Skip to main content

6 posts tagged with "DeFi"

View All Tags

Cross-Chain Messaging and Shared Liquidity: Security Models of LayerZero v2, Hyperlane, and IBC 3.0

· 50 min read
Dora Noda
Software Engineer

Interoperability protocols like LayerZero v2, Hyperlane, and IBC 3.0 are emerging as critical infrastructure for a multi-chain DeFi ecosystem. Each takes a different approach to cross-chain messaging and shared liquidity, with distinct security models:

  • LayerZero v2 – a proof aggregation model using Decentralized Verifier Networks (DVNs)
  • Hyperlane – a modular framework often using a multisig validator committee
  • IBC 3.0 – a light client protocol with trust-minimized relayers in the Cosmos ecosystem

This report analyzes the security mechanisms of each protocol, compares the pros and cons of light clients vs. multisigs vs. proof aggregation, and examines their impact on DeFi composability and liquidity. We also review current implementations, threat models, and adoption levels, concluding with an outlook on how these design choices affect the long-term viability of multi-chain DeFi.

Security Mechanisms of Leading Cross-Chain Protocols

LayerZero v2: Proof Aggregation with Decentralized Verifier Networks (DVNs)

LayerZero v2 is an omnichain messaging protocol that emphasizes a modular, application-configurable security layer. The core idea is to let applications secure messages with one or more independent Decentralized Verifier Networks (DVNs), which collectively attest to cross-chain messages. In LayerZero’s proof aggregation model, each DVN is essentially a set of verifiers that can independently validate a message (e.g. by checking a block proof or signature). An application can require aggregated proofs from multiple DVNs before accepting a message, forming a threshold “security stack.”

By default, LayerZero provides some DVNs out-of-the-box – for example, a LayerZero Labs-operated DVN that uses a 2-of-3 multisig validation, and a DVN run by Google Cloud. But crucially, developers can mix and match DVNs: e.g. one might require a “1 of 3 of 5” configuration meaning a specific DVN must sign plus any 2 out of 5 others. This flexibility allows combining different verification methods (light clients, zkProofs, oracles, etc.) in one aggregated proof. In effect, LayerZero v2 generalizes the Ultra Light Node model of v1 (which relied on one Relayer + one Oracle) into an X-of-Y-of-N multisig aggregation across DVNs. An application’s LayerZero Endpoint contract on each chain will only deliver a message if the required DVN quorum has written valid attestations for that message.

Security characteristics: LayerZero’s approach is trust-minimized to the extent that at least one DVN in the required set is honest (or one zk-proof is valid, etc.). By letting apps run their own DVN as a required signer, LayerZero even allows an app to veto any message unless approved by the app team’s verifier. This can significantly harden security (at the cost of centralization), ensuring no cross-chain message executes without the app’s signature. On the other hand, developers may choose a more decentralized DVN quorum (e.g. 5 of 15 independent networks) for stronger trust distribution. LayerZero calls this “application-owned security”: each app chooses the trade-off between security, cost, and performance by configuring its DVNs. All DVN attestations are ultimately verified on-chain by immutable LayerZero Endpoint contracts, preserving a permissionless transport layer. The downside is that security is only as strong as the DVNs chosen – if the configured DVNs collude or are compromised, they could approve a fraudulent cross-chain message. Thus, the burden is on each application to select robust DVNs or risk weaker security.

Hyperlane: Multisig Validator Model with Modular ISMs

Hyperlane is an interoperability framework centered on an on-chain Interchain Security Module (ISM) that verifies messages before they’re delivered on the target chain. In the simplest (and default) configuration, Hyperlane’s ISM uses a multisignature validator set: a committee of off-chain validators signs attestations (often a Merkle root of all outgoing messages) from the source chain, and a threshold of signatures is required on the destination. In other words, Hyperlane relies on a permissioned validator quorum to confirm that “message X was indeed emitted on chain A,” analogous to a blockchain’s consensus but at the bridge level. For example, Wormhole uses 19 guardians with a 13-of-19 multisig – Hyperlane’s approach is similar in spirit (though Hyperlane is distinct from Wormhole).

A key feature is that Hyperlane does not have a single enshrined validator set at the protocol level. Instead, anyone can run a validator, and different applications can deploy ISM contracts with different validator lists and thresholds. The Hyperlane protocol provides default ISM deployments (with a set of validators that the team bootstrapped), but developers are free to customize the validator set or even the security model for their app. In fact, Hyperlane supports multiple types of ISMs, including an Aggregation ISM that combines multiple verification methods, and a Routing ISM that picks an ISM based on message parameters. For instance, an app could require a Hyperlane multisig and an external bridge (like Wormhole or Axelar) both to sign off – achieving a higher security bar via redundancy.

Security characteristics: The base security of Hyperlane’s multisig model comes from the honesty of a majority of its validators. If the threshold (e.g. 5 of 8) of validators collude, they could sign a fraudulent message, so the trust assumption is roughly N-of-M multisig trust. Hyperlane is addressing this risk by integrating with EigenLayer restaking, creating an Economic Security Module (ESM) that requires validators to put up staked ETH which can be slashed for misbehavior. This “Actively Validated Service (AVS)” means if a Hyperlane validator signs an invalid message (one not actually in the source chain’s history), anyone can present proof on Ethereum to slash that validator’s stake. This significantly strengthens the security model by economically disincentivizing fraud – Hyperlane’s cross-chain messages become secured by Ethereum’s economic weight, not just by social reputation of validators. However, one trade-off is that relying on Ethereum for slashing introduces dependency on Ethereum’s liveness and assumes fraud proofs are feasible to submit in time. In terms of liveness, Hyperlane warns that if not enough validators are online to meet the threshold, message delivery can halt. The protocol mitigates this by allowing a flexible threshold configuration – e.g. using a larger validator set so occasional downtime doesn’t stall the network. Overall, Hyperlane’s modular multisig approach provides flexibility and upgradeability (apps choose their own security or combine multiple sources) at the cost of adding trust in a validator set. This is a weaker trust model than a true light client, but with recent innovations (like restaked collateral and slashing) it can approach similar security guarantees in practice while remaining easier to deploy across many chains.

IBC 3.0: Light Clients with Trust-Minimized Relayers

The Inter-Blockchain Communication (IBC) protocol, widely used in the Cosmos ecosystem, takes a fundamentally different approach: it uses on-chain light clients to verify cross-chain state, rather than introducing a new validator set. In IBC, each pair of chains establishes a connection where Chain B holds a light client of Chain A (and vice versa). This light client is essentially a simplified replica of the other chain’s consensus (e.g. tracking validator set signatures or block hashes). When Chain A sends a message (an IBC packet) to Chain B, a relayer (an off-chain actor) carries a proof (Merkle proof of the packet and the latest block header) to Chain B. Chain B’s IBC module then uses the on-chain light client to verify that the proof is valid under Chain A’s consensus rules. If the proof checks out (i.e. the packet was committed in a finalized block on A), the message is accepted and delivered to the target module on B. In essence, Chain B trusts Chain A’s consensus directly, not an intermediary – this is why IBC is often called trust-minimized interoperability.

IBC 3.0 refers to the latest evolution of this protocol (circa 2025), which introduces performance and feature upgrades: parallel relaying for lower latency, custom channel types for specialized use cases, and Interchain Queries for reading remote state. Notably, none of these change the core light-client security model – they enhance speed and functionality. For example, parallel relaying means multiple relayers can ferry packets simultaneously to avoid bottlenecks, improving liveness without sacrificing security. Interchain Queries (ICQ) let a contract on Chain A ask Chain B for data (with a proof), which is then verified by A’s light client of B. This extends IBC’s capabilities beyond token transfers to more general cross-chain data access, still underpinned by verified light-client proofs.

Security characteristics: IBC’s security guarantee is as strong as the source chain’s integrity. If Chain A has honest majority (or the configured consensus threshold) and Chain B’s light client of A is up-to-date, then any accepted packet must have come from a valid block on A. There is no need to trust any bridge validators or oracles – the only trust assumptions are the native consensus of the two chains and some parameters like the light client’s trusting period (after which old headers expire). Relayers in IBC do not have to be trusted; they can’t forge valid headers or packets because those would fail verification. At worst, a malicious or offline relayer can censor or delay messages, but anyone can run a relayer, so liveness is eventually achieved if at least one honest relayer exists. This is a very strong security model: effectively decentralized and permissionless by default, mirroring the properties of the chains themselves. The trade-offs come in cost and complexity – running a light client (especially of a high-throughput chain) on another chain can be resource-intensive (storing validator set changes, verifying signatures, etc.). For Cosmos SDK chains using Tendermint/BFT, this cost is manageable and IBC is very efficient; but integrating heterogeneous chains (like Ethereum or Solana) requires complex client implementations or new cryptography. Indeed, bridging non-Cosmos chains via IBC has been slower — projects like Polymer and Composable are working on light clients or zk-proofs to extend IBC to Ethereum and others. IBC 3.0’s improvements (e.g. optimized light clients, support for different verification methods) aim to reduce these costs. In summary, IBC’s light client model offers the strongest trust guarantees (no external validators at all) and solid liveness (given multiple relayers), at the expense of higher implementation complexity and limitations that all participant chains must support the IBC protocol.

Comparing Light Clients, Multisigs, and Proof Aggregation

Each security model – light clients (IBC), validator multisigs (Hyperlane), and aggregated proofs (LayerZero) – comes with distinct pros and cons. Below we compare them across key dimensions:

Security Guarantees

  • Light Clients (IBC): Offers highest security by anchoring on-chain verification to the source chain’s consensus. There’s no new trust layer; if you trust the source blockchain (e.g. Cosmos Hub or Ethereum) not to double-produce blocks, you trust the messages it sends. This minimizes additional trust assumptions and attack surface. However, if the source chain’s validator set is corrupted (e.g. >⅓ in Tendermint or >½ in a PoS chain go rogue), the light client can be fed a fraudulent header. In practice, IBC channels are usually established between economically secure chains, and light clients can have parameters (like trusting period and block finality requirements) to mitigate risks. Overall, trust-minimization is the strongest advantage of the light client model – there is cryptographic proof of validity for each message.

  • Multisig Validators (Hyperlane & similar bridges): Security hinges on the honesty of a set of off-chain signers. A typical threshold (e.g. ⅔ of validators) must sign off on each cross-chain message or state checkpoint. The upside is that this can be made reasonably secure with enough reputable or economically staked validators. For example, Wormhole’s 19 guardians or Hyperlane’s default committee collectively have to collude to compromise the system. The downside is this introduces a new trust assumption: users must trust the bridge’s committee in addition to the chains. This has proven to be a point of failure in some hacks (e.g. if private keys are stolen or if insiders collude). Initiatives like Hyperlane’s restaked ETH collateral add economic security to this model – validators who sign invalid data can be automatically slashed on Ethereum. This moves multisig bridges closer to the security of a blockchain (by financially punishing fraud), but it’s still not as trust-minimized as a light client. In short, multisigs are weaker in trust guarantees: one relies on a majority of a small group, though slashing and audits can bolster confidence.

  • Proof Aggregation (LayerZero v2): This is somewhat a middle ground. If an application configures its Security Stack to include a light client DVN or a zk-proof DVN, then the guarantee can approach IBC-level (math and chain consensus) for those checks. If it uses a committee-based DVN (like LayerZero’s 2-of-3 default or an Axelar adapter), then it inherits that multisig’s trust assumptions. The strength of LayerZero’s model is that you can combine multiple verifiers independently. For example, requiring both “a zk-proof is valid” and “Chainlink oracle says the block header is X” and “our own validator signs off” could dramatically reduce attack possibilities (an attacker would need to break all at once). Also, by allowing an app to mandate its own DVN, LayerZero ensures no message will execute without the app’s consent, if so configured. The weakness is that if developers choose a lax security configuration (for cheaper fees or speed), they might undermine security – e.g. using a single DVN run by an unknown party would be similar to trusting a single validator. LayerZero itself is unopinionated and leaves these choices to app developers, which means security is only as good as the chosen DVNs. In summary, proof aggregation can provide very strong security (even higher than a single light client, by requiring multiple independent proofs) but also allows weak setups if misconfigured. It’s flexible: an app can dial up security for high-value transactions (e.g. require multiple big DVNs) and dial it down for low-value ones.

Liveness and Availability

  • Light Clients (IBC): Liveness depends on relayers and the light client staying updated. The positive side is anyone can run a relayer, so the system doesn’t rely on a specific set of nodes – if one relayer stops, another can pick up the job. IBC 3.0’s parallel relaying further improves availability by not serializing all packets through one path. In practice, IBC connections have been very reliable, but there are scenarios where liveness can suffer: e.g., if no relayer posts an update for a long time, a light client could expire (e.g. if trusting period passes without renewal) and then the channel closes for safety. However, such cases are rare and mitigated by active relayer networks. Another liveness consideration: IBC packets are subject to source chain finality – e.g. waiting 1-2 blocks in Tendermint (a few seconds) is standard. Overall, IBC provides high availability as long as there is at least one active relayer, and latency is typically low (seconds) for finalized blocks. There is no concept of a quorum of validators going offline as in multisig; the blockchain’s own consensus finality is the main latency factor.

  • Multisig Validators (Hyperlane): Liveness can be a weakness if the validator set is small. For example, if a bridge has 5-of-8 multisig and 4 validators are offline or unreachable, cross-chain messaging halts because the threshold can’t be met. Hyperlane documentation notes that validator downtime can halt message delivery, depending on the threshold configured. This is partly why having a larger committee or a lower threshold (with safety trade-off) might be chosen to improve uptime. Hyperlane’s design allows deploying new validators or switching ISM if needed, but such changes might require coordination/governance. The advantage multisig bridges have is typically fast confirmation once threshold signatures are collected – no need to wait for block finality of a source chain on the destination chain, since the multisig attestation is the finality. In practice, many multisig bridges sign and relay messages within seconds. So latency can be comparable or even lower than light clients for some chains. The bottleneck is if validators are slow or geographically distributed, or if any manual steps are involved. In summary, multisig models can be highly live and low-latency most of the time, but they have a liveness risk concentrated in the validator set – if too many validators crash or a network partition occurs among them, the bridge is effectively down.

  • Proof Aggregation (LayerZero): Liveness here depends on the availability of each DVN and the relayer. A message must gather signatures/proofs from the required DVNs and then be relayed to the target chain. The nice aspect is DVNs operate independently – if one DVN (out of a set) is down and it’s not required (only part of an “M of N”), the message can still proceed as long as the threshold is met. LayerZero’s model explicitly allows configuring quorums to tolerate some DVN failures. For example, a “2 of 5” DVN set can handle 3 DVNs being offline without stopping the protocol. Additionally, because anyone can run the final Executor/Relayer role, there isn’t a single point of failure for message delivery – if the primary relayer fails, a user or another party can call the contract with the proofs (this is analogous to the permissionless relayer concept in IBC). Thus, LayerZero v2 strives for censorship-resistance and liveness by not binding the system to one middleman. However, if required DVNs are part of the security stack (say an app requires its own DVN always sign), then that DVN is a liveness dependency: if it goes offline, messages will pause until it comes back or the security policy is changed. In general, proof aggregation can be configured to be robust (with redundant DVNs and any-party relaying) such that it’s unlikely all verifiers are down at once. The trade-off is that contacting multiple DVNs might introduce a bit more latency (e.g. waiting for several signatures) compared to a single faster multisig. But those DVNs could run in parallel, and many DVNs (like an oracle network or a light client) can respond quickly. Therefore, LayerZero can achieve high liveness and low latency, but the exact performance depends on how the DVNs are set up (some might wait for a few block confirmations on source chain, etc., which could add delay for safety).

