsprobleme, mit denen zentralisierte KI konfrontiert ist.

Skalierung und Adoptionsverlauf

Die Marktkapitalisierung von Bittensor in Höhe von 2,9 Milliarden stelltSaharas71Millionenstellt Saharas 71 Millionen in den Schatten, was einen mehrjährigen Vorsprung und das Narrativ des TAO-Halvings widerspiegelt. Mit 129 Subnets und dem ETF-Antrag von Grayscale hat Bittensor eine bedeutende institutionelle Validierung erreicht.

Sahara befindet sich in einem früheren Stadium seines Lebenszyklus, wächst aber schnell. Das 74 Millionen $ IDO zeigt die Nachfrage im Privatkundensektor, und Unternehmenspartnerschaften mit AWS und Google Cloud deuten auf ein Potenzial für eine reale Einführung hin. Der Mainnet-Launch im 3. Quartal 2025 bringt das Projekt auf Kurs für den vollen Produktionsbetrieb im Jahr 2026.

Der Ausblick für 2026: Zeigen Sie mir den ROI

Wie Venky Ganesan, Partner bei Menlo Ventures, feststellte: „2026 ist das Jahr der Wahrheit für KI ('Show me the money')“. Unternehmen verlangen echten ROI, und Länder benötigen Produktivitätssteigerungen, um Infrastrukturausgaben zu rechtfertigen.

Dezentrale KI muss beweisen, dass sie mit zentralisierten Alternativen konkurrieren kann – nicht nur philosophisch, sondern auch praktisch. Können Bittensor-Subnets Modelle produzieren, die mit GPT-5 konkurrieren? Kann der Datenmarktplatz von Sahara genügend Mitwirkende anziehen, um erstklassige Trainingssets aufzubauen?

Die gesamte Marktkapitalisierung von KI-Kryptowährungen liegt bei 24 bis 27 Milliarden ,wasimVergleichzurgeru¨chteweisenBewertungvonOpenAIinHo¨hevon150Milliarden, was im Vergleich zur gerüchteweisen Bewertung von OpenAI in Höhe von 150 Milliarden gering ist. Aber dezentrale Projekte bieten etwas, das zentralisierte Giganten nicht bieten können: erlaubnisfreie Teilnahme, transparente Ökonomie und Widerstandsfähigkeit gegen Single Points of Failure.

Was man im Auge behalten sollte

Für Bittensor:

  • Angebotsdynamik nach dem Halving und Preisbildung
  • Qualitätsmetriken der Subnetze im Vergleich zu Benchmarks zentralisierter Modelle
  • Zeitplan für die Genehmigung des Grayscale-ETFs

Für Sahara AI:

  • Mainnet-Stabilität und Transaktionsvolumen
  • Einführung in Unternehmen über Pilotprogramme hinaus
  • Regulatorische Akzeptanz der On-Chain-Urheberrechtsprovenienz

Die Konvergenz-These

Das wahrscheinlichste Ergebnis ist nicht, dass ein Projekt gewinnt, während das andere verliert. Die KI-Infrastruktur ist groß genug für mehrere Gewinner, die unterschiedliche Probleme lösen.

Bittensor zeichnet sich durch die Koordinierung der Produktion verteilter Intelligenz aus. Sahara überzeugt bei der Koordinierung einer fairen Datenvergütung. Ein reifes dezentrales KI-Ökosystem könnte beide nutzen: Sahara für die Beschaffung hochwertiger, ethisch einwandfreier Trainingsdaten und Bittensor für die wettbewerbsorientierte Verbesserung von Modellen, die auf diesen Daten trainiert wurden.

Der eigentliche Wettbewerb findet nicht zwischen Bittensor und Sahara statt — er findet zwischen dezentraler KI als Kategorie und den zentralisierten Giganten statt, die derzeit dominieren. Wenn dezentrale Netzwerke auch nur einen Bruchteil der Fähigkeiten von Frontier-Modellen erreichen und gleichzeitig eine überlegene Ökonomie für Mitwirkende bieten, werden sie einen enormen Wert abschöpfen, während sich die KI-Ausgaben beschleunigen.

Zwei Visionen. Zwei Architekturen. Eine Frage: Kann dezentrale KI Intelligenz ohne zentrale Kontrolle liefern?


Der Aufbau von KI-Anwendungen auf einer Blockchain-Infrastruktur erfordert zuverlässige, leistungsstarke RPC-Dienste. BlockEden.xyz bietet API-Zugang auf Unternehmensebene, um KI-Blockchain-Integrationen zu unterstützen. Erkunden Sie unseren API-Marktplatz, um auf Fundamenten aufzubauen, die für die Ära der dezentralen KI entwickelt wurden.