Cost and Complexity

  • Light Clients (IBC): This approach tends to be complex to implement but cheap to use once set up on compatible chains. The complexity lies in writing a correct light client implementation for each type of blockchain – essentially, you’re encoding the consensus rules of Chain A into a smart contract on Chain B. For Cosmos SDK chains with similar consensus, this was straightforward, but extending IBC beyond Cosmos has required heavy engineering (e.g. building a light client for Polkadot’s GRANDPA finality, or plans for Ethereum light clients with zk proofs). These implementations are non-trivial and must be highly secure. There’s also on-chain storage overhead: the light client needs to store recent validator set or state root info for the other chain. This can increase the state size and proof verification cost on chain. As a result, running IBC on, say, Ethereum mainnet directly (verifying Cosmos headers) would be expensive gas-wise – one reason projects like Polymer are making an Ethereum rollup to host these light clients off mainnet. Within the Cosmos ecosystem, IBC transactions are very efficient (often just a few cents worth of gas) because the light client verification (ed25519 sigs, Merkle proofs) is well-optimized at the protocol level. Using IBC is relatively low cost for users, and relayers just pay normal tx fees on destination chains (they can be incentivized with fees via ICS-29 middleware). In summary, IBC’s cost is front-loaded in development complexity, but once running, it provides a native, fee-efficient transport. The many Cosmos chains connected (100+ zones) share a common implementation, which helps manage complexity by standardization.

  • Multisig Bridges (Hyperlane/Wormhole/etc.): The implementation complexity here is often lower – the core bridging contracts mostly need to verify a set of signatures against stored public keys. This logic is simpler than a full light client. The off-chain validator software does introduce operational complexity (servers that observe chain events, maintain a Merkle tree of messages, coordinate signature collection, etc.), but this is managed by the bridge operators and kept off-chain. On-chain cost: verifying a few signatures (say 2 or 5 ECDSA signatures) is not too expensive, but it’s certainly more gas than a single threshold signature or a hash check. Some bridges use aggregated signature schemes (e.g. BLS) to reduce on-chain cost to 1 signature verification. In general, multisig verification on Ethereum or similar chains is moderately costly (each ECDSA sig check is ~3000 gas). If a bridge requires 10 signatures, that’s ~30k gas just for verification, plus any storage of a new Merkle root, etc. This is usually acceptable given cross-chain transfers are high-value operations, but it can add up. From a developer/user perspective, interacting with a multisig bridge is straightforward: you deposit or call a send function, and the rest is handled off-chain by the validators/relayers, then a proof is submitted. There’s minimal complexity for app developers as they just integrate the bridge’s API/contract. One complexity consideration is adding new chains – every validator must run a node or indexer for each new chain to observe messages, which can be a coordination headache (this was noted as a bottleneck for expansion in some multisig designs). Hyperlane’s answer is permissionless validators (anyone can join for a chain if the ISM includes them), but the application deploying the ISM still has to set up those keys initially. Overall, multisig models are easier to bootstrap across heterogeneous chains (no need for bespoke light client per chain), making them quicker to market, but they incur operational complexity off-chain and moderate on-chain verification costs.

  • Proof Aggregation (LayerZero): The complexity here is in the coordination of many possible verification methods. LayerZero provides a standardized interface (the Endpoint & MessageLib contracts) and expects DVNs to adhere to a certain verification API. From an application’s perspective, using LayerZero is quite simple (just call lzSend and implement lzReceive callbacks), but under the hood, there’s a lot going on. Each DVN may have its own off-chain infrastructure (some DVNs are essentially mini-bridges themselves, like an Axelar network or a Chainlink oracle service). The protocol itself is complex because it must securely aggregate disparate proof types – e.g. one DVN might supply an EVM block proof, another supplies a SNARK, another a signature, etc., and the contract has to verify each in turn. The advantage is that much of this complexity is abstracted away by LayerZero’s framework. The cost depends on how many and what type of proofs are required: verifying a snark might be expensive (on-chain zk proof verification can be hundreds of thousands of gas), whereas verifying a couple of signatures is cheaper. LayerZero lets the app decide how much they want to pay for security per message. There is also a concept of paying DVNs for their work – the message payload includes a fee for DVN services. For instance, an app can attach fees that incentivize DVNs and Executors to process the message promptly. This adds a cost dimension: a more secure configuration (using many DVNs or expensive proofs) will cost more in fees, whereas a simple 1-of-1 DVN (like a single relayer) could be very cheap but less secure. Upgradability and governance are also part of complexity: because apps can change their security stack, there needs to be a governance process or an admin key to do that – which itself is a point of trust/complexity to manage. In summary, proof aggregation via LayerZero is highly flexible but complex under the hood. The cost per message can be optimized by choosing efficient DVNs (e.g. using an ultra-light client that’s optimized, or leveraging an existing oracle network’s economies of scale). Many developers will find the plug-and-play nature (with defaults provided) appealing – e.g. simply use the default DVN set for ease – but that again can lead to suboptimal trust assumptions if not understood.

Upgradability and Governance

  • Light Clients (IBC): IBC connections and clients can be upgraded via on-chain governance proposals on the participant chains (particularly if the light client needs a fix or an update for a hardfork in the source chain). Upgrading the IBC protocol itself (say from IBC 2.0 to 3.0 features) also requires chain governance to adopt new versions of the software. This means IBC has a deliberate upgrade path – changes are slow and require consensus, but that is aligned with its security-first approach. There is no single entity that can flip a switch; governance of each chain must approve changes to clients or parameters. The positive is that this prevents unilateral changes that could introduce vulnerabilities. The negative is less agility – e.g. if a bug is found in a light client, it might take coordinated governance votes across many chains to patch (though there are emergency coordination mechanisms). From a dApp perspective, IBC doesn’t really have an “app-level governance” – it’s infrastructure provided by the chain. Applications just use IBC modules (like token transfer or interchain accounts) and rely on the chain’s security. So the governance and upgrades happen at the blockchain level (Hub and Zone governance). One interesting new IBC feature is custom channels and routing (e.g. hubs like Polymer or Nexus) that can allow switching underlying verification methods without interrupting apps. But by and large, IBC is stable and standardized – upgradability is possible but infrequent, contributing to its reliability.

  • Multisig Bridges (Hyperlane/Wormhole): These systems often have an admin or governance mechanism to upgrade contracts, change validator sets, or modify parameters. For example, adding a new validator to the set or rotating keys might require a multisig of the bridge owner or a DAO vote. Hyperlane being permissionless means any user could deploy their own ISM with a custom validator set, but if using the default, the Hyperlane team or community likely controls updates. Upgradability is a double-edged sword: on one hand, easy to upgrade/improve, on the other, it can be a centralization risk (if a privileged key can upgrade the bridge contracts, that key could theoretically rug the bridge). A well-governed protocol will limit this (e.g. time-lock upgrades, or use a decentralized governance). Hyperlane’s philosophy is modularity – so an app could even route around a failing component by switching ISMs, etc.. This gives developers power to respond to threats (e.g. if one set of validators is suspected to be compromised, an app could switch to a different security model quickly). The governance overhead is that apps need to decide their security model and potentially manage keys for their own validators or pay attention to updates from the Hyperlane core protocol. In summary, multisig-based systems are more upgradeable (the contracts are often upgradable and the committees configurable), which is good for rapid improvement and adding new chains, but it requires trust in the governance process. Many bridge exploits in the past have occurred via compromised upgrade keys or flawed governance, so this area must be treated carefully. On the plus side, adding support for a new chain might be as simple as deploying the contracts and getting validators to run nodes for it – no fundamental protocol change needed.

  • Proof Aggregation (LayerZero): LayerZero touts an immutable transport layer (the endpoint contracts are non-upgradable), but the verification modules (Message Libraries and DVN adapters) are append-only and configurable. In practice, this means the core LayerZero contract on each chain remains fixed (providing a stable interface), while new DVNs or verification options can be added over time without altering the core. Application developers have control over their Security Stack: they can add or remove DVNs, change confirmation block depth, etc. This is a form of upgradability at the app level. For example, if a particular DVN is deprecated or a new, better one emerges (like a faster zk client), the app team can integrate that into their config – future-proofing the dApp. The benefit is evident: apps aren’t stuck with yesterday’s security tech; they can adapt (with appropriate caution) to new developments. However, this raises governance questions: who within the app decides to change the DVN set? Ideally, if the app is decentralized, changes would go through governance or be hardcoded if they want immutability. If a single admin can alter the security stack, that’s a point of trust (they could reduce security requirements in a malicious upgrade). LayerZero’s own guidance encourages setting up robust governance for such changes or even making certain aspects immutable if needed. Another governance aspect is fee management – paying DVNs and relayers could be tuned, and misaligned incentives could impact performance (though by default market forces should adjust the fees). In sum, LayerZero’s model is highly extensible and upgradeable in terms of adding new verification methods (which is great for long-term interoperability), yet the onus is on each application to govern those upgrades responsibly. The base contracts of LayerZero are immutable to ensure the transport layer cannot be rug-pulled or censored, which inspires confidence that the messaging pipeline itself remains intact through upgrades.

To summarize the comparison, the table below highlights key differences:

AspectIBC (Light Clients)Hyperlane (Multisig)LayerZero v2 (Aggregation)
Trust ModelTrust the source chain’s consensus (no extra trust).Trust a committee of bridge validators (e.g. multisig threshold). Slashing can mitigate risk.Trust depends on DVNs chosen. Can emulate light client or multisig, or mix (trust at least one of chosen verifiers).
SecurityHighest – crypto proof of validity via light client. Attacks require compromising source chain or light client.Strong if committee is honest majority, but weaker than light client. Committee collusion or key compromise is primary threat.Potentially very high – can require multiple independent proofs (e.g. zk + multisig + oracle). But configurable security means it’s only as strong as the weakest DVNs chosen.
LivenessVery good as long as at least one relayer is active. Parallel relayers and fast finality chains give near real-time delivery.Good under normal conditions (fast signatures). But dependent on validator uptime. Threshold quorum downtime = halt. Expansion to new chains requires committee support.Very good; multiple DVNs provide redundancy, and any user can relay transactions. Required DVNs can be single points of failure if misconfigured. Latency can be tuned (e.g. wait for confirmations vs. speed).
CostUpfront complexity to implement clients. On-chain verification of consensus (signatures, Merkle proofs) but optimized in Cosmos. Low per-message cost in IBC-native environments; potentially expensive on non-native chains without special solutions.Lower dev complexity for core contracts. On-chain cost scales with number of signatures per message. Off-chain ops cost for validators (nodes on each chain). Possibly higher gas than light client if many sigs, but often manageable.Moderate-to-high complexity. Per-message cost varies: each DVN proof (sig or SNARK) adds verification gas. Apps pay DVN fees for service. Can optimize costs by choosing fewer or cheaper proofs for low-value messages.
UpgradabilityProtocol evolves via chain governance (slow, conservative). Light client updates require coordination, but standardization keeps it stable. Adding new chains requires building/approving new client types.Flexible – validator sets and ISMs can be changed via governance or admin. Easier to integrate new chains quickly. Risk if upgrade keys or governance are compromised. Typically upgradable contracts (needs trust in administrators).Highly modular – new DVNs/verification methods can be added without altering core. Apps can change security config as needed. Core endpoints immutable (no central upgrades), but app-level governance needed for security changes to avoid misuse.

Impact on Composability and Shared Liquidity in DeFi

Cross-chain messaging unlocks powerful new patterns for composability – the ability of DeFi contracts on different chains to interact – and enables shared liquidity – pooling assets across chains as if in one market. The security models discussed above influence how confidently and seamlessly protocols can utilize cross-chain features. Below we explore how each approach supports multi-chain DeFi, with real examples:

  • Omnichain DeFi via LayerZero (Stargate, Radiant, Tapioca): LayerZero’s generic messaging and Omnichain Fungible Token (OFT) standard are designed to break liquidity silos. For instance, Stargate Finance uses LayerZero to implement a unified liquidity pool for native assets bridging – rather than fragmented pools on each chain, Stargate contracts on all chains tap into a common pool, and LayerZero messages handle the lock/release logic across chains. This led to over $800 million monthly volume in Stargate’s bridges, demonstrating significant shared liquidity. By relying on LayerZero’s security (with Stargate presumably using a robust DVN set), users can transfer assets with high confidence in message authenticity. Radiant Capital is another example – a cross-chain lending protocol where users can deposit on one chain and borrow on another. It leverages LayerZero messages to coordinate account state across chains, effectively creating one lending market across multiple networks. Similarly, Tapioca (an omnichain money market) uses LayerZero v2 and even runs its own DVN as a required verifier to secure its messages. These examples show that with flexible security, LayerZero can support complex cross-chain operations like credit checks, collateral moves, and liquidations across chains. The composability comes from LayerZero’s “OApp” standard (Omnichain Application), which lets developers deploy the same contract on many chains and have them coordinate via messaging. A user interacts with any chain’s instance and experiences the application as one unified system. The security model allows fine-tuning: e.g. large transfers or liquidations could require more DVN signatures (for safety), whereas small actions go through faster/cheaper paths. This flexibility ensures neither security nor UX has to be one-size-fits-all. In practice, LayerZero’s model has greatly enhanced shared liquidity, evidenced by dozens of projects adopting OFT for tokens (so a token can exist “omnichain” rather than as separate wrapped assets). For example, stablecoins and governance tokens can use OFT to maintain a single total supply over all chains – avoiding liquidity fragmentation and arbitrage issues that plagued earlier wrapped tokens. Overall, by providing a reliable messaging layer and letting apps control the trust model, LayerZero has catalyzed new multi-chain DeFi designs that treat multiple chains as one ecosystem. The trade-off is that users and projects must understand the trust assumption of each omnichain app (since they can differ). But standards like OFT and widely used default DVNs help make this more uniform.

  • Interchain Accounts and Services in IBC (Cosmos DeFi): In the Cosmos world, IBC has enabled a rich tapestry of cross-chain functionality that goes beyond token transfers. A flagship feature is Interchain Accounts (ICA), which allows a blockchain (or a user on chain A) to control an account on chain B as if it were local. This is done via IBC packets carrying transactions. For example, the Cosmos Hub can use an interchain account on Osmosis to stake or swap tokens on behalf of a user – all initiated from the Hub. A concrete DeFi use-case is Stride’s liquid staking protocol: Stride (a chain) receives tokens like ATOM from users and, using ICA, it remotely stakes those ATOM on the Cosmos Hub and then issues stATOM (liquid staked ATOM) back to users. The entire flow is trustless and automated via IBC – Stride’s module controls an account on the Hub that executes delegate and undelegate transactions, with acknowledgments and timeouts ensuring safety. This demonstrates cross-chain composability: two sovereign chains performing a joint workflow (stake here, mint token there) seamlessly. Another example is Osmosis (a DEX chain) which uses IBC to draw in assets from 95+ connected chains. Users from any zone can swap on Osmosis by sending their tokens via IBC. Thanks to the high security of IBC, Osmosis and others confidently treat IBC tokens as genuine (not needing trusted custodians). This has led Osmosis to become one of the largest interchain DEXes, with daily IBC transfer volume reportedly exceeding that of many bridged systems. Moreover, with Interchain Queries (ICQ) in IBC 3.0, a smart contract on one chain can fetch data (like prices, interest rates, or positions) from another chain in a trust-minimized way. This could enable, for instance, an interchain yield aggregator that queries yield rates on multiple zones and reallocates assets accordingly, all via IBC messages. The key impact of IBC’s light-client model on composability is confidence and neutrality: chains remain sovereign but can interact without fear of a third-party bridge risk. Projects like Composable Finance and Polymer are even extending IBC to non-Cosmos ecosystems (Polkadot, Ethereum) to tap into these capabilities. The result might be a future where any chain that adopts an IBC client standard can plug into a “universal internet of blockchains”. Shared liquidity in Cosmos is already significant – e.g., the Cosmos Hub’s native DEX (Gravity DEX) and others rely on IBC to pool liquidity from various zones. However, a limitation so far is that cosmos DeFi is mostly asynchronous: you initiate on one chain, result happens on another with a slight delay (seconds). This is fine for things like trades and staking, but more complex synchronous composability (like flash loans across chains) remains out of scope due to fundamental latency. Still, the spectrum of cross-chain DeFi enabled by IBC is broad: multi-chain yield farming (move funds where yield is highest), cross-chain governance (one chain voting to execute actions on another via governance packets), and even Interchain Security where a consumer chain leverages the validator set of a provider chain (through IBC validation packets). In summary, IBC’s secure channels have fostered an interchain economy in Cosmos – one where projects can specialize on separate chains yet fluidly work together through trust-minimized messages. The shared liquidity is apparent in things like the flow of assets to Osmosis and the rise of Cosmos-native stablecoins that move across zones freely.