Der Aufstieg von Wrench Attacks: Eine neue Bedrohung für Kryptowährungshalter

· 9 Min. Lesezeit
Dora Noda
Software Engineer

Im Januar 2025 wurde David Balland, Mitbegründer von Ledger, aus seinem Haus in Zentralfrankreich entführt. Seine Entführer forderten 10 Millionen EUR in Kryptowährung – und trennten ihm einen Finger ab, um zu beweisen, dass sie es ernst meinten. Vier Monate später wurde ein italienischer Investor 17 Tage lang gefangen gehalten und schwerer körperlicher Misshandlung ausgesetzt, während Angreifer versuchten, Zugriff auf seine Bitcoin im Wert von 28 Millionen $ zu erzwingen.

Dies sind keine Einzelfälle. Sie sind Teil eines beunruhigenden Trends, den Sicherheitsexperten als „Rekordjahr für Wrench Attacks“ bezeichnen – physische Gewalt, um die digitale Sicherheit zu umgehen, die Kryptowährungen eigentlich bieten sollten. Und die Daten offenbaren eine unangenehme Wahrheit: Während der Bitcoin-Preis steigt, nimmt auch die Gewalt gegen dessen Besitzer zu.

Was ist eine Wrench Attack?

Der Begriff „Wrench Attack“ (Schraubenschlüssel-Angriff) stammt aus einem xkcd-Webcomic, der ein einfaches Konzept illustriert: Egal wie ausgeklügelt Ihre Verschlüsselung ist, ein Angreifer kann alles mit einem 5-$-Schraubenschlüssel und der Bereitschaft, ihn einzusetzen, umgehen. Im Krypto-Bereich übersetzt sich dies in Kriminelle, die das Hacking überspringen und direkt zu physischem Zwang übergehen – Entführung, Einbruch, Folter und Drohungen gegen Familienmitglieder.

Jameson Lopp, Chief Security Officer beim Bitcoin-Wallet-Unternehmen Casa, führt eine Datenbank mit über 225 verifizierten physischen Angriffen auf Kryptowährungsbesitzer. Die Daten erzählen eine erschreckende Geschichte:

  • 2025 gab es etwa 70 Wrench Attacks – fast doppelt so viele wie die 41 im Jahr 2024
  • Etwa 25 % der Vorfälle sind Hausinvasionen, oft begünstigt durch geleakte KYC-Daten oder öffentliche Aufzeichnungen
  • 23 % sind Entführungen, bei denen häufig Familienmitglieder als Druckmittel eingesetzt werden
  • Zwei Drittel der Angriffe sind erfolgreich bei der Erbeutung von Vermögenswerten
  • Nur 60 % der bekannten Täter werden gefasst

Und diese Zahlen unterschätzen wahrscheinlich die Realität. Viele Opfer entscheiden sich dafür, Verbrechen nicht anzuzeigen, aus Angst vor Wiederholungstaten oder mangelndem Vertrauen in die Fähigkeit der Strafverfolgungsbehörden, zu helfen.

Die Korrelation zwischen Preis und Gewalt

Untersuchungen von Marilyne Ordekian am University College London identifizierten eine direkte Korrelation zwischen dem Bitcoin-Preis und der Häufigkeit physischer Angriffe. Chainalysis bestätigte dieses Muster und stellte „eine klare Korrelation zwischen gewalttätigen Vorfällen und einem vorausschauenden gleitenden Durchschnitt des Bitcoin-Preises“ fest.

Die Logik ist grausam simpel: Wenn Bitcoin Rekordhochs erreicht (über 120.000 $ im Jahr 2025), steigt der wahrgenommene Gewinn für Gewaltverbrechen proportional an. Kriminelle müssen die Blockchain-Technologie nicht verstehen – sie müssen nur wissen, dass jemand in ihrer Nähe wertvolle digitale Vermögenswerte besitzt.

Diese Korrelation hat prädiktive Auswirkungen. Wie Ari Redbord, Global Head of Policy bei TRM Labs, feststellt: „Mit zunehmender Akzeptanz von Kryptowährungen und dem steigenden Wert, der direkt von Einzelpersonen gehalten wird, sind Kriminelle zunehmend motiviert, technische Abwehrmechanismen ganz zu umgehen und stattdessen Menschen ins Visier zu nehmen.“

Die Prognose für 2026 ist nicht optimistisch. TRM Labs sagt voraus, dass Wrench Attacks weiter zunehmen werden, da Bitcoin hohe Preise beibehält und Krypto-Reichtum weiter verbreitet wird.