  • Hybrid and Other Multi-Chain Approaches (Hyperlane and beyond): Hyperlane’s vision of permissionless connectivity has led to concepts like Warp Routes for bridging assets and interchain dapps spanning various ecosystems. For example, a Warp Route might allow an ERC-20 token on Ethereum to be teleported to a Solana program, using Hyperlane’s message layer under the hood. One concrete user-facing implementation is Hyperlane’s Nexus bridge, which provides a UI for transferring assets between many chains via Hyperlane’s infrastructure. By using a modular security model, Hyperlane can tailor security per route: a small transfer might go through a simple fast path (just Hyperlane validators signing), whereas a large transfer could require an aggregated ISM (Hyperlane + Wormhole + Axelar all attest). This ensures that high-value liquidity movement is secured by multiple bridges – increasing confidence for, say, moving $10M of an asset cross-chain (it would take compromising multiple networks to steal it) at the cost of higher complexity/fees. In terms of composability, Hyperlane enables what they call “contract interoperability” – a smart contract on chain A can call a function on chain B as if it were local, once messages are delivered. Developers integrate the Hyperlane SDK to dispatch these cross-chain calls easily. An example could be a cross-chain DEX aggregator that lives partly on Ethereum and partly on BNB Chain, using Hyperlane messages to arbitrage between the two. Because Hyperlane supports EVM and non-EVM chains (even early work on CosmWasm and MoveVM integration), it aspires to connect “any chain, any VM”. This broad reach can increase shared liquidity by bridging ecosystems that aren’t otherwise easily connected. However, the actual adoption of Hyperlane in large-scale DeFi is still growing. It does not yet have the volume of Wormhole or LayerZero in bridging, but its permissionless nature has attracted experimentation. For example, some projects have used Hyperlane to quickly connect app-specific rollups to Ethereum, because they could set up their own validator set and not wait for complex light client solutions. As restaking (EigenLayer) grows, Hyperlane might see more uptake by offering Ethereum-grade security to any rollup with relatively low latency. This could accelerate new multi-chain compositions – e.g. an Optimism rollup and a Polygon zk-rollup exchanging messages through Hyperlane AVS, each message backed by slashed ETH if fraudulent. The impact on composability is that even ecosystems without a shared standard (like Ethereum and an arbitrary L2) can get a bridge contract that both sides trust (because it’s economically secured). Over time, this may yield a web of interconnected DeFi apps where composability is “dialed-in” by the developer (choosing which security modules to use for which calls).

In all these cases, the interplay between security model and composability is evident. Projects will only entrust large pools of liquidity to cross-chain systems if the security is rock-solid – hence the push for trust-minimized or economically secured designs. At the same time, the ease of integration (developer experience) and flexibility influence how creative teams can be in leveraging multiple chains. LayerZero and Hyperlane focus on simplicity for devs (just import an SDK and use familiar send/receive calls), whereas IBC, being lower-level, requires more understanding of modules and might be handled by the chain developers rather than application developers. Nonetheless, all three are driving towards a future where users interact with multi-chain dApps without needing to know what chain they’re on – the app seamlessly taps liquidity and functionality from anywhere. For example, a user of a lending app might deposit on Chain A and not even realize the borrow happened from a pool on Chain B – all covered by cross-chain messages and proper validation.

Implementations, Threat Models, and Adoption in Practice

It’s important to assess how these protocols are faring in real-world conditions – their current implementations, known threat vectors, and levels of adoption:

  • LayerZero v2 in Production: LayerZero v1 (with the 2-entity Oracle+Relayer model) gained significant adoption, securing over $50 billion in transfer volume and more than 134 million cross-chain messages as of mid-2024. It’s integrated with 60+ blockchains, primarily EVM chains but also non-EVM like Aptos, and experimental support for Solana is on the horizon. LayerZero v2 was launched in early 2024, introducing DVNs and modular security. Already, major platforms like Radiant Capital, SushiXSwap, Stargate, PancakeSwap, and others have begun migrating or building on v2 to leverage its flexibility. One notable integration is the Flare Network (a Layer1 focused on data), which adopted LayerZero v2 to connect with 75 chains at once. Flare was attracted by the ability to customize security: e.g. using a single fast DVN for low-value messages and requiring multiple DVNs for high-value ones. This shows that in production, applications are indeed using the “mix and match” security approach as a selling point. Security and audits: LayerZero’s contracts are immutable and have been audited (v1 had multiple audits, v2 as well). The main threat in v1 was the Oracle-Relayer collusion – if the two off-chain parties colluded, they could forge a message. In v2, that threat is generalized to DVN collusion. If all DVNs that an app relies on are compromised by one entity, a fake message could slip through. LayerZero’s answer is to encourage app-specific DVNs (so an attacker would have to compromise the app team too) and diversity of verifiers (making collusion harder). Another potential issue is misconfiguration or upgrade misuse – if an app owner maliciously switches to a trivial Security Stack (like 1-of-1 DVN controlled by themselves), they could bypass security to exploit their own users. This is more a governance risk than a protocol bug, and communities need to stay vigilant about how an omnichain app’s security is set (preferably requiring multi-sig or community approval for changes). In terms of adoption, LayerZero has arguably the most usage among messaging protocols in DeFi currently: it powers bridging for Stargate, Circle’s CCTP integration (for USDC transfers), Sushi’s cross-chain swap, many NFT bridges, and countless OFT tokens (projects choosing LayerZero to make their token available on multiple chains). The network effects are strong – as more chains integrate LayerZero endpoints, it becomes easier for new chains to join the “omnichain” network. LayerZero Labs itself runs one DVN and the community (including providers like Google Cloud, Polyhedra for zk proofs, etc.) has launched 15+ DVNs by 2024. No major exploit of LayerZero’s core protocol has occurred to date, which is a positive sign (though some application-level hacks or user errors have happened, as with any tech). The protocol’s design of keeping the transport layer simple (essentially just storing messages and requiring proofs) minimizes on-chain vulnerabilities, shifting most complexity off-chain to DVNs.

  • Hyperlane in Production: Hyperlane (formerly Abacus) is live on numerous chains including Ethereum, multiple L2s (Optimism, Arbitrum, zkSync, etc.), Cosmos chains like Osmosis via a Cosmos-SDK module, and even MoveVM chains (it’s quite broad in support). However, its adoption lags behind incumbents like LayerZero and Wormhole in terms of volume. Hyperlane is often mentioned in the context of being a “sovereign bridge” solution – i.e. a project can deploy Hyperlane to have their own bridge with custom security. For example, some appchain teams have used Hyperlane to connect their chain to Ethereum without relying on a shared bridge. A notable development is the Hyperlane Active Validation Service (AVS) launched in mid-2024, which is one of the first applications of Ethereum restaking. It has validators (many being top EigenLayer operators) restake ETH to secure Hyperlane messages, focusing initially on fast cross-rollup messaging. This is currently securing interoperability between Ethereum L2 rollups with good results – essentially providing near-instant message passing (faster than waiting for optimistic rollup 7-day exits) with economic security tied to Ethereum. In terms of threat model, Hyperlane’s original multisig approach could be attacked if enough validators’ keys are compromised (as with any multisig bridge). Hyperlane has had a past security incident: in August 2022, during an early testnet or launch, there was an exploit where an attacker was able to hijack the deployer key of a Hyperlane token bridge on one chain and mint tokens (around $700k loss). This was not a failure of the multisig itself, but rather operational security around deployment – it highlighted the risks of upgradability and key management. The team reimbursed losses and improved processes. This underscores that governance keys are part of the threat model – securing the admin controls is as important as the validators. With AVS, the threat model shifts to an EigenLayer context: if someone could cause a false slashing or avoid being slashed despite misbehavior, that would be an issue; but EigenLayer’s protocol handles slashing logic on Ethereum, which is robust assuming correct fraud proof submission. Hyperlane’s current adoption is growing in the rollup space and among some app-specific chains. It might not yet handle the multi-billion dollar flows of some competitors, but it is carving a niche where developers want full control and easy extensibility. The modular ISM design means we might see creative security setups: e.g., a DAO could require not just Hyperlane signatures but also a time-lock or a second bridge signature for any admin message, etc. Hyperlane’s permissionless ethos (anyone can run a validator or deploy to a new chain) could prove powerful long-term, but it also means the ecosystem needs to mature (e.g., more third-party validators joining to decentralize the default set; as of 2025 it’s unclear how decentralized the active validator set is in practice). Overall, Hyperlane’s trajectory is one of improving security (with restaking) and ease of use, but it will need to demonstrate resilience and attract major liquidity to gain the same level of community trust as IBC or even LayerZero.

  • IBC 3.0 and Cosmos Interop in Production: IBC has been live since 2021 and is extremely battle-tested within Cosmos. By 2025, it connects 115+ zones (including Cosmos Hub, Osmosis, Juno, Cronos, Axelar, Kujira, etc.) with millions of transactions per month and multi-billion dollar token flows. It has impressively had no major security failures at the protocol level. There has been one notable IBC-related incident: in October 2022, a critical vulnerability in the IBC code (affecting all v2.0 implementations) was discovered that could have allowed an attacker to drain value from many IBC-connected chains. However, it was fixed covertly via coordinated upgrades before it was publicly disclosed, and no exploit occurred. This was a wake-up call that even formally verified protocols can have bugs. Since then, IBC has seen further auditing and hardening. The threat model for IBC mainly concerns chain security: if one connected chain is hostile or gets 51% attacked, it could try to feed invalid data to a counterparty’s light client. Mitigations include using governance to halt or close connections to chains that are insecure (Cosmos Hub governance, for example, can vote to turn off client updates for a particular chain if it’s detected broken). Also, IBC clients often have unbonding period or trusting period alignment – e.g., a Tendermint light client won’t accept a validator set update older than the unbonding period (to prevent long-range attacks). Another possible issue is relayer censorship – if no relayer delivers packets, funds could be stuck in timeouts; but because relaying is permissionless and often incentivized, this is typically transient. With IBC 3.0’s Interchain Queries and new features rolling out, we see adoption in things like Cross-Chain DeX aggregators (e.g., Skip Protocol using ICQ to gather price data across chains) and cross-chain governance (e.g., Cosmos Hub using interchain accounts to manage Neutron, a consumer chain). The adoption beyond Cosmos is also a story: projects like Polymer and Astria (an interop hub for rollups) are effectively bringing IBC to Ethereum rollups via a hub/spoke model, and Polkadot’s parachains have successfully used IBC to connect with Cosmos chains (e.g., Centauri bridge between Cosmos and Polkadot, built by Composable Finance, uses IBC under the hood with a GRANDPA light client on Cosmos side). There’s even an IBC-Solidity implementation in progress by Polymer and DataChain that would allow Ethereum smart contracts to verify IBC packets (using a light client or validity proofs). If these efforts succeed, it could dramatically broaden IBC’s usage beyond Cosmos, bringing its trust-minimized model into direct competition with the more centralized bridges on those chains. In terms of shared liquidity, Cosmos’s biggest limitation was the absence of a native stablecoin or deep liquidity DEX on par with Ethereum’s – that is changing with the rise of Cosmos-native stablecoins (like IST, CMST) and the connection of assets like USDC (Axelar and Gravity bridge brought USDC, and now Circle is launching native USDC on Cosmos via Noble). As liquidity deepens, the combination of high security and seamless IBC transfers could make Cosmos a nexus for multi-chain DeFi trading – indeed, the Blockchain Capital report noted that IBC was already handling more volume than LayerZero or Wormhole by the start of 2024, albeit that’s mostly on the strength of Cosmos-to-Cosmos traffic (which suggests a very active interchain economy). Going forward, IBC’s main challenge and opportunity is expanding to heterogeneous chains without sacrificing its security ethos.

In summary, each protocol is advancing: LayerZero is rapidly integrating with many chains and applications, prioritizing flexibility and developer adoption, and mitigating risks by enabling apps to be part of their own security. Hyperlane is innovating with restaking and modularity, aiming to be the easiest way to connect new chains with configurable security, though it’s still building trust and usage. IBC is the gold standard in trustlessness within its domain, now evolving to be faster (IBC 3.0) and hoping to extend its domain beyond Cosmos, backed by a strong track record. Users and projects are wise to consider the maturity and security incidents of each: IBC has years of stable operation (and huge volume) but limited to certain ecosystems; LayerZero has quickly amassed usage but requires understanding custom security settings; Hyperlane is newer in execution but promising in vision, with careful steps toward economic security.

Conclusion and Outlook: Interoperability Architecture for the Multi-Chain Future

The long-term viability and interoperability of the multi-chain DeFi landscape will likely be shaped by all three security models co-existing and even complementing each other. Each approach has clear strengths, and rather than a one-size-fits-all solution, we may see a stack where the light client model (IBC) provides the highest assurance base for key routes (especially among major chains), while proof-aggregated systems (LayerZero) provide universal connectivity with customizable trust, and multisig models (Hyperlane and others) serve niche needs or bootstrap new ecosystems quickly.

Security vs. Connectivity Trade-off: Light clients like IBC offer the closest thing to a “blockchain internet” – a neutral, standardized transport layer akin to TCP/IP. They ensure that interoperability doesn’t introduce new weaknesses, which is critical for long-term sustainability. However, they require broad agreement on standards and significant engineering per chain, which slows down how fast new connections can form. LayerZero and Hyperlane, on the other hand, prioritize immediate connectivity and flexibility, acknowledging that not every chain will implement the same protocol. They aim to connect “any to any,” even if that means accepting a bit more trust in the interim. Over time, we can expect the gap to narrow: LayerZero can incorporate more trust-minimized DVNs (even IBC itself could be wrapped in a DVN), and Hyperlane can use economic mechanisms to approach the security of native verification. Indeed, the Polymer project envisions that IBC and LayerZero need not be competitors but can be layered – for example, LayerZero could use an IBC light client as one of its DVNs when available. Such cross-pollination is likely as the space matures.

Composability and Unified Liquidity: From a DeFi user’s perspective, the ultimate goal is that liquidity becomes chain-agnostic. We’re already seeing steps: with omnichain tokens (OFTs) you don’t worry which chain your token version is on, and with cross-chain money markets you can borrow on any chain against collateral on another. The architectural choices directly affect user trust in these systems. If a bridge hack occurs (as happened with some multisig bridges historically), it fractures confidence and thus liquidity – users retreat to safer venues or demand risk premiums. Thus, protocols that consistently demonstrate security will underpin the largest pools of liquidity. Cosmos’s interchain security and IBC have shown one path: multiple order-books and AMMs across zones essentially compose into one large market because transfers are trustless and quick. LayerZero’s Stargate showed another: a unified liquidity pool can service many chains’ transfers, but it required users to trust LayerZero’s security assumption (Oracle+Relayer or DVNs). As LayerZero v2 lets each pool set even higher security (e.g. use multiple big-name validator networks to verify every transfer), it’s reducing the trust gap. The long-term viability of multi-chain DeFi likely hinges on interoperability protocols being invisible yet reliable – much like internet users don’t think about TCP/IP, crypto users shouldn’t have to worry about which bridge or messaging system a dApp uses. That will happen when security models are robust enough that failures are exceedingly rare and when there’s some convergence or composability between these interoperability networks.

Interoperability of Interoperability: It’s conceivable that in a few years, we won’t talk about LayerZero vs Hyperlane vs IBC as separate realms, but rather a layered system. For example, an Ethereum rollup could have an IBC connection to a Cosmos hub via Polymer, and that Cosmos hub might have a LayerZero endpoint as well, allowing messages to transit from the rollup into LayerZero’s network through a secure IBC channel. Hyperlane could even function as a fallback or aggregation: an app could require both an IBC proof and a Hyperlane AVS signature for ultimate assurance. This kind of aggregation of security across protocols could address even the most advanced threat models (it’s much harder to simultaneously subvert an IBC light client and an independent restaked multisig, etc.). Such combinations will of course add complexity and cost, so they’d be reserved for high-value contexts.

Governance and Decentralization: Each model puts differing power in the hands of different actors – IBC in the hands of chain governance, LayerZero in the hands of app developers (and indirectly, the DVN operators they choose), and Hyperlane in the hands of the bridge validators and possibly restakers. The long-term interoperable landscape will need to ensure no single party or cartel can dominate cross-chain transactions. This is a risk, for instance, if one protocol becomes ubiquitous but is controlled by a small set of actors; it could become a chokepoint (analogous to centralized internet service providers). The way to mitigate that is by decentralizing the messaging networks themselves (more relayers, more DVNs, more validators – all permissionless to join) and by having alternative paths. On this front, IBC has the advantage of being an open standard with many independent teams, and LayerZero and Hyperlane are both moving to increase third-party participation (e.g. anyone can run a LayerZero DVN or Hyperlane validator). It’s likely that competition and open participation will keep these services honest, much like miners/validators in L1s keep the base layer decentralized. The market will also vote with its feet: if one solution proves insecure or too centralized, developers can migrate to another (especially as bridging standards become more interoperable themselves).

In conclusion, the security architectures of LayerZero v2, Hyperlane, and IBC 3.0 each contribute to making the multi-chain DeFi vision a reality, but with different philosophies. Light clients prioritize trustlessness and neutrality, multisigs prioritize pragmatism and ease of integration, and aggregated approaches prioritize customization and adaptability. The multi-chain DeFi landscape of the future will likely use a combination of these: critical infrastructure and high-value transfers secured by trust-minimized or economically-secured methods, and flexible middleware to connect to the long tail of new chains and apps. With these in place, users will enjoy unified liquidity and cross-chain composability with the same confidence and ease as using a single chain. The path forward is one of convergence – not necessarily of the protocols themselves, but of the outcomes: a world where interoperability is secure, seamless, and standard. Achieving that will require continued rigorous engineering (to avoid exploits), collaborative governance (to set standards like IBC or universal contract interfaces), and perhaps most importantly, an iterative approach to security that blends the best of all worlds: math, economic incentives, and intelligent design. The end-state might truly fulfill the analogy often cited: blockchains interconnected like networks on the internet, with protocols like LayerZero, Hyperlane, and IBC forming the omnichain highway that DeFi will ride on for the foreseeable future.

Sources:

  • LayerZero v2 architecture and DVN security – LayerZero V2 Deep Dive; Flare x LayerZero V2 announcement
  • Hyperlane multisig and modular ISM – Hyperlane Docs: Validators; Tiger Research on Hyperlane; Hyperlane restaking (AVS) announcement
  • IBC 3.0 light clients and features – IBC Protocol Overview; 3Commas Cosmos 2025 (IBC 3.0)
  • Comparison of trust assumptions – Nosleepjohn (Hyperlane) on bridge tradeoffs; IBC vs bridges (Polymer blog)
  • DeFi examples (Stargate, ICA, etc.) – Flare blog on LayerZero (Stargate volume); IBC use cases (Stride liquid staking); LayerZero Medium (OFT and OApp standards); Hyperlane use cases
  • Adoption and stats – Flare x LayerZero (cross-chain messages, volume); Range.org on IBC volume; Blockchain Capital on IBC vs bridges; LayerZero blog (15+ DVNs); IBC testimonials (Osmosis, etc.).

Sui DeFi Ecosystem in 2025: Liquidity, Abstraction, and New Primitives

· 21 min read
Dora Noda
Software Engineer

1. Liquidity and Growth of Sui DeFi

Figure: Sui’s DeFi TVL (blue line) and DEX volume (green bars) grew dramatically through Q2 2025.

Total Value Locked (TVL) Surge: The Sui network’s DeFi liquidity has grown explosively over the past year. From roughly $600M TVL in late 2024, Sui’s TVL rocketed to over $2 billion by mid-2025. In fact, Sui peaked at about $2.55B TVL on May 21, 2025 and sustained well above $2B for much of Q2. This ~300%+ increase (a 480% year-over-year rise from May 2023) firmly positions Sui among the top 10 blockchains by DeFi TVL, outpacing growth on networks like Solana. Major catalysts included institutional adoption and the integration of native USDC stablecoin support, which together attracted large capital inflows. Notably, Sui’s monthly DEX trading volumes have climbed into the top tier of all chains – exceeding $7–8 billion per month by mid-2025 (ranking ~8th industry-wide). The circulating stablecoin liquidity on Sui surpassed $1 billion in mid-2025, after growing 180% since the start of the year, indicating deepening on-chain liquidity. Cross-chain capital is flowing in as well; around $2.7B of assets have been bridged into Sui’s ecosystem, including Bitcoin liquidity (details below). This rapid growth trend underscores a year of net inflows and user expansion for Sui DeFi.

Major DEXs and Liquidity Providers: Decentralized exchanges form the backbone of Sui’s DeFi liquidity. The Cetus protocol – an automated market maker (AMM) and aggregator – has been a flagship DEX, offering stablecoin swaps and concentrated liquidity pools. Cetus consistently leads in volume (facilitating $12.8B+ in trades during Q2 2025 alone) while holding around $80M TVL. Another key player is Bluefin, a multi-faceted DEX that operates both a spot AMM and a perpetual futures exchange. Bluefin expanded its offerings in 2025 with innovative features: it introduced BluefinX, Sui’s first RFQ (request-for-quote) system for improved price execution, and even integrated high-frequency trading optimizations to narrow the gap between DEX and CEX performance. By Q2, Bluefin’s AMM held about $91M TVL and saw over $7.1B in quarterly spot volume. Momentum is another rising DEX – it launched a concentrated liquidity market maker (CLMM) that quickly amassed $107M in liquidity and generated ~$4.6B in trading volume shortly after launch. Sui’s DEX sector also includes MovEX (a hybrid AMM + order-book exchange) and Turbos (an early CLMM adopter), among others, each contributing to the diverse liquidity landscape. Notably, Sui supports a native on-chain central limit order book called DeepBook, co-developed with MovEX, which provides shared order-book liquidity to any Sui dApp. This combination of AMMs, aggregators, and an on-chain CLOB gives Sui one of the more robust DEX ecosystems in DeFi.

Lending Markets and Yield Protocols: Sui’s lending and borrowing platforms have attracted significant capital, making up a large share of the TVL. The Suilend protocol stands out as Sui’s largest DeFi platform, with roughly $700M+ in TVL by Q2 2025 (having crossed the $1B mark in early 2025). Suilend is an expansion of Solana’s Solend, brought to Sui’s Move runtime, and it quickly became the flagship money-market on Sui. It offers deposit and collateralized borrowing services for assets like SUI and USDC, and has innovated by launching companion products – for example, SpringSui (a liquid staking module) and STEAMM, an AMM that enables “superfluid” use of liquidity within the platform. By gamifying user engagement (through point campaigns and NFTs) and issuing a governance token $SEND with revenue-sharing, Suilend drove rapid adoption – reporting over 50,000 monthly active wallets by mid-2025. Close behind Suilend is Navi Protocol (also referred to as Astros), which similarly reached on the order of $600–700M TVL in its lending pools. Navi sets itself apart by blending lending markets with yield strategies and even Bitcoin DeFi integration: for example, Navi facilitated a campaign for users to stake xBTC (a BTC proxy on Sui) via the OKX Wallet, incentivizing Bitcoin holders to participate in Sui yield opportunities. Other notable lending platforms include Scallop (~$146M TVL) and AlphaLend (~$137M), which together indicate a competitive market for borrowing and lending on Sui. Yield aggregation has also started to take hold – protocols like AlphaFi and Kai Finance each manage tens of millions in assets (e.g. ~$40M TVL) to optimize yield across Sui farms. Though smaller in scale, these yield optimizers and structured products (e.g. MovEX’s structured yield vaults) add depth to Sui’s DeFi offerings by helping users maximize returns from the growing liquidity base.

Liquid Staking and Derivatives: In parallel, Sui’s liquid staking derivatives (LSDs) and derivative trading platforms represent an important slice of the ecosystem’s liquidity. Because Sui is a proof-of-stake chain, protocols like SpringSui, Haedal, and Volo have introduced tokens that wrap staked SUI, allowing stakers to remain liquid. SpringSui – launched by the Suilend team – quickly became the dominant LSD, holding about $189M in staked SUI by end of Q2. Together with Haedal ($150M) and others, Sui’s LSD platforms give users the ability to earn validator rewards while redeploying staking tokens into DeFi (for example, using staked-SUI as lending collateral or in yield farms). On the derivatives front, Sui now hosts multiple on-chain perpetual futures exchanges. We’ve mentioned Bluefin’s perp DEX (Bluefin Perps) which handled billions in quarterly volume. Additionally, Typus Finance launched Typus Perp (TLP) in Q2 2025, entering Sui’s perps market with an impressive debut. Sudo (with its ZO protocol integration) introduced gamified perpetual swaps and “intelligent” leveraged products, growing its user base and liquidity by over 100% last quarter. The Magma protocol even pioneered a new AMM model – an Adaptive Liquidity Market Maker (ALMM) – aiming for zero-slippage trades and greater capital efficiency in swaps. These innovative DEX and derivative designs are attracting liquidity of their own (e.g. Magma’s TVL doubled in Q2) and enhancing Sui’s reputation as a testbed for next-gen DeFi primitives.

Trends in Capital Inflow and Users: The overall liquidity trend on Sui has been strongly positive, fueled by both retail and institutional inflows. Sui’s growing credibility (e.g. HSBC and DBS Bank joining as network validators) and high performance have drawn in new capital. A significant portion of assets bridged into Sui are blue-chip tokens and stablecoins – for instance, Circle’s USDC launched natively on Sui, and Tether’s USDT became available via bridges, leading to a robust stablecoin mix (USDC ~$775M, USDT ~$100M circulating by Q2). Perhaps most notably, Bitcoin liquidity has entered Sui in size (via wrapped or staked BTC – detailed in Section 3), accounting for over 10% of TVL. On the user side, improved wallet support and abstraction (see Section 2) have spurred adoption. The popular Phantom wallet (with ~7M users) extended support to Sui, making it easier for the broad crypto community to access Sui dApps. Similarly, centralized exchange wallets like OKX and Binance integrated Sui DeFi features (e.g. Binance’s Chrome wallet added a Simple Yield integration featuring Sui’s Scallop protocol). These on-ramps contributed to Sui’s user growth: by early 2025 Sui had hundreds of thousands of active addresses, and top dApps like Suilend report tens of thousands of monthly users. Overall, liquidity on Sui has trended upward in 2025, supported by consistent inflows and expanding user participation – a stark contrast to the stagnation seen on some other chains during the same period.

2. Abstraction: Simplifying User Experience on Sui

Account Abstraction Features: A cornerstone of Sui’s design is account abstraction, which vastly improves usability by hiding blockchain complexities from end-users. Unlike traditional Layer-1s where users must manage keys and gas for every transaction, Sui enables a smoother experience via native features. Specifically, Sui supports third-party credential logins and gas sponsorship at the protocol level. Developers can integrate zkLogin – allowing users to create a Sui wallet and log in with familiar Web2 credentials (Google, Facebook, Twitch, etc.) instead of seed phrases. Concurrently, Sui offers sponsored transactions, meaning dApp builders can pay gas fees on behalf of users through an on-chain “gas station” mechanism. Together, zkLogin and gas sponsorship remove two major pain points (seed phrase management and acquiring native tokens) for new users. A Sui user can, for example, sign up with an email/password (via OAuth) and start using a DeFi app immediately with no upfront SUI tokens needed. This level of abstraction mirrors Web2 ease-of-use and has been critical in onboarding the “next wave” of users who expect frictionless signup and free trial experiences. Many Sui apps and even Web3 games now leverage these features – a recent NFT game launch boasted a “zero-wallet login” flow for players, powered by Sui’s account abstraction and social login capabilities. Overall, by automating key management and gas handling, Sui significantly lowers the barrier to entry for DeFi, which in turn drives higher user retention and activity.

Smart Contract Abstraction and Move: Beyond login and transactions, Sui’s object-oriented programming model provides abstraction at the smart contract level. Sui’s native Move language treats objects (not externally owned accounts) as the basic unit of storage, with rich metadata and flexible ownership structures. This means developers can create smart contract objects that act as proxies for user accounts, automating tasks that would traditionally require user signatures. For example, an app on Sui can deploy a programmable object to handle recurring payments or complex multi-step trades on behalf of a user, without that user manually initiating each step. These objects can hold permissions and logic, effectively abstracting away repetitive actions from the end-user. Additionally, Sui introduced Programmable Transaction Blocks (PTBs) as a way to bundle multiple operations into a single transaction payload. Instead of requiring a user to sign and send 3–4 separate transactions (e.g. approve token, then swap, then stake), a Sui PTB can compose those steps and execute them all at once. This not only reduces friction and confirmation prompts for the user, but also improves performance (fewer on-chain transactions means lower total gas and faster execution). From the user’s perspective, a complex series of actions can feel like one smooth interaction – a critical improvement in UX. Sui’s Move was built with such composability and abstraction in mind, and it’s enabling developers to craft dApps that feel much more like traditional fintech apps. As an added bonus, Sui’s cryptographic agility supports multiple signature schemes (Ed25519, secp256k1, etc.), which allows wallets to use different key types (including those used on Ethereum or Bitcoin). This flexibility makes it easier to integrate Sui functionality into multi-chain wallets and even sets the stage for quantum-resistant cryptography down the line.