Die Anatomie moderner Krypto-Gewalt

Die Angriffswelle von 2025 zeigte, wie ausgeklügelt diese Operationen mittlerweile sind:

Die Ledger-Entführung (Januar 2025) David Balland und seine Partnerin wurden aus ihrem Haus in Zentralfrankreich verschleppt. Die Angreifer forderten 10 Millionen EUR und nutzten eine Fingeramputation als Druckmittel. Die französische Polizei rettete schließlich beide Opfer und nahm mehrere Verdächtige fest – doch der psychologische Schaden und die sicherheitstechnischen Auswirkungen für die gesamte Branche waren tiefgreifend.

Die Pariser Welle (Mai 2025) In einem einzigen Monat erlebte Paris mehrere hochkarätige Angriffe:

  • Die Tochter und der Enkel eines Kryptowährungs-CEOs wurden am helllichten Tag angegriffen
  • Der Vater eines Krypto-Unternehmers wurde entführt, wobei die Entführer 5-7 Millionen EUR forderten und ihm einen Finger abtrennten
  • Ein italienischer Investor wurde 17 Tage lang festgehalten und schwerer körperlicher Misshandlung ausgesetzt

Der US-Hausinvasionsring Gilbert St. Felix erhielt eine 47-jährige Haftstrafe – die längste, die jemals in einem US-Kryptofall verhängt wurde – als Anführer eines gewalttätigen Hausinvasionsrings, der Krypto-Besitzer ins Visier nahm. Seine Bande nutzte KYC-Datenlecks, um Ziele zu identifizieren, und wandte extreme Gewalt an, einschließlich Waterboarding und Drohungen mit Verstümmelung.

Die Texas-Brüder (September 2024) Raymond und Isiah Garcia hielten angeblich eine Familie in Minnesota mit AR-15-Gewehren und Schrotflinten unter vorgehaltener Waffe fest, fesselten die Opfer mit Kabelbindern und forderten Kryptowährungsübertragungen in Höhe von 8 Millionen $.

Bemerkenswert ist die geografische Verbreitung. Diese Vorfälle ereignen sich nicht nur in Hochrisikoregionen – Angriffe konzentrieren sich auf Westeuropa, die USA und Kanada, Länder, die traditionell als sicher gelten und über eine robuste Strafverfolgung verfügen. Wie Solace Global feststellt, verdeutlicht dies „die Risiken, die kriminelle Organisationen einzugehen bereit sind, um sich solch wertvolle und leicht verschiebbare digitale Vermögenswerte zu sichern“.

Das KYC-Datenproblem

Ein beunruhigendes Muster hat sich herausgebildet: Viele Angriffe scheinen durch geleakte KYC-Daten (Know Your Customer) ermöglicht worden zu sein. Wenn Sie Ihre Identität bei einer Kryptowährungsbörse verifizieren, können diese Informationen zu einem Zielmechanismus werden, falls die Börse eine Datenpanne erleidet.

Französische Krypto-Führungskräfte haben ausdrücklich europäische Kryptowährungsregulierungen dafür verantwortlich gemacht, Datenbanken geschaffen zu haben, die Hacker ausnutzen können. Laut Les Echos könnten Entführer diese Dateien verwendet haben, um die Wohnorte der Opfer zu identifizieren.

Die Ironie ist bitter. Vorschriften, die zur Verhinderung von Finanzkriminalität entwickelt wurden, ermöglichen möglicherweise physische Verbrechen gegen genau die Nutzer, die sie eigentlich schützen sollen.

Frankreichs Notfallreaktion

Nachdem im Jahr 2025 die zehnte kryptobezogene Entführung registriert wurde, leitete die französische Regierung beispiellose Schutzmaßnahmen ein:

Sofortige Sicherheits-Upgrades

  • Priorisierter Zugang zu polizeilichen Notdiensten für Krypto-Experten
  • Sicherheitsüberprüfungen von Wohnungen und direkte Beratungen durch Strafverfolgungsbehörden
  • Sicherheitstraining mit Elite-Polizeieinheiten
  • Sicherheitsaudits der Wohnsitze von Führungskräften

Legislative Maßnahmen Justizminister Gérald Darmanin kündigte ein neues Dekret zur schnellen Umsetzung an. Der Abgeordnete Paul Midy reichte einen Gesetzentwurf ein, um die Privatadressen von Unternehmensleitern automatisch aus öffentlichen Unternehmensregistern zu löschen – um so den Doxing-Vektor zu schließen, der viele Angriffe ermöglichte.

Fortschritte bei den Ermittlungen Im Zusammenhang mit den französischen Fällen wurden 25 Personen angeklagt. Ein mutmaßlicher Drahtzieher wurde in Marokko festgenommen, wartet jedoch noch auf seine Auslieferung.