Cross-Chain Abstraction – Intents and Integration: Sui is breaking ground in cross-chain user experience through abstraction as well. A prime example is the July 2025 integration of NEAR Intents, a novel cross-chain coordination system, into Sui’s ecosystem. With this integration, Sui users can seamlessly swap assets across 20+ other chains (including Ethereum, Bitcoin, Solana, Avalanche, etc.) in a single step, without manual bridging. The underlying “intent” model means the user simply expresses what they want (e.g. “swap 1 ETH on Ethereum for SUI on Sui”) and a network of automated solvers finds the most efficient way to fulfill that request across chains. The user no longer needs to juggle multiple wallets or gas fees on different networks – the system abstracts all that away. Swapping assets into Sui becomes as easy as a one-click transaction, with no need to even hold gas tokens on the source chain. This is a significant UX leap for cross-chain DeFi. By mid-2025, NEAR Intents was live and Sui users could bring in outside liquidity within seconds, enabling use cases like cross-chain arbitrage and onboarding of assets from non-Sui holders with virtually no friction or custodial risk. Sui Foundation representatives highlighted that “swapping native assets in one click…abstracts away complexity while keeping everything on-chain, secure, and composable”. In parallel, Sui has benefited from major wallet integrations that hide complexity for users. As noted, Phantom’s multi-chain wallet now supports Sui, and other popular wallets like OKX and Binance Wallet have built-in support for Sui dApps. For instance, Binance’s wallet lets users directly access yield farms on Sui (via Scallop) through a simple interface, and OKX’s wallet integrated Sui’s BTC staking flows (Navi’s xBTC) natively. These integrations mean users can interact with Sui DeFi without switching apps or worrying about technical details – their familiar wallet abstracts it for them. All of these efforts, from intents-based swaps to wallet UIs, serve the goal of making cross-chain and on-chain DeFi feel effortless on Sui. The result is that Sui is increasingly accessible not just to crypto natives but also to mainstream users who demand simplicity.

User Experience Impact: Thanks to Sui’s abstraction layers, the user experience on Sui’s DeFi protocols has become one of the most user-friendly in blockchain. New users can onboard with a social login and no upfront cost, execute complex transactions with minimal confirmations, and even move assets from other chains with one-click swaps. This approach is fulfilling Sui’s mission of “familiar onboarding” and mass adoption. As a point of comparison, just as an iPhone user doesn’t need to understand Swift code to use an app, a Sui DeFi user shouldn’t need to grasp private keys or bridge mechanics. Sui’s account abstraction ethos embraces that philosophy, “offering a gateway to a seamless and gratifying user experience” for blockchain finance. By making Web3 interactions feel closer to Web2 in ease, Sui is lowering barriers for the next wave of DeFi users who value convenience. This user-centric design is a key factor in Sui’s growing adoption and sets the stage for greater mainstream participation in DeFi through 2025 and beyond.

3. The Next Wave of DeFi Primitives on Sui

Proliferation of Native Stablecoins: A vibrant array of new stablecoins and asset-backed tokens is emerging on Sui, providing foundational building blocks for DeFi. In late 2024, Agora Finance’s AUSD went live as the first fully USD-backed stablecoin native to Sui. Marketed as an institutional-grade stablecoin, AUSD’s launch immediately added liquidity and was a boon for Sui’s DeFi growth (Sui’s TVL was about $600M when AUSD arrived and climbing). By mid-2025, AUSD had a circulating supply of tens of millions (with more on Ethereum and Avalanche) and became a regulated alternative to USDC/USDT within Sui’s ecosystem. Around the same time, the Bucket Protocol introduced BUCK, an over-collateralized stablecoin akin to DAI but for Sui. Users can mint BUCK by depositing SUI, BTC, ETH, and other assets as collateral. BUCK is pegged to USD and maintained via on-chain collateral ratios and stability mechanisms (Bucket features a Peg Stability Module, CDP vaults, etc., similar to MakerDAO). By Q2 2025, BUCK’s supply reached ~$60–66M, making it one of the largest Sui-native stablecoins (Bucket’s protocol TVL was ~$69M in that period, mostly backing BUCK). Another notable addition is USDY by Ondo Finance – a yield-bearing “stablecoin” that tokenizes short-term U.S. Treasury yields. Ondo deployed USDY onto Sui in early 2024, marking Sui’s foray into real-world asset (RWA) backed tokens. USDY is effectively a tokenized bond fund that accrues interest for holders (its price floats slightly, reflecting earned yield). This provides Sui users with a native, compliance-focused stable asset that generates yield without needing to stake or farm. By 2025, Sui’s stablecoin landscape also included First Digital USD (FDUSD), brought via partnerships in Asia, and wrapped versions of major stablecoins. The variety of stablecoin primitives – from decentralized CDP-backed (BUCK) to fully fiat-backed (AUSD) to yield-bearing (USDY) – is expanding on-chain liquidity and enabling new DeFi strategies (e.g. using BUCK as loan collateral, or holding USDY as a low-risk yield source). These stable assets form the bedrock for other protocols like DEXs and lenders to build upon, and their presence is a strong signal of a maturing DeFi ecosystem.

BTC DeFi (“BTCfi”) Innovations: Sui is at the forefront of making Bitcoin an active player in DeFi, coining the term BTCfi for Bitcoin-centric DeFi use cases. In 2025, multiple initiatives bridged Bitcoin’s liquidity and security into Sui’s network. One major step was the integration of Threshold Network’s tBTC on Sui. tBTC is a decentralized, 1:1 BTC-backed token that uses threshold cryptography (distributed signing) to avoid any single custodian. In July 2025, tBTC went live on Sui, immediately unlocking access to over $500M worth of BTC liquidity for Sui protocols. This means Bitcoin holders can now mint tBTC directly into Sui and deploy it in lending, trading, or yield farming without entrusting their BTC to a centralized bridge. Sui’s high-performance infrastructure (with sub-second finality) makes it an attractive home for these BTC assets. In parallel, Sui partnered with the Stacks ecosystem to support sBTC, another 1:1 BTC representation that piggybacks off Bitcoin’s security via the Stacks layer-2. By May 2025, over 10% of Sui’s TVL consisted of BTC or BTC-derived assets as bridges like Wormhole, Stacks, and Threshold ramped up Bitcoin connectivity. More than 600 BTC (>$65M) had flowed into Sui in just the first few months of 2025. These BTC derivatives unlock use cases such as using BTC as collateral on Sui’s lending platforms (indeed, Suilend held over $102M in Bitcoin-based assets by Q2, more than any other Sui lender). They also enable BTC trading pairs on Sui DEXs and allow Bitcoin holders to earn DeFi yields without giving up their BTC ownership. The concept of BTCfi is to transform Bitcoin from a “passive” store-of-value into an active capital asset – and Sui has embraced this by providing the technology (fast, parallel execution and an object model ideal for representing BTC custody) and forging partnerships to bring in Bitcoin liquidity. The Sui Foundation even began running a Stacks validator, signaling its commitment to BTC integration. In short, Bitcoin is now a first-class citizen in Sui DeFi, and this cross-pollination is a key innovation of 2025. It opens the door for new Bitcoin-backed stablecoins, Bitcoin yield products, and multi-chain strategies that bridge the gap between the Bitcoin network and DeFi on Sui.

Advanced DEX Primitives and HFT: The next wave of Sui DeFi primitives also includes novel exchange designs and financial instruments that go beyond the initial AMM models. We’ve seen earlier how Magma’s ALMM and Momentum’s CLMM are pushing AMMs toward greater capital efficiency (concentrating liquidity or dynamically adjusting it). Additionally, protocols are experimenting with high-performance trading features: Bluefin in particular rolled out functionalities aimed at institutional and high-frequency traders. In July 2025, Bluefin announced it was bringing institutional-grade high-frequency trading strategies to its Sui-based DEX, using Sui’s parallel execution to achieve throughput and latency improvements. This narrows the performance gap with centralized exchanges and could attract quantitative trading firms to provide liquidity on-chain. Such enhancements in execution speed, low slippage, and MEV protection (Bluefin’s Spot 2.0 upgrade is noted for MEV-resistant RFQ matching) are new primitives in exchange design that Sui is pioneering.

Meanwhile, derivatives and structured products on Sui are becoming more sophisticated. Typus expanding into perpetual futures and Sudo/ZO offering gamified perps were mentioned; these indicate a trend of blending DeFi with trading gamification and user-friendly interfaces. Another example is Nemo, which introduced a “yield trading” market and a points reward system in its new interface – essentially allowing users to speculate on yield rates and earn loyalty points, a creative twist on typical yield farming. We also see structured yield products: for instance, MovEX and others have discussed structured vaults that automatically rotate funds between strategies, giving users packaged investment products (akin to DeFi ETFs or tranches). These are in development and represent the next generation of yield farming, where complexity (like strategy hopping) is abstracted and offered as a single product.

New Financial Instruments & Partnerships: The Sui community and its partners are actively building entirely new DeFi primitives that could define the next phase of growth. One high-profile upcoming project is Graviton, which raised $50M in a Series A (led by a16z and Pantera) to create a modular trading, lending, and cross-margining platform on Sui. Graviton is often compared to dYdX – aiming to onboard professional traders with a full-suite decentralized trading experience (perpetuals, margin trading, lending markets all under one roof). Such a well-funded initiative underlines the confidence in Sui’s DeFi potential and promises a new primitive: a one-stop, high-performance DeFi “super app” on Sui. In addition, real-world finance is intersecting with Sui: the Sui Foundation has fostered partnerships like xMoney/xPortal to launch a crypto-powered MasterCard for retail users, which would allow spending Sui-based assets in everyday purchases. This kind of CeFi–DeFi bridge (essentially bringing DeFi liquidity to point-of-sale) could be transformative if it gains traction. On the institutional side, 21Shares filed for a SUI exchange-traded fund (ETF) in the US – while not a DeFi protocol, an ETF would give traditional investors exposure to Sui’s growth and indirectly to its DeFi economy.

The community and developer activity on Sui is another driving force for new primitives. Sui’s open-source Move ecosystem has grown so active that by mid-2025 Sui surpassed Solana and Near in weekly developer commits and repo forks, thanks to a surge in new tooling (e.g. Move SDKs, zk-proof integrations, cross-chain protocol development). This vibrant developer community is continually experimenting with ideas like on-chain options markets, decentralized insurance, and intent-based lending (some hackathon projects in 2025 tackled these areas). The results are starting to emerge: for example, Lotus Finance launched as a decentralized options AMM on Sui in Q2, and Turbos adopted decentralized front-end hosting (via Walrus) to push the envelope on censorship-resistant DeFi. Community-driven initiatives like these, alongside formal partnerships (e.g. Sui’s collaboration with Google Cloud to provide on-chain data indexing and AI inference tools), create a fertile ground for novel protocols. We’re seeing DeFi primitives on Sui that integrate AI oracles for dynamic pricing, BTC staking services (SatLayer), and even cross-chain intents (the NEAR Intents integration can be seen as a primitive for cross-chain liquidity). Each adds a building block that future developers can combine into new financial products.

Summary: In 2025, Sui’s DeFi ecosystem is flourishing with innovation. The liquidity on Sui has reached multi-billion dollar levels, anchored by major DEXes and lenders, and bolstered by steady inflows and user growth. Through account abstraction and user-centric design, Sui has dramatically improved the DeFi user experience, attracting a broader audience. And with the next wave of primitives – from native stablecoins and BTC integration to advanced AMMs, perps, and real-world asset tokens – Sui is expanding what’s possible in decentralized finance. Key protocols and community efforts are driving this evolution: Cetus and Bluefin advancing DEX tech, Suilend and others expanding lending into new asset classes, Bucket, Agora, Ondo bringing novel assets on-chain, and many more. High-profile partnerships (with infrastructure providers, TradFi institutions, and cross-chain networks) further amplify Sui’s momentum. All these elements point to Sui solidifying its position as a leading DeFi hub by 2025 – one characterized by deep liquidity, seamless usability, and relentless innovation in financial primitives.

Sources:

  • Sui Foundation – Sui Q2 2025 DeFi Roundup (July 15, 2025)
  • Sui Foundation – NEAR Intents Brings Lightning-Fast Cross-chain Swaps to Sui (July 17, 2025)
  • Sui Foundation – Sui to Support sBTC and Stacks (BTCfi Use Cases) (May 1, 2025)
  • Sui Foundation – All About Account Abstraction (Oct 4, 2023)
  • Ainvest News – Sui Network TVL Surpasses $1.4B Driven by DeFi Protocols (Jul 14, 2025)
  • Ainvest News – Sui DeFi TVL Surges 480% to $1.8B... (Jul 12, 2025)
  • Suipiens (Sui community) – tBTC Integration Brings Bitcoin Liquidity to Sui (Jul 17, 2025)
  • Suipiens – Inside Suilend: Sui’s Leading Lending Platform (Jul 3, 2025)
  • The Defiant – Ondo to Bring RWA-Backed Stablecoins onto Sui (Feb 7, 2024)
  • Official Sui Documentation – Intro to Sui: User Experience (account abstraction features)

Enso Network: The Unified, Intent-based Execution Engine

· 35 min read

Protocol Architecture

Enso Network is a Web3 development platform built as a unified, intent-based execution engine for on-chain operations. Its architecture abstracts away blockchain complexity by mapping every on-chain interaction to a shared engine that operates across multiple chains. Developers and users specify high-level intents (desired outcomes like a token swap, liquidity provision, yield strategy, etc.), and Enso’s network finds and executes the optimal sequence of actions to fulfill those intents. This is achieved through a modular design of “Actions” and “Shortcuts.”

Actions are granular smart contract abstractions (e.g. a swap on Uniswap, a deposit into Aave) provided by the community. Multiple Actions can be composed into Shortcuts, which are reusable workflows representing common DeFi operations. Enso maintains a library of these Shortcuts in smart contracts, so complex tasks can be executed via a single API call or transaction. This intent-based architecture lets developers focus on desired outcomes rather than writing low-level integration code for each protocol and chain.

Enso’s infrastructure includes a decentralized network (built on Tendermint consensus) that serves as a unifying layer connecting different blockchains. The network aggregates data (state from various L1s, rollups, and appchains) into a shared network state or ledger, enabling cross-chain composability and accurate multi-chain execution. In practice, this means Enso can read from and write to any integrated blockchain through one interface, acting as a single point of access for developers. Initially focused on EVM-compatible chains, Enso has expanded support to non-EVM ecosystems – for example, the roadmap includes integrations for Monad (an Ethereum-like L1), Solana, and Movement (a Move-language chain) by Q1 2025.

Network Participants: Enso’s innovation lies in its three-tier participant model, which decentralizes how intents are processed:

  • Action Providers – Developers who contribute modular contract abstractions (“Actions”) encapsulating specific protocol interactions. These building blocks are shared on the network for others to use. Action Providers are rewarded whenever their contributed Action is used in an execution, incentivizing them to publish secure and efficient modules.

  • Graphers – Independent solvers (algorithms) that combine Actions into executable Shortcuts to fulfill user intents. Multiple Graphers compete to find the most optimal solution (cheapest, fastest, or highest-yield path) for each request, similar to how solvers compete in a DEX aggregator. Only the best solution is selected for execution, and the winning Grapher earns a portion of the fees. This competitive mechanism encourages continuous optimization of on-chain routes and strategies.

  • Validators – Node operators who secure the Enso network by verifying and finalizing the Grapher’s solutions. Validators authenticate incoming requests, check the validity and safety of Actions/Shortcuts used, simulate transactions, and ultimately confirm the selected solution’s execution. They form the backbone of network integrity, ensuring results are correct and preventing malicious or inefficient solutions. Validators run a Tendermint-based consensus, meaning a BFT proof-of-stake process is used to reach agreement on each intent’s outcome and to update the network’s state.

Notably, Enso’s approach is chain-agnostic and API-centric. Developers interact with Enso via a unified API/SDK rather than dealing with each chain’s nuances. Enso integrates with over 250 DeFi protocols across multiple blockchains, effectively turning disparate ecosystems into one composable platform. This architecture eliminates the need for dApp teams to write custom smart contracts or handle cross-chain messaging for each new integration – Enso’s shared engine and community-provided Actions handle that heavy lifting. By mid-2025, Enso has proven its scalability: the network successfully facilitated $3.1B of liquidity migration in 3 days for Berachain’s launch (one of the largest DeFi migration events) and has processed over $15B in on-chain transactions to date. These feats demonstrate the robustness of Enso’s infrastructure under real-world conditions.

Overall, Enso’s protocol architecture delivers a “DeFi middleware” or on-chain operating system for Web3. It combines elements of indexing (like The Graph) and transaction execution (like cross-chain bridges or DEX aggregators) into a single decentralized network. This unique stack allows any application, bot, or agent to read and write to any smart contract on any chain via one integration, accelerating development and enabling new composable use cases. Enso positions itself as critical infrastructure for the multi-chain future – an intent engine that could power myriad apps without each needing to reinvent blockchain integrations.

Tokenomics

Enso’s economic model centers on the ENSO token, which is integral to network operation and governance. ENSO is a utility and governance token with a fixed total supply of 100 million tokens. The token’s design aligns incentives for all participants and creates a flywheel effect of usage and rewards:

  • Fee Currency (“Gas”): All requests submitted to the Enso network incur a query fee payable in ENSO. When a user (or dApp) triggers an intent, a small fee is embedded in the generated transaction bytecode. These fees are auctioned for ENSO tokens on the open market and then distributed to the network participants who process the request. In effect, ENSO is the gas that fuels execution of on-chain intents across Enso’s network. As demand for Enso’s shortcuts grows, demand for ENSO tokens may increase to pay for those network fees, creating a supply-demand feedback loop supporting token value.

  • Revenue Sharing & Staking Rewards: The ENSO collected from fees is distributed among Action Providers, Graphers, and Validators as a reward for their contributions. This model directly ties token earnings to network usage: more volume of intents means more fees to distribute. Action Providers earn tokens when their abstractions are used, Graphers earn tokens for winning solutions, and Validators earn tokens for validating and securing the network. All three roles must also stake ENSO as collateral to participate (to be slashed for malpractice), aligning their incentives with network health. Token holders can delegate their ENSO to Validators as well, supporting network security via delegated proof of stake. This staking mechanism not only secures the Tendermint consensus but also gives token stakers a share of network fees, similar to how miners/validators earn gas fees in other chains.

  • Governance: ENSO token holders will govern the protocol’s evolution. Enso is launching as an open network and plans to transition to community-driven decision making. Token-weighted voting will let holders influence upgrades, parameter changes (like fee levels or reward allocations), and treasury usage. This governance power ensures that core contributors and users are aligned on the network’s direction. The project’s philosophy is to put ownership in the hands of the community of builders and users, which was a driving reason for the community token sale in 2025 (see below).

  • Positive Flywheel: Enso’s tokenomics are designed to create a self-reinforcing loop. As more developers integrate Enso and more users execute intents, network fees (paid in ENSO) grow. Those fees reward contributors (attracting more Actions, better Graphers, and more Validators), which in turn improves the network’s capabilities (faster, cheaper, more reliable execution) and attracts more usage. This network effect is underpinned by the ENSO token’s role as both the fee currency and the incentive for contribution. The intention is for the token economy to scale sustainably with network adoption, rather than relying on unsustainable emissions.

Token Distribution & Supply: The initial token allocation is structured to balance team/investor incentives with community ownership. The table below summarizes the ENSO token distribution at genesis:

AllocationPercentageTokens (out of 100M)
Team (Founders & Core)25.0%25,000,000
Early Investors (VCs)31.3%31,300,000
Foundation & Growth Fund23.2%23,200,000
Ecosystem Treasury (Community incentives)15.0%15,000,000
Public Sale (CoinList 2025)4.0%4,000,000
Advisors1.5%1,500,000

Source: Enso Tokenomics.

The public sale in June 2025 offered 5% (4 million tokens) to the community, raising $5 million at a price of $1.25 per ENSO (implying a fully diluted valuation of ~$125 million). Notably, the community sale had no lock-up (100% unlocked at TGE), whereas the team and venture investors are subject to a 2-year linear vesting schedule. This means insiders’ tokens unlock gradually block-by-block over 24 months, aligning them to long-term network growth and mitigating immediate sell pressure. The community thus gained immediate liquidity and ownership, reflecting Enso’s goal of broad distribution.

Enso’s emission schedule beyond the initial allocation appears to be primarily fee-driven rather than inflationary. The total supply is fixed at 100M tokens, and there is no indication of perpetual inflation for block rewards at this time (validators are compensated from fee revenue). This contrasts with many Layer-1 protocols that inflate supply to pay stakers; Enso aims to be sustainable through actual usage fees to reward participants. If network activity is low in early phases, the foundation and treasury allocations can be used to bootstrap incentives for usage and development grants. Conversely, if demand is high, ENSO token’s utility (for fees and staking) could create organic demand pressure.

In summary, ENSO is the fuel of the Enso Network. It powers transactions (query fees), secures the network (staking and slashing), and governs the platform (voting). The token’s value is directly tied to network adoption: as Enso becomes more widely used as the backbone for DeFi applications, the volume of ENSO fees and staking should reflect that growth. The careful distribution (with only a small portion immediately circulating after TGE) and strong backing by top investors (below) provide confidence in the token’s support, while the community-centric sale signals a commitment to decentralization of ownership.

Team and Investors

Enso Network was founded in 2021 by Connor Howe (CEO) and Gorazd Ocvirk, who previously worked together at Sygnum Bank in Switzerland’s crypto banking sector. Connor Howe leads the project as CEO and is the public face in communications and interviews. Under his leadership, Enso initially launched as a social trading DeFi platform and then pivoted through multiple iterations to arrive at the current intent-based infrastructure vision. This adaptability highlights the team’s entrepreneurial resilience – from executing a high-profile “vampire attack” on index protocols in 2021 to building a DeFi aggregator super-app, and finally generalizing their tooling into Enso’s developer platform. Co-founder Gorazd Ocvirk (PhD) brought deep expertise in quantitative finance and Web3 product strategy, although public sources suggest he may have transitioned to other ventures (he was noted as a co-founder of a different crypto startup in 2022). Enso’s core team today includes engineers and operators with strong DeFi backgrounds. For example, Peter Phillips and Ben Wolf are listed as “blockend” (blockchain backend) engineers, and Valentin Meylan leads research. The team is globally distributed but has roots in Zug/Zurich, Switzerland, a known hub for crypto projects (Enso Finance AG was registered in 2020 in Switzerland).

Beyond the founders, Enso has notable advisors and backers that lend significant credibility. The project is backed by top-tier crypto venture funds and angels: it counts Polychain Capital and Multicoin Capital as lead investors, along with Dialectic and Spartan Group (both prominent crypto funds), and IDEO CoLab. An impressive roster of angel investors also participated across rounds – over 70 individuals from leading Web3 projects have invested in Enso. These include founders or executives from LayerZero, Safe (Gnosis Safe), 1inch, Yearn Finance, Flashbots, Dune Analytics, Pendle, and others. Even tech luminary Naval Ravikant (co-founder of AngelList) is an investor and supporter. Such names signal strong industry confidence in Enso’s vision.

Enso’s funding history: the project raised a $5M seed round in early 2021 to build the social trading platform, and later a $4.2M round (strategic/VC) as it evolved the product (these early rounds likely included Polychain, Multicoin, Dialectic, etc.). By mid-2023, Enso had secured enough capital to build out its network; notably, it operated relatively under the radar until its infrastructure pivot gained traction. In Q2 2025, Enso launched a $5M community token sale on CoinList, which was oversubscribed by tens of thousands of participants. The purpose of this sale was not just to raise funds (the amount was modest given prior VC backing) but to decentralize ownership and give its growing community a stake in the network’s success. According to CEO Connor Howe, “we want our earliest supporters, users, and believers to have real ownership in Enso…turning users into advocates”. This community-focused approach is part of Enso’s strategy to drive grassroots growth and network effects through aligned incentives.

Today, Enso’s team is considered among the thought leaders in the “intent-based DeFi” space. They actively engage in developer education (e.g., Enso’s Shortcut Speedrun attracted 700k participants as a gamified learning event) and collaborate with other protocols on integrations. The combination of a strong core team with proven ability to pivot, blue-chip investors, and an enthusiastic community suggests that Enso has both the talent and the financial backing to execute on its ambitious roadmap.

Adoption Metrics and Use Cases

Despite being a relatively new infrastructure, Enso has demonstrated significant traction in its niche. It has positioned itself as the go-to solution for projects needing complex on-chain integrations or cross-chain capabilities. Some key adoption metrics and milestones as of mid-2025:

  • Ecosystem Integration: Over 100 live applications (dApps, wallets, and services) are using Enso under the hood to power on-chain features. These range from DeFi dashboards to automated yield optimizers. Because Enso abstracts protocols, developers can quickly add new DeFi features to their product by plugging into Enso’s API. The network has integrated with 250+ DeFi protocols (DEXes, lending platforms, yield farms, NFT markets, etc.) across major chains, meaning Enso can execute virtually any on-chain action a user might want, from a Uniswap trade to a Yearn vault deposit. This breadth of integrations significantly reduces development time for Enso’s clients – a new project can support, say, all DEXes on Ethereum, Layer-2s, and even Solana using Enso, rather than coding each integration independently.

  • Developer Adoption: Enso’s community now includes 1,900+ developers actively building with its toolkit. These developers might be directly creating Shortcuts/Actions or incorporating Enso into their applications. The figure highlights that Enso isn’t just a closed system; it’s enabling a growing ecosystem of builders who use its shortcuts or contribute to its library. Enso’s approach of simplifying on-chain development (claiming to cut build times from 6+ months down to under a week) has resonated with Web3 developers. This is also evidenced by hackathons and the Enso Templates library where community members share plug-and-play shortcut examples.

  • Transaction Volume: Over **$15 billion in cumulative on-chain transaction volume has been settled through Enso’s infrastructure. This metric, as reported in June 2025, underscores that Enso is not just running in test environments – it’s processing real value at scale. A single high-profile example was Berachain’s liquidity migration: In April 2025, Enso powered the movement of liquidity for Berachain’s testnet campaign (“Boyco”) and facilitated $3.1B in executed transactions over 3 days, one of the largest liquidity events in DeFi history. Enso’s engine successfully handled this load, demonstrating reliability and throughput under stress. Another example is Enso’s partnership with Uniswap: Enso built a Uniswap Position Migrator tool (in collaboration with Uniswap Labs, LayerZero, and Stargate) that helped users seamlessly migrate Uniswap v3 LP positions from Ethereum to another chain. This tool simplified a typically complex cross-chain process (with bridging and re-deployment of NFTs) into a one-click shortcut, and its release showcased Enso’s ability to work alongside top DeFi protocols.

  • Real-World Use Cases: Enso’s value proposition is best understood through the diverse use cases it enables. Projects have used Enso to deliver features that would be very difficult to build alone:

    • Cross-Chain Yield Aggregation: Plume and Sonic used Enso to power incentivized launch campaigns where users could deposit assets on one chain and have them deployed into yields on another chain. Enso handled the cross-chain messaging and multi-step transactions, allowing these new protocols to offer seamless cross-chain experiences to users during their token launch events.
    • Liquidity Migration and Mergers: As mentioned, Berachain leveraged Enso for a “vampire attack”-like migration of liquidity from other ecosystems. Similarly, other protocols could use Enso Shortcuts to automate moving users’ funds from a competitor platform to their own, by bundling approvals, withdrawals, transfers, and deposits across platforms into one intent. This demonstrates Enso’s potential in protocol growth strategies.
    • DeFi “Super App” Functionality: Some wallets and interfaces (for instance, the Eliza OS crypto assistant and the Infinex trading platform) integrate Enso to offer one-stop DeFi actions. A user can, in one click, swap assets at the best rate (Enso will route across DEXes), then lend the output to earn yield, then perhaps stake an LP token – all of which Enso can execute as one Shortcut. This significantly improves user experience and functionality for those apps.
    • Automation and Bots: The presence of “agents” and even AI-driven bots using Enso is emerging. Because Enso exposes an API, algorithmic traders or AI agents can input a high-level goal (e.g. “maximize yield on X asset across any chain”) and let Enso find the optimal strategy. This has opened up experimentation in automated DeFi strategies without needing custom bot engineering for each protocol.
  • User Growth: While Enso is primarily a B2B/B2Dev infrastructure, it has cultivated a community of end-users and enthusiasts through campaigns. The Shortcut Speedrun – a gamified tutorial series – saw over 700,000 participants, indicating widespread interest in Enso’s capabilities. Enso’s social following has grown nearly 10x in a few months (248k followers on X as of mid-2025), reflecting strong mindshare among crypto users. This community growth is important because it creates grassroots demand: users aware of Enso will encourage their favorite dApps to integrate it or will use products that leverage Enso’s shortcuts.

In summary, Enso has moved beyond theory to real adoption. It is trusted by 100+ projects including well-known names like Uniswap, SushiSwap, Stargate/LayerZero, Berachain, zkSync, Safe, Pendle, Yearn and more, either as integration partners or direct users of Enso’s tech. This broad usage across different verticals (DEXs, bridges, layer-1s, dApps) highlights Enso’s role as general-purpose infrastructure. Its key traction metric – $15B+ in transactions – is especially impressive for an infrastructure project at this stage and validates market fit for an intent-based middleware. Investors can take comfort that Enso’s network effects appear to be kicking in: more integrations beget more usage, which begets more integrations. The challenge ahead will be converting this early momentum into sustained growth, which ties into Enso’s positioning against competitors and its roadmap.

Competitor Landscape

Enso Network operates at the intersection of DeFi aggregation, cross-chain interoperability, and developer infrastructure, making its competitive landscape multi-faceted. While no single competitor offers an identical product, Enso faces competition from several categories of Web3 protocols:

  • Decentralized Middleware & Indexing: The most direct analogy is The Graph (GRT). The Graph provides a decentralized network for querying blockchain data via subgraphs. Enso similarly crowd-sources data providers (Action Providers) but goes a step further by enabling transaction execution in addition to data fetching. Whereas The Graph’s ~$924M market cap is built on indexing alone, Enso’s broader scope (data + action) positions it as a more powerful tool in capturing developer mindshare. However, The Graph is a well-established network; Enso will have to prove the reliability and security of its execution layer to achieve similar adoption. One could imagine The Graph or other indexing protocols expanding into execution, which would directly compete with Enso’s niche.

  • Cross-Chain Interoperability Protocols: Projects like LayerZero, Axelar, Wormhole, and Chainlink CCIP provide infrastructure to connect different blockchains. They focus on message passing and bridging assets between chains. Enso actually uses some of these under the hood (e.g., LayerZero/Stargate for bridging in the Uniswap migrator) and is more of a higher-level abstraction on top. In terms of competition, if these interoperability protocols start offering higher-level “intent” APIs or developer-friendly SDKs to compose multi-chain actions, they could overlap with Enso. For example, Axelar offers an SDK for cross-chain calls, and Chainlink’s CCIP could enable cross-chain function execution. Enso’s differentiator is that it doesn’t just send messages between chains; it maintains a unified engine and library of DeFi actions. It targets application developers who want a ready-made solution, rather than forcing them to build on raw cross-chain primitives. Nonetheless, Enso will compete for market share in the broader blockchain middleware segment where these interoperability projects are well funded and rapidly innovating.