Die französische Reaktion verdeutlicht einen wichtigen Punkt: Regierungen beginnen damit, Krypto-Sicherheit als eine Angelegenheit der öffentlichen Sicherheit zu behandeln, nicht nur als Finanzregulierung.

Operative Sicherheit: Die menschliche Firewall

Technische Sicherheit – Hardware-Wallets, Multisig, Cold Storage – kann Vermögenswerte vor digitalem Diebstahl schützen. Doch Wrench-Angriffe (physische Erpressung) umgehen die Technik vollständig. Die Lösung erfordert operative Sicherheit (OpSec), bei der man sich selbst mit der Vorsicht behandelt, die normalerweise vermögenden Privatpersonen vorbehalten ist.

Identitätstrennung

  • Verknüpfen Sie niemals Ihre reale Identität mit Ihren On-Chain-Beständen
  • Verwenden Sie separate E-Mail-Adressen und Geräte für Krypto-Aktivitäten
  • Vermeiden Sie die Verwendung von Privatadressen für krypto-relevante Lieferungen (einschließlich Hardware-Wallets)
  • Erwägen Sie den Kauf von Hardware direkt beim Hersteller unter Verwendung einer virtuellen Geschäftsadresse

Die erste Regel: Sprechen Sie nicht über Ihr Portfolio

  • Diskutieren Sie Bestände niemals öffentlich – auch nicht in sozialen Medien, auf Discord-Servern oder bei Meetups
  • Seien Sie vorsichtig gegenüber „Krypto-Freunden“, die Informationen weitergeben könnten
  • Vermeiden Sie das Zeigen von Statussymbolen, die auf Krypto-Erfolg hindeuten könnten

Physische Befestigung

  • Sicherheitskameras und Alarmanlagen
  • Sicherheitsbewertungen des Eigenheims
  • Variieren Sie Ihre täglichen Routinen, um berechenbare Muster zu vermeiden
  • Achten Sie auf Ihre physische Umgebung, insbesondere beim Zugriff auf Wallets

Technische Maßnahmen, die auch physischen Schutz bieten

  • Geografische Verteilung von Multisig-Schlüsseln (Angreifer können Sie nicht zwingen, etwas herauszugeben, zu dem Sie physisch keinen Zugang haben)
  • Zeitgesteuerte Auszahlungen (Time-locks), die sofortige Überweisungen unter Zwang verhindern
  • „Panic-Wallets“ mit begrenzten Mitteln, die im Falle einer Bedrohung ausgehändigt werden können
  • Collaborative Custody nach dem Casa-Modell, bei dem keine einzelne Person alle Schlüssel kontrolliert

Kommunikationssicherheit

  • Verwenden Sie Authentifikator-Apps, niemals SMS-basierte 2FA (SIM-Swapping bleibt ein häufiger Angriffsvektor)
  • Filtern Sie unbekannte Anrufe konsequent
  • Teilen Sie niemals Verifizierungscodes mit anderen
  • Versehen Sie alle Mobilfunkkonten mit PINs und Passwörtern

Der Mentalitätswandel

Die vielleicht kritischste Sicherheitsmaßnahme ist die mentale Einstellung. Wie der Leitfaden von Casa feststellt: „Selbstgefälligkeit ist wohl die größte Bedrohung für Ihre OPSEC. Viele Opfer von Bitcoin-bezogenen Angriffen wussten, welche grundlegenden Vorsichtsmaßnahmen zu treffen waren, aber sie setzten sie nicht in die Praxis um, weil sie nicht glaubten, jemals ein Ziel zu werden.“

Die „Mir wird das schon nicht passieren“-Einstellung ist die riskanteste Schwachstelle von allen.

Maximale physische Privatsphäre erfordert das, was ein Sicherheitsleitfaden beschreibt als: „Sich selbst wie eine vermögende Privatperson im Zeugenschutzprogramm zu behandeln – ständige Wachsamkeit, mehrere Verteidigungsschichten und die Akzeptanz, dass es keine perfekte Sicherheit gibt, sondern man Angriffe nur zu kostspielig oder zu schwierig machen kann.“

Das Gesamtbild

Die Zunahme von Wrench-Angriffen offenbart ein grundlegendes Spannungsfeld im Wertversprechen von Krypto. Eigenverwahrung wird als Freiheit von institutionellen Gatekeepern gefeiert – aber sie bedeutet auch, dass einzelne Nutzer die volle Verantwortung für ihre eigene Sicherheit tragen, einschließlich der physischen Sicherheit.

Das traditionelle Bankwesen bietet trotz all seiner Mängel institutionelle Schutzschichten. Wenn Kriminelle Bankkunden ins Visier nehmen, fängt die Bank Verluste oft ab. Wenn Kriminelle Krypto-Besitzer ins Visier nehmen, sind die Opfer oft auf sich allein gestellt.