  • Transaction Aggregators & Automation: In the DeFi world, there are existing aggregators like 1inch, 0x API, or CoW Protocol that focus on finding optimal trade routes across exchanges. Enso’s Grapher mechanism for intents is conceptually similar to CoW Protocol’s solver competition, but Enso generalizes it beyond swaps to any action. A user intent to “maximize yield” might involve swapping, lending, staking, etc., which is outside the scope of a pure DEX aggregator. That said, Enso will be compared to these services on efficiency for overlapping use cases (e.g., Enso vs. 1inch for a complex token swap route). If Enso consistently finds better routes or lower fees thanks to its network of Graphers, it can outcompete traditional aggregators. Gelato Network is another competitor in automation: Gelato provides a decentralized network of bots to execute tasks like limit orders, auto-compounding, or cross-chain transfers on behalf of dApps. Gelato has a GEL token and an established client base for specific use cases. Enso’s advantage is its breadth and unified interface – rather than offering separate products for each use case (as Gelato does), Enso offers a general platform where any logic can be encoded as a Shortcut. However, Gelato’s head start and focused approach in areas like automation could attract developers who might otherwise use Enso for similar functionalities.

  • Developer Platforms (Web3 SDKs): There are also Web2-style developer platforms like Moralis, Alchemy, Infura, and Tenderly that simplify building on blockchains. These typically offer API access to read data, send transactions, and sometimes higher-level endpoints (e.g., “get token balances” or “send tokens across chain”). While these are mostly centralized services, they compete for the same developer attention. Enso’s selling point is that it’s decentralized and composable – developers are not just getting data or a single function, they’re tapping into an entire network of on-chain capabilities contributed by others. If successful, Enso could become “the GitHub of on-chain actions,” where developers share and reuse Shortcuts, much like open-source code. Competing with well-funded infrastructure-as-a-service companies means Enso will need to offer comparable reliability and ease-of-use, which it is striving for with an extensive API and documentation.

  • Homegrown Solutions: Finally, Enso competes with the status quo – teams building custom integrations in-house. Traditionally, any project wanting multi-protocol functionality had to write and maintain smart contracts or scripts for each integration (e.g., integrating Uniswap, Aave, Compound separately). Many teams might still choose this route for maximum control or due to security considerations. Enso needs to convince developers that outsourcing this work to a shared network is secure, cost-effective, and up-to-date. Given the speed of DeFi innovation, maintaining one’s own integrations is burdensome (Enso often cites that teams spend 6+ months and $500k on audits to integrate dozens of protocols). If Enso can prove its security rigor and keep its action library current with the latest protocols, it can convert more teams away from building in silos. However, any high-profile security incident or downtime in Enso could send developers back to preferring in-house solutions, which is a competitive risk in itself.

Enso’s Differentiators: Enso’s primary edge is being first-to-market with an intent-focused, community-driven execution network. It combines features that would require using multiple other services: data indexing, smart contract SDKs, transaction routing, and cross-chain bridging – all in one. Its incentive model (rewarding third-party developers for contributions) is also unique; it could lead to a vibrant ecosystem where many niche protocols get integrated into Enso faster than any single team could do, similar to how The Graph’s community indexes a long tail of contracts. If Enso succeeds, it could enjoy a strong network effect moat: more Actions and Shortcuts make it more attractive to use Enso versus competitors, which attracts more users and thus more Actions contributed, and so on.

That said, Enso is still in its early days. Its closest analog, The Graph, took years to decentralize and build an ecosystem of indexers. Enso will similarly need to nurture its Graphers and Validators community to ensure reliability. Large players (like a future version of The Graph, or a collaboration of Chainlink and others) could decide to roll out a competing intent execution layer, leveraging their existing networks. Enso will have to move quickly to solidify its position before such competition materializes.

In conclusion, Enso sits at a competitive crossroads of several important Web3 verticals – it’s carving a niche as the “middleware of everything”. Its success will depend on outperforming specialized competitors in each use case (or aggregating them) and continuing to offer a compelling one-stop solution that justifies developers choosing Enso over building from scratch. The presence of high-profile partners and investors suggests Enso has a foot in the door with many ecosystems, which will be advantageous as it expands its integration coverage.

Roadmap and Ecosystem Growth

Enso’s development roadmap (as of mid-2025) outlines a clear path toward full decentralization, multi-chain support, and community-driven growth. Key milestones and planned initiatives include:

  • Mainnet Launch (Q3 2024) – Enso launched its mainnet network in the second half of 2024. This involved deploying the Tendermint-based chain and initializing the Validator ecosystem. Early validators were likely permissioned or selected partners as the network bootstrapped. The mainnet launch allowed real user queries to be processed by Enso’s engine (prior to this, Enso’s services were accessible via a centralized API while in beta). This milestone marked Enso’s transition from an in-house platform to a public decentralized network.

  • Network Participant Expansion (Q4 2024) – Following mainnet, the focus shifted to decentralizing participation. In late 2024, Enso opened up roles for external Action Providers and Graphers. This included releasing tooling and documentation for developers to create their own Actions (smart contract adapters) and for algorithm developers to run Grapher nodes. We can infer that incentive programs or testnet competitions were used to attract these participants. By end of 2024, Enso aimed to have a broader set of third-party actions in its library and multiple Graphers competing on intents, moving beyond the core team’s internal algorithms. This was a crucial step to ensure Enso isn’t a centralized service, but a true open network where anyone can contribute and earn ENSO tokens.

  • Cross-Chain Expansion (Q1 2025) – Enso recognizes that supporting many blockchains is key to its value proposition. In early 2025, the roadmap targeted integration with new blockchain environments beyond the initial EVM set. Specifically, Enso planned support for Monad, Solana, and Movement by Q1 2025. Monad is an upcoming high-performance EVM-compatible chain (backed by Dragonfly Capital) – supporting it early could position Enso as the go-to middleware there. Solana integration is more challenging (different runtime and language), but Enso’s intent engine could work with Solana by using off-chain graphers to formulate Solana transactions and on-chain programs acting as adapters. Movement refers to Move-language chains (perhaps Aptos/Sui or a specific one called Movement). By incorporating Move-based chains, Enso would cover a broad spectrum of ecosystems (Solidity and Move, as well as existing Ethereum rollups). Achieving these integrations means developing new Action modules that understand Solana’s CPI calls or Move’s transaction scripts, and likely collaborating with those ecosystems for oracles/indexing. Enso’s mention in updates suggests these were on track – for example, a community update highlighted partnerships or grants (the mention of “Eclipse mainnet live + Movement grant” in a search result suggests Enso was actively working with novel L1s like Eclipse and Movement by early 2025).

  • Near-Term (Mid/Late 2025) – Although not explicitly broken out in the one-pager roadmap, by mid-2025 Enso’s focus is on network maturity and decentralization. The completion of the CoinList token sale in June 2025 is a major event: the next steps would be token generation and distribution (expected around July 2025) and launching on exchanges or governance forums. We anticipate Enso will roll out its governance process (Enso Improvement Proposals, on-chain voting) so the community can start participating in decisions using their newly acquired tokens. Additionally, Enso will likely move from “beta” to a fully production-ready service, if it hasn’t already. Part of this will be security hardening – conducting multiple smart contract audits and perhaps running a bug bounty program, considering the large TVLs involved.

  • Ecosystem Growth Strategies: Enso is actively fostering an ecosystem around its network. One strategy has been running educational programs and hackathons (e.g., the Shortcut Speedrun and workshops) to onboard developers to the Enso way of building. Another strategy is partnering with new protocols at launch – we’ve seen this with Berachain, zkSync’s campaign, and others. Enso is likely to continue this, effectively acting as an “on-chain launch partner” for emerging networks or DeFi projects, handling their complex user onboarding flows. This not only drives Enso’s volume (as seen with Berachain) but also integrates Enso deeply into those ecosystems. We expect Enso to announce integrations with more Layer-2 networks (e.g., Arbitrum, Optimism were presumably already supported; perhaps newer ones like Scroll or Starknet next) and other L1s (Polkadot via XCM, Cosmos via IBC or Osmosis, etc.). The long-term vision is that Enso becomes chain-ubiquitous – any developer on any chain can plug in. To that end, Enso may also develop better bridgeless cross-chain execution (using techniques like atomic swaps or optimistic execution of intents across chains), which could be on the R&D roadmap beyond 2025.

  • Future Outlook: Looking further, Enso’s team has hinted at involvement of AI agents as network participants. This suggests a future where not only human developers, but AI bots (perhaps trained to optimize DeFi strategies) plug into Enso to provide services. Enso might build out this vision by creating SDKs or frameworks for AI agents to safely interface with the intent engine – a potentially groundbreaking development merging AI and blockchain automation. Moreover, by late 2025 or 2026, we anticipate Enso will work on performance scaling (maybe sharding its network or using zero-knowledge proofs to validate intent execution correctness at scale) as usage grows.

The roadmap is ambitious but execution so far has been strong – Enso has met key milestones like mainnet launch and delivering real use cases. An important upcoming milestone is the full decentralization of the network. Currently, the network is in a transition: the documentation notes the decentralized network is in testnet and a centralized API was being used for production as of earlier in 2025. By now, with mainnet live and token in circulation, Enso will aim to phase out any centralized components. For investors, tracking this decentralization progress (e.g., number of independent validators, community Graphers joining) will be key to evaluating Enso’s maturity.

In summary, Enso’s roadmap focuses on scaling the network’s reach (more chains, more integrations) and scaling the network’s community (more third-party participants and token holders). The ultimate goal is to cement Enso as critical infrastructure in Web3, much like how Infura became essential for dApp connectivity or how The Graph became integral for data querying. If Enso can hit its milestones, the second half of 2025 should see a blossoming ecosystem around the Enso Network, potentially driving exponential growth in usage.

Risk Assessment

Like any early-stage protocol, Enso Network faces a range of risks and challenges that investors should carefully consider:

  • Technical and Security Risks: Enso’s system is inherently complex – it interacts with myriad smart contracts across many blockchains through a network of off-chain solvers and validators. This expansive surface area introduces technical risk. Each new Action (integration) could carry vulnerabilities; if an Action’s logic is flawed or a malicious provider introduces a backdoored Action, user funds could be at risk. Ensuring every integration is secure required substantial investment (Enso’s team spent over $500k on audits for integrating 15 protocols in its early days). As the library grows to hundreds of protocols, maintaining rigorous security audits is challenging. There’s also the risk of bugs in Enso’s coordination logic – for example, a flaw in how Graphers compose transactions or how Validators verify them could be exploited. Cross-chain execution, in particular, can be risky: if a sequence of actions spans multiple chains and one part fails or is censored, it could leave a user’s funds in limbo. Although Enso likely uses retries or atomic swaps for some cases, the complexity of intents means unknown failure modes might emerge. The intent-based model itself is relatively unproven at scale – there may be edge cases where the engine produces an incorrect solution or an outcome that diverges from the user’s intent. Any high-profile exploit or failure could undermine confidence in the whole network. Mitigation requires continuous security audits, a robust bug bounty program, and perhaps insurance mechanisms for users (none of which have been detailed yet).

  • Decentralization and Operational Risks: At present (mid-2025), the Enso network is still in the process of decentralizing its participants. This means there may be unseen operational centralization – for instance, the team’s infrastructure might still be co-ordinating a lot of the activity, or only a few validators/graphers are genuinely active. This presents two risks: reliability (if the core team’s servers go down, will the network stall?) and trust (if the process isn’t fully trustless yet, users must have faith in Enso Inc. not to front-run or censor transactions). The team has proven reliability in big events (like handling $3B volume in days), but as usage grows, scaling the network via more independent nodes will be crucial. There’s also a risk that network participants don’t show up – if Enso cannot attract enough skilled Action Providers or Graphers, the network might remain dependent on the core team, limiting decentralization. This could slow innovation and also concentrate too much power (and token rewards) within a small group, the opposite of the intended design.

  • Market and Adoption Risks: While Enso has impressive early adoption, it’s still in a nascent market for “intent-based” infrastructure. There is a risk that the broader developer community might be slow to adopt this new paradigm. Developers entrenched in traditional coding practices might be hesitant to rely on an external network for core functionality, or they may prefer alternative solutions. Additionally, Enso’s success depends on continuous growth of DeFi and multi-chain ecosystems. If the multi-chain thesis falters (for example, if most activity consolidates on a single dominant chain), the need for Enso’s cross-chain capabilities might diminish. On the flip side, if a new ecosystem arises that Enso fails to integrate quickly, projects in that ecosystem won’t use Enso. Essentially, staying up-to-date with every new chain and protocol is a never-ending challenge – missing or lagging on a major integration (say a popular new DEX or a Layer-2) could push projects to competitors or custom code. Furthermore, Enso’s usage could be hurt by macro market conditions; in a severe DeFi downturn, fewer users and developers might be experimenting with new dApps, directly reducing intents submitted to Enso and thus the fees/revenue of the network. The token’s value could suffer in such a scenario, potentially making staking less attractive and weakening network security or participation.

  • Competition: As discussed, Enso faces competition on multiple fronts. A major risk is a larger player entering the intent execution space. For instance, if a well-funded project like Chainlink were to introduce a similar intent service leveraging their existing oracle network, they could quickly overshadow Enso due to brand trust and integrations. Similarly, infrastructure companies (Alchemy, Infura) could build simplified multi-chain SDKs that, while not decentralized, capture the developer market with convenience. There’s also the risk of open-source copycats: Enso’s core concepts (Actions, Graphers) could be replicated by others, perhaps even as a fork of Enso if the code is public. If one of those projects forms a strong community or finds a better token incentive, it might divert potential participants. Enso will need to maintain technological leadership (e.g., by having the largest library of Actions and most efficient solvers) to fend off competition. Competitive pressure could also squeeze Enso’s fee model – if a rival offers similar services cheaper (or free, subsidized by VCs), Enso might be forced to lower fees or increase token incentives, which could strain its tokenomics.

  • Regulatory and Compliance Risks: Enso operates in the DeFi infrastructure space, which is a gray area in terms of regulation. While Enso itself doesn’t custody user funds (users execute intents from their own wallets), the network does automate complex financial transactions across protocols. There is a possibility that regulators could view intent-composition engines as facilitating unlicensed financial activity or even aiding money laundering if used to shuttle funds across chains in obscured ways. Specific concerns could arise if Enso enablescross-chain swaps that touch privacy pools or jurisdictions under sanctions. Additionally, the ENSO token and its CoinList sale reflect a distribution to a global community – regulators (like the SEC in the U.S.) might scrutinize it as an offering of securities (notably, Enso excluded US, UK, China, etc., from the sale, indicating caution on this front). If ENSO were deemed a security in major jurisdictions, it could limit exchange listings or usage by regulated entities. Enso’s decentralized network of validators might also face compliance issues: for example, could a validator be forced to censor certain transactions due to legal orders? This is largely hypothetical for now, but as the value flowing through Enso grows, regulatory attention will increase. The team’s base in Switzerland might offer a relatively crypto-friendly regulatory environment, but global operations mean global risks. Mitigating this likely involves ensuring Enso is sufficiently decentralized (so no single entity is accountable) and possibly geofencing certain features if needed (though that would be against the ethos of the project).