Das bedeutet nicht, dass Eigenverwahrung falsch ist. Es bedeutet, dass das Ökosystem über die rein technische Sicherheit hinauswachsen muss, um der menschlichen Verwundbarkeit zu begegnen.

Was sich ändern muss:

  • Industrie: Bessere Datenhygiene-Praktiken und Protokolle für die Reaktion auf Datenschutzverletzungen
  • Regulierung: Anerkennung, dass KYC-Datenbanken Zielrisiken schaffen, die Schutzmaßnahmen erfordern
  • Bildung: Bewusstsein für physische Sicherheit als Standard beim Onboarding neuer Nutzer
  • Technologie: Mehr Lösungen wie Time-locks und gemeinschaftliche Verwahrung, die Schutz auch unter Zwang bieten

Ausblick

Die Korrelation zwischen dem Bitcoin-Preis und gewaltsamen Angriffen deutet darauf hin, dass diese Kriminalitätskategorie auch 2026 weiter wachsen wird. Da Bitcoin Preise von über $ 100.000 hält und Krypto-Wohlstand sichtbarer wird, bleibt die Anreizstruktur für Kriminelle stark.

Doch das Bewusstsein wächst. Die legislative Reaktion Frankreichs, verstärktes Sicherheitstraining und die Etablierung von operativen Sicherheitspraktiken markieren den Beginn einer branchenweiten Auseinandersetzung mit der physischen Verwundbarkeit.

Die nächste Phase der Krypto-Sicherheit wird nicht in Schlüssellängen oder Hash-Raten gemessen werden. Sie wird daran gemessen werden, wie gut das Ökosystem die Menschen schützt, die die Schlüssel halten.


Sicherheit ist das Fundament von allem im Web3. BlockEden.xyz bietet Blockchain-Infrastruktur auf Enterprise-Niveau mit einem Security-First-Design für über 30 Netzwerke. Für Teams, die Anwendungen entwickeln, bei denen die Sicherheit der Nutzer oberste Priorität hat: Erkunden Sie unseren API-Marktplatz und beginnen Sie mit dem Aufbau auf einer Infrastruktur, der Sie vertrauen können.

Die Evolution von zkEVMs: Abwägung von Kompatibilität und Performance bei der Skalierung von Ethereum

· 9 Min. Lesezeit
Dora Noda
Software Engineer

Im Jahr 2022 stellte Vitalik Buterin eine einfache Frage, die die nächsten vier Jahre der Ethereum-Skalierung definieren sollte: Wie viel Ethereum-Kompatibilität sind Sie bereit zu opfern, um schnellere Zero-Knowledge-Beweise zu erhalten? Seine Antwort kam in Form eines Klassifizierungssystems mit fünf Typen für zkEVMs, das seitdem zum Industriestandard für die Bewertung dieser kritischen Skalierungslösungen geworden ist.

Springen wir vor ins Jahr 2026, und die Antwort ist nicht mehr so einfach. Die Beweiszeiten sind von 16 Minuten auf 16 Sekunden eingebrochen. Die Kosten sind um das 45-fache gesunken. Mehrere Teams haben eine Echtzeit-Beweisgenerierung demonstriert, die schneller ist als die 12-sekündigen Blockzeiten von Ethereum. Dennoch bleibt der grundlegende Kompromiss bestehen, den Vitalik identifiziert hat – und ihn zu verstehen ist für jeden Entwickler oder jedes Projekt, das vor der Wahl steht, wo es bauen soll, unerlässlich.

Die Vitalik-Klassifizierung: Typ 1 bis 4

Vitaliks Framework kategorisiert zkEVMs entlang eines Spektrums von perfekter Ethereum-Äquivalenz bis hin zu maximaler Beweiseffizienz. Höhere Typennummern bedeuten schnellere Beweise, aber weniger Kompatibilität mit der bestehenden Ethereum-Infrastruktur.

Typ 1: Vollständig Ethereum-äquivalent

Typ 1 zkEVMs ändern nichts an Ethereum. Sie beweisen exakt dieselbe Ausführungsumgebung, die das Ethereum L1 verwendet – dieselben Opcodes, dieselben Datenstrukturen, einfach alles.

Der Vorteil: Perfekte Kompatibilität. Ethereum-Execution-Clients funktionieren wie sie sind. Jedes Tool, jeder Vertrag und jedes Stück Infrastruktur lässt sich direkt übertragen. Dies ist letztlich das, was Ethereum benötigt, um L1 selbst skalierbarer zu machen.

Der Nachteil: Ethereum wurde nicht für Zero-Knowledge-Beweise entwickelt. Die stackbasierte Architektur der EVM ist bekanntermaßen ineffizient für die ZK-Beweisgenerierung. Frühe Typ-1-Implementierungen benötigten Stunden, um einen einzigen Beweis zu generieren.

Führendes Projekt: Taiko strebt Typ-1-Äquivalenz als Based Rollup an und nutzt die Validatoren von Ethereum für das Sequencing, was eine synchrone Komponierbarkeit mit anderen Based Rollups ermöglicht.

Typ 2: Vollständig EVM-äquivalent

Typ 2 zkEVMs behalten die volle EVM-Kompatibilität bei, ändern jedoch interne Darstellungen – wie der Status gespeichert wird, wie Datenstrukturen organisiert sind –, um die Beweisgenerierung zu verbessern.

Der Vorteil: Für Ethereum geschriebene Smart Contracts laufen ohne Modifikation. Die Entwicklererfahrung bleibt identisch. Der Migrationsaufwand geht gegen Null.

Der Nachteil: Block-Explorer und Debugging-Tools müssen möglicherweise angepasst werden. Statusbeweise (State Proofs) funktionieren anders als auf dem Ethereum L1.

Führende Projekte: Scroll und Linea zielen auf Typ-2-Kompatibilität ab und erreichen eine nahezu perfekte EVM-Äquivalenz auf VM-Ebene ohne Transpiler oder benutzerdefinierte Compiler.

Typ 2.5: EVM-äquivalent mit Änderungen der Gaskosten

Typ 2.5 ist ein pragmatischer Mittelweg. Die zkEVM bleibt EVM-kompatibel, erhöht jedoch die Gaskosten für Operationen, deren Beweis in Zero-Knowledge besonders teuer ist.

Der Kompromiss: Da Ethereum ein Gaslimit pro Block hat, bedeutet die Erhöhung der Gaskosten für spezifische Opcodes, dass weniger dieser Opcodes pro Block ausgeführt werden können. Anwendungen funktionieren, aber bestimmte Rechenmuster werden unverhältnismäßig teuer.

Typ 3: Fast EVM-äquivalent

Typ 3 zkEVMs opfern spezifische EVM-Funktionen – oft im Zusammenhang mit Precompiles, der Speicherverwaltung oder der Behandlung von Vertragscode –, um die Beweisgenerierung drastisch zu verbessern.

Der Vorteil: Schnellere Beweise, geringere Kosten, bessere Performance.

Der Nachteil: Einige Ethereum-Anwendungen funktionieren nicht ohne Modifikation. Entwickler müssen möglicherweise Verträge umschreiben, die auf nicht unterstützten Funktionen basieren.

Realitätscheck: Kein Team möchte tatsächlich bei Typ 3 bleiben. Es wird als Übergangsphase verstanden, während die Teams an der komplexen Precompile-Unterstützung arbeiten, die erforderlich ist, um Typ 2.5 oder Typ 2 zu erreichen. Sowohl Scroll als auch Polygon zkEVM agierten als Typ 3, bevor sie auf der Kompatibilitätsleiter aufstiegen.

Typ 4: Kompatibel mit Hochsprachen

Typ-4-Systeme geben die EVM-Kompatibilität auf Bytecode-Ebene vollständig auf. Stattdessen kompilieren sie Solidity oder Vyper in eine benutzerdefinierte VM, die speziell für effiziente ZK-Beweise entwickelt wurde.

Der Vorteil: Schnellste Beweisgenerierung. Niedrigste Kosten. Maximale Performance.

Der Nachteil: Verträge verhalten sich möglicherweise anders. Adressen stimmen eventuell nicht mit Ethereum-Deployments überein. Debugging-Tools erfordern komplette Neuentwicklungen. Die Migration erfordert sorgfältige Tests.

Führende Projekte: zkSync Era und StarkNet repräsentieren den Typ-4-Ansatz. zkSync transpiliert Solidity in benutzerdefinierten Bytecode, der für ZK optimiert ist. StarkNet verwendet Cairo, eine völlig neue Sprache, die auf Beweisbarkeit ausgelegt ist.

Performance-Benchmarks: Wo wir im Jahr 2026 stehen

Die Zahlen haben sich seit Vitaliks ursprünglichem Beitrag dramatisch verändert. Was 2022 theoretisch war, ist 2026 Produktionsrealität.

Beweiszeiten

Frühe zkEVMs benötigten etwa 16 Minuten, um Beweise zu generieren. Aktuelle Implementierungen schließen denselben Prozess in etwa 16 Sekunden ab – eine 60-fache Verbesserung. Mehrere Teams haben eine Beweisgenerierung in weniger als 2 Sekunden demonstriert, was schneller ist als die 12-sekündigen Blockzeiten von Ethereum.

Die Ethereum Foundation hat sich ein ehrgeiziges Ziel gesetzt: 99 % der Mainnet-Blöcke in weniger als 10 Sekunden zu beweisen, unter Einsatz von Hardware im Wert von weniger als 100.000 $ und einem Stromverbrauch von 10 kW. Mehrere Teams haben bereits Fähigkeiten demonstriert, die nahe an diesem Ziel liegen.

Transaktionskosten

Das Dencun-Upgrade im März 2024 (EIP-4844 zur Einführung von „Blobs“) reduzierte die L2-Gebühren um 75–90 %, wodurch alle Rollups dramatisch kosteneffizienter wurden. Aktuelle Benchmarks zeigen:

PlattformTransaktionskostenAnmerkungen
Polygon zkEVM$ 0,00275Pro Transaktion für vollständige Batches
zkSync Era$ 0,00378Mediane Transaktionskosten
Linea$ 0,05–0,15Durchschnittliche Transaktion

Durchsatz

Die reale Performance variiert erheblich je nach Transaktionskomplexität:

PlattformTPS (Komplexes DeFi)Anmerkungen
Polygon zkEVM5,4 tx / sAMM-Swap-Benchmark
zkSync Era71 TPSKomplexe DeFi-Swaps
Theoretisch (Linea)100.000 TPSMit fortgeschrittenem Sharding

Diese Zahlen werden sich weiter verbessern, wenn Hardware-Beschleunigung, Parallelisierung und algorithmische Optimierungen reifen.

Marktadoption: TVL und Entwickler-Traktion

Die zkEVM-Landschaft hat sich um mehrere klare Marktführer konsolidiert, die jeweils unterschiedliche Punkte auf dem Typen-Spektrum repräsentieren:

Aktuelle TVL-Rankings (2025)

  • Scroll: $ 748 Millionen TVL, größte reine zkEVM
  • StarkNet: $ 826 Millionen TVS
  • zkSync Era: $ 569 Millionen TVL, 270+ bereitgestellte dApps
  • Linea: ~ $ 963 Millionen TVS, 400 % + Wachstum bei täglich aktiven Adressen

Das gesamte Layer-2-Ökosystem hat ein TVL von 70 Milliarden US-Dollar erreicht, wobei ZK-Rollups zunehmend Marktanteile gewinnen, da die Beweiskosten (Proving Costs) weiter sinken.

Signale für die Entwickler-Adoption

  • Über 65 % der neuen Smart Contracts im Jahr 2025 wurden auf Layer-2-Netzwerken bereitgestellt
  • zkSync Era zog etwa $ 1,9 Milliarden an tokenisierten Real-World-Assets (RWA) an und sicherte sich damit ~ 25 % des On-Chain-RWA-Marktanteils
  • Layer-2-Netzwerke verarbeiteten im Jahr 2025 schätzungsweise 1,9 Millionen tägliche Transaktionen

Das Abwägen zwischen Kompatibilität und Performance in der Praxis

Das Verständnis der theoretischen Typen ist nützlich, aber entscheidend sind die praktischen Auswirkungen für Entwickler.

Typ 1-2: Keine Migrationsreibung

Für Scroll und Linea (Typ 2) bedeutet Migration buchstäblich null Codeänderungen für die meisten Anwendungen. Stellen Sie denselben Solidity-Bytecode bereit, verwenden Sie dieselben Tools (MetaMask, Hardhat, Remix) und erwarten Sie dasselbe Verhalten.

Bestens geeignet für: Bestehende Ethereum-Anwendungen, die eine nahtlose Migration priorisieren; Projekte, bei denen bewährter, geprüfter Code unverändert bleiben muss; Teams ohne Ressourcen für umfangreiche Tests und Modifikationen.

Typ 3: Sorgfältige Tests erforderlich

Für Polygon zkEVM und ähnliche Typ-3-Implementierungen funktionieren die meisten Anwendungen, aber es existieren Edge-Cases. Bestimmte Precompiles verhalten sich möglicherweise anders oder werden nicht unterstützt.

Bestens geeignet für: Teams mit Ressourcen für eine gründliche Testnet-Validierung; Projekte, die nicht auf exotische EVM-Funktionen angewiesen sind; Anwendungen, die Kosteneffizienz über perfekte Kompatibilität stellen.

Typ 4: Ein anderes mentales Modell

Für zkSync Era und StarkNet unterscheidet sich die Entwicklungserfahrung deutlich von Ethereum:

zkSync Era unterstützt Solidity, transpiliert es jedoch in einen benutzerdefinierten Bytecode. Verträge lassen sich kompilieren und ausführen, aber das Verhalten kann in feinen Details abweichen. Es gibt keine Garantie, dass Adressen mit Ethereum-Bereitstellungen übereinstimmen.

StarkNet verwendet Cairo, was von Entwicklern verlangt, eine völlig neue Sprache zu lernen – allerdings eine, die speziell für beweisbare Berechnungen (provable computation) entwickelt wurde.

Bestens geeignet für: Greenfield-Projekte, die nicht durch bestehenden Code eingeschränkt sind; Anwendungen, bei denen maximale Performance die Investition in Tooling rechtfertigt; Teams, die bereit sind, in spezialisierte Entwicklung und Tests zu investieren.

Sicherheit: Die unverhandelbare Einschränkung

Die Ethereum Foundation führte 2025 klare kryptografische Sicherheitsanforderungen für zkEVM-Entwickler ein:

  • 100-Bit beweisbare Sicherheit bis Mai 2026
  • 128-Bit Sicherheit bis Ende 2026

Diese Anforderungen spiegeln die Realität wider, dass schnellere Beweise nichts bedeuten, wenn die zugrunde liegende Kryptografie nicht absolut sicher ist. Von den Teams wird erwartet, dass sie diese Schwellenwerte unabhängig von ihrer Typ-Klassifizierung erreichen.

Der Fokus auf Sicherheit hat einige Performance-Verbesserungen verlangsamt – die Ethereum Foundation hat sich bis 2026 explizit für Sicherheit vor Geschwindigkeit entschieden –, stellt aber sicher, dass das Fundament für die Massenadoption solide bleibt.

Die Wahl Ihrer zkEVM: Ein Entscheidungsrahmen

Wählen Sie Typ 1-2 (Taiko, Scroll, Linea), wenn:

  • Sie bestehende, kampferprobte Verträge migrieren
  • Audit-Kosten ein Faktor sind (keine erneute Prüfung erforderlich)
  • Ihr Team Ethereum-nativ ist und keine ZK-Expertise besitzt
  • Die Composability mit Ethereum L1 wichtig ist
  • Sie synchrone Interoperabilität mit anderen Based Rollups benötigen

Wählen Sie Typ 3 (Polygon zkEVM), wenn:

  • Sie ein Gleichgewicht zwischen Kompatibilität und Performance suchen
  • Sie in eine gründliche Testnet-Validierung investieren können
  • Kosteneffizienz eine Priorität ist
  • Sie nicht auf exotische EVM-Precompiles angewiesen sind

Wählen Sie Typ 4 (zkSync Era, StarkNet), wenn:

  • Sie neu bauen, ohne Einschränkungen durch Migration
  • Maximale Performance die Investition in Tools rechtfertigt
  • Ihr Anwendungsfall von ZK-nativen Designmustern profitiert
  • Sie über Ressourcen für spezialisierte Entwicklung verfügen

Was als Nächstes kommt

Die Typ-Klassifizierungen werden nicht statisch bleiben. Vitalik bemerkte, dass zkEVM-Projekte „leicht bei Typen mit höheren Nummern beginnen und im Laufe der Zeit zu Typen mit niedrigeren Nummern springen“ können. Wir sehen dies in der Praxis – Projekte, die als Typ 3 starteten, entwickeln sich in Richtung Typ 2, während sie die Implementierung von Precompiles vervollständigen.

Noch interessanter ist: Sollte Ethereum L1 Modifikationen vornehmen, um ZK-freundlicher zu werden, könnten Typ-2- und Typ-3-Implementierungen zu Typ 1 werden, ohne ihren eigenen Code zu ändern.

Das Endziel scheint zunehmend klar: Die Beweiszeiten werden weiter sinken, die Kosten werden weiter fallen und die Unterscheidung zwischen den Typen wird verschwimmen, da Hardware-Beschleunigung und algorithmische Verbesserungen die Performance-Lücke schließen. Die Frage ist nicht, welcher Typ gewinnen wird – sondern wie schnell das gesamte Spektrum zu einer praktischen Äquivalenz konvergiert.

Vorerst bleibt der Rahmen wertvoll. Zu wissen, wo eine zkEVM im Kompatibilitäts-Performance-Spektrum steht, sagt Ihnen, was Sie während der Entwicklung, Bereitstellung und des Betriebs zu erwarten haben. Dieses Wissen ist für jedes Team unerlässlich, das an der ZK-gestützten Zukunft von Ethereum baut.


Bauen Sie auf einer zkEVM-Infrastruktur? BlockEden.xyz bietet hochperformante RPC-Endpunkte über mehrere zkEVM-Chains hinweg, darunter Polygon zkEVM, Scroll und Linea. Erkunden Sie unseren API-Marktplatz, um auf die Infrastrukturschicht zuzugreifen, die Ihre ZK-Anwendungen benötigen.