  • Economic Sustainability: Enso’s model assumes that fees generated by usage will sufficiently reward all participants. There’s a risk that the fee incentives may not be enough to sustain the network, especially early on. For instance, Graphers and Validators incur costs (infrastructure, development time). If query fees are set too low, these participants might not profit, leading them to drop off. On the other hand, if fees are too high, dApps may hesitate to use Enso and seek cheaper alternatives. Striking a balance is hard in a two-sided market. The Enso token economy also relies on token value to an extent – e.g., staking rewards are more attractive when the token has high value, and Action Providers earn value in ENSO. A sharp decline in ENSO price could reduce network participation or prompt more selling (which further depresses the price). With a large portion of tokens held by investors and team (over 56% combined, vesting over 2 years), there’s an overhang risk: if these stakeholders lose faith or need liquidity, their selling could flood the market post-vesting and undermine the token’s price. Enso tried to mitigate concentration by the community sale, but it’s still a relatively centralized token distribution in the near term. Economic sustainability will depend on growing genuine network usage to a level where fee revenue provides sufficient yield to token stakers and contributors – essentially making Enso a “cash-flow” generating protocol rather than just a speculative token. This is achievable (think of how Ethereum fees reward miners/validators), but only if Enso achieves widespread adoption. Until then, there is a reliance on treasury funds (15% allocated) to incentivize and perhaps to adjust the economic parameters (Enso governance may introduce inflation or other rewards if needed, which could dilute holders).

Summary of Risk: Enso is pioneering new ground, which comes with commensurate risk. The technological complexity of unifying all of DeFi into one network is enormous – each blockchain added or protocol integrated is a potential point of failure that must be managed. The team’s experience navigating earlier setbacks (like the limited success of the initial social trading product) shows they are aware of pitfalls and adapt quickly. They have actively mitigated some risks (e.g., decentralizing ownership via the community round to avoid overly VC-driven governance). Investors should watch how Enso executes on decentralization and whether it continues to attract top-tier technical talent to build and secure the network. In the best case, Enso could become indispensable infrastructure across Web3, yielding strong network effects and token value accrual. In the worst case, technical or adoption setbacks could relegate it to being an ambitious but niche tool.

From an investor’s perspective, Enso offers a high-upside, high-risk profile. Its current status (mid-2025) is that of a promising network with real usage and a clear vision, but it must now harden its technology and outpace a competitive and evolving landscape. Due diligence on Enso should include monitoring its security track record, the growth of query volumes/fees over time, and how effectively the ENSO token model incentivizes a self-sustaining ecosystem. As of now, the momentum is in Enso’s favor, but prudent risk management and continued innovation will be key to turning this early leadership into long-term dominance in the Web3 middleware space.

Sources:

  • Enso Network Official Documentation and Token Sale Materials

    • CoinList Token Sale Page – Key Highlights & Investors
    • Enso Docs – Tokenomics and Network Roles
  • Interviews and Media Coverage

    • CryptoPotato Interview with Enso CEO (June 2025) – Background on Enso’s evolution and intent-based design
    • DL News (May 2025) – Overview of Enso’s shortcuts and shared state approach
  • Community and Investor Analyses

    • Hackernoon (I. Pandey, 2025) – Insights on Enso’s community round and token distribution strategy
    • CryptoTotem / CoinLaunch (2025) – Token supply breakdown and roadmap timeline
  • Enso Official Site Metrics (2025) and Press Releases – Adoption figures and use-case examples (Berachain migration, Uniswap collaboration).

From Clicks to Conversations: How Generative AI is Building the Future of DeFi

· 5 min read
Dora Noda
Software Engineer

Traditional Decentralized Finance (DeFi) is powerful, but let's be honest—it can be a nightmare for the average user. Juggling different protocols, managing gas fees, and executing multi-step transactions is confusing and time-consuming. What if you could just tell your wallet what you want, and it would handle the rest?

That's the promise of a new, intent-driven paradigm, and generative AI is the engine making it happen. This shift is poised to transform DeFi from a landscape of complex transactions into a world of simple, goal-oriented experiences.


The Big Idea: From "How" to "What"

In the old DeFi model, you're the pilot. You have to manually choose the exchange, find the best swap route, approve multiple transactions, and pray you didn't mess up.

Intent-driven DeFi flips the script. Instead of executing steps, you declare your end goal—your intent.

  • Instead of: Manually swapping tokens on Uniswap, bridging to another chain, and staking in a liquidity pool...
  • You say: "Maximize the yield on my $5,000 with low risk."

An automated system, often powered by AI agents called "solvers," then finds and executes the most optimal path across multiple protocols to make your goal a reality. It's the difference between following a recipe step-by-step and just telling a chef what you want to eat.

This approach brings two huge benefits:

  1. A "One-Click" User Experience: The complexity of gas fees, bridging, and multi-step swaps is hidden. Thanks to technologies like account abstraction, you can approve a complex goal with a single signature.
  2. Better, More Efficient Execution: Specialized solvers (think professional market-making bots) compete to give you the best deal, often finding better prices and lower slippage than a manual user ever could.

The Role of Generative AI: The Brains of the Operation 🧠

Generative AI, especially Large Language Models (LLMs), is the key that unlocks this seamless experience. Here’s how it works:

  • Natural Language Interfaces: You can interact with DeFi using plain English. AI-powered "copilots" like HeyAnon and Griffain let you manage your portfolio and execute trades just by chatting with an AI, making DeFi as easy as using ChatGPT.
  • AI Planning & Strategy: When you give a high-level goal like "invest for the best yield," AI agents break it down into a concrete plan. They can analyze market data, predict trends, and rebalance your assets automatically, 24/7.
  • Yield Optimization: AI-driven protocols like Mozaic use agents (theirs is named Archimedes) to constantly scan for the best risk-adjusted returns across different chains and automatically move funds to capture the highest APY.
  • Automated Risk Management: AI can act as a vigilant guardian. If it detects a spike in volatility that could risk your position, it can automatically add collateral or move funds to a safer pool, all based on the risk parameters you set in your original intent.

This powerful combination of DeFi and AI has been dubbed "DeFAI" or "AiFi," and it's set to bring a wave of new users who were previously intimidated by crypto's complexity.


A Multi-Billion Dollar Opportunity 📈

The market potential here is massive. The DeFi market is already projected to grow from around 20.5billionin2024to20.5 billion in 2024 to 231 billion by 2030. By making DeFi more accessible, AI could supercharge that growth.

We're already seeing a gold rush of investment and innovation:

  • AI Assistants: Projects like HeyAnon and aixbt have quickly achieved market caps in the hundreds of millions.
  • Intent-Centric Protocols: Established players are adapting. CoW Protocol and UniswapX use solver competition to protect users from MEV and get them better prices.
  • New Blockchains: Entire Layer-2 networks like Essential and Optopia are being built from the ground up to be "intent-centric," treating AI agents as first-class citizens.

Challenges on the Road Ahead

This future isn't here just yet. The DeFAI space faces significant hurdles:

  • Technical Bottlenecks: Blockchains aren't designed to run complex AI models. Most AI logic has to happen off-chain, which introduces complexity and trust issues.
  • AI Hallucinations & Errors: An AI misinterpreting a user's intent or "hallucinating" a faulty investment strategy could be financially disastrous.
  • Security & Exploitation: Combining AI with smart contracts creates new attack surfaces. An autonomous agent could be tricked into executing a bad trade, draining funds in minutes.
  • Centralization Risk: For intent-based systems to work, they need a large, decentralized network of solvers. If only a few large players dominate, we risk recreating the same centralized dynamics of traditional finance.

The Path Forward: Autonomous Finance

The fusion of generative AI and DeFi is pushing us toward a future of Autonomous Finance, where intelligent agents manage assets, execute strategies, and optimize returns on our behalf, all within a decentralized framework.

The journey requires solving major technical and security challenges. But with dozens of projects building the infrastructure, from AI-native oracles to intent-centric blockchains, the momentum is undeniable.

For users, this means a future where engaging with the world of decentralized finance is as simple as having a conversation—a future where you focus on your financial goals, and your AI partner handles the rest. The next generation of finance is being built today, and it’s looking smarter, simpler, and more autonomous than ever before.

Plume Network and Real-World Assets (RWA) in Web3

· 77 min read

Plume Network: Overview and Value Proposition

Plume Network is a blockchain platform purpose-built for Real-World Assets (RWA). It is a public, Ethereum-compatible chain designed to tokenize a wide range of real-world financial assets – from private credit and real estate to carbon credits and even collectibles – and make them as usable as native crypto assets. In other words, Plume doesn’t just put assets on-chain; it allows users to hold and utilize tokenized real assets in decentralized finance (DeFi) – enabling familiar crypto activities like staking, lending, borrowing, swapping, and speculative trading on assets that originate in traditional finance.

The core value proposition of Plume is to bridge TradFi and DeFi by turning traditionally illiquid or inaccessible assets into programmable, liquid tokens. By integrating institutional-grade assets (e.g. private credit funds, ETFs, commodities) with DeFi infrastructure, Plume aims to make high-quality investments – which were once limited to large institutions or specific markets – permissionless, composable, and a click away for crypto users. This opens the door for crypto participants to earn “real yield” backed by stable real-world cash flows (such as loan interest, rental income, bond yields, etc.) rather than relying on inflationary token rewards. Plume’s mission is to drive “RWA Finance (RWAfi)”, creating a transparent and open financial system where anyone can access assets like private credit, real estate debt, or commodities on-chain, and use them freely in novel ways.

In summary, Plume Network serves as an “on-chain home for real-world assets”, offering a full-stack ecosystem that transforms off-chain assets into globally accessible financial tools with true crypto-native utility. Users can stake stablecoins to earn yields from top fund managers (Apollo, BlackRock, Blackstone, etc.), loop and leverage RWA-backed tokens as collateral, and trade RWAs as easily as ERC-20 tokens. By doing so, Plume stands out as a platform striving to make alternative assets more liquid and programmable, bringing fresh capital and investment opportunities into Web3 without sacrificing transparency or user experience.

Technology and Architecture

Plume Network is implemented as an EVM-compatible blockchain with a modular Layer-2 architecture. Under the hood, Plume operates similarly to an Ethereum rollup (comparable to Arbitrum’s technology), utilizing Ethereum for data availability and security. Every transaction on Plume is eventually batch-posted to Ethereum, which means users pay a small extra fee to cover the cost of publishing calldata on Ethereum. This design leverages Ethereum’s robust security while allowing Plume to have its own high-throughput execution environment. Plume runs a sequencer that aggregates transactions and commits them to Ethereum periodically, giving the chain faster execution and lower fees for RWA use-cases, but anchored to Ethereum for trust and finality.

Because Plume is EVM-compatible, developers can deploy Solidity smart contracts on Plume just as they would on Ethereum, with almost no changes. The chain supports the standard Ethereum RPC methods and Solidity operations, with only minor differences (e.g. Plume’s block number and timestamp semantics mirror Arbitrum’s conventions due to the Layer-2 design). In practice, this means Plume can easily integrate existing DeFi protocols and developer tooling. The Plume docs note that cross-chain messaging is supported between Ethereum (the “parent” chain) and Plume (the L2), enabling assets and data to move between the chains as needed.

Notably, Plume describes itself as a “modular blockchain” optimized for RWA finance. The modular approach is evident in its architecture: it has dedicated components for bridging assets (called Arc for bringing anything on-chain), for omnichain yield routing (SkyLink) across multiple blockchains, and for on-chain data feeds (Nexus, an “onchain data highway”). This suggests Plume is building an interconnected system where real-world asset tokens on Plume can interact with liquidity on other chains and where off-chain data (like asset valuations, interest rates, etc.) is reliably fed on-chain. Plume’s infrastructure also includes a custom wallet called Plume Passport (the “RWAfi Wallet”) which likely handles identity/AML checks necessary for RWA compliance, and a native stablecoin (pUSD) for transacting in the ecosystem.

Importantly, Plume’s current iteration is often called a Layer-2 or rollup chain – it is built atop Ethereum for security. However, the team has hinted at ambitious plans to evolve the tech further. Plume’s CTO noted that they started as a modular L2 rollup but are now pushing “down the stack” toward a fully sovereign Layer-1 architecture, optimizing a new chain from scratch with high performance, privacy features “comparable to Swiss banks,” and a novel crypto-economic security model to secure the next trillion dollars on-chain. While specifics are scant, this suggests that over time Plume may transition to a more independent chain or incorporate advanced features like FHE (Fully Homomorphic Encryption) or zk-proofs (the mention of zkTLS and privacy) to meet institutional requirements. For now, though, Plume’s mainnet leverages Ethereum’s security and EVM environment to rapidly onboard assets and users, providing a familiar but enhanced DeFi experience for RWAs.

Tokenomics and Incentives

PLUME ($PLUME) is the native utility token of the Plume Network. The $PLUME token is used to power transactions, governance, and network security on Plume. As the gas token, $PLUME is required to pay transaction fees on the Plume chain (similar to how ETH is gas on Ethereum). This means all operations – trading, staking, deploying contracts – consume $PLUME for fees. Beyond gas, $PLUME has several utility and incentive roles:

  • Governance: $PLUME holders can participate in governance decisions, presumably voting on protocol parameters, upgrades, or asset onboarding decisions.
  • Staking/Security: The token can be staked, which likely supports the network’s validator or sequencer operations. Stakers help secure the chain and in return earn staking rewards in $PLUME. (Even as a rollup, Plume may use a proof-of-stake mechanism for its sequencer or for eventual decentralization of block production).
  • Real Yield and DeFi utility: Plume’s docs mention that users can use $PLUME across dApps to “unlock real yield”. This suggests that holding or staking $PLUME might confer higher yields in certain RWA yield farms or access to exclusive opportunities in the ecosystem.
  • Ecosystem Incentives: $PLUME is also used to reward community engagement – for example, users might earn tokens via community quests, referral programs, testnet participation (such as the “Take Flight” developer program or the testnet “Goons” NFTs). This incentive design is meant to bootstrap network effects by distributing tokens to those who actively use and grow the platform.

Token Supply & Distribution: Plume has a fixed total supply of 10 billion $PLUME tokens. At the Token Generation Event (mainnet launch), the initial circulating supply is 20% of the total (i.e. 2 billion tokens). The allocation is heavily weighted toward community and ecosystem development:

  • 59% to Community, Ecosystem & Foundation – this large share is reserved for grants, liquidity incentives, community rewards, and a foundation pool to support the ecosystem’s long-term growth. This ensures a majority of tokens are available to bootstrap usage (and potentially signals commitment to decentralization over time).
  • 21% to Early Backers – these tokens are allocated to strategic investors and partners who funded Plume’s development. (As we’ll see, Plume raised capital from prominent crypto funds; this allocation likely vests over time as per investor agreements.)
  • 20% to Core Contributors (Team) – allocated to the founding team and core developers driving Plume. This portion incentivizes the team and aligns them with the network’s success, typically vesting over a multi-year period.

Besides $PLUME, Plume’s ecosystem includes a stablecoin called Plume USD (pUSD). pUSD is designed as the RWAfi ecosystem stablecoin for Plume. It serves as the unit of account and primary trading/collateral currency within Plume’s DeFi apps. Uniquely, pUSD is fully backed 1:1 by USDC – effectively a wrapped USDC for the Plume network. This design choice (wrapping USDC) was made to reduce friction for traditional institutions: if an organization is already comfortable holding and minting USDC, they can seamlessly mint and use pUSD on Plume under the same frameworks. pUSD is minted and redeemed natively on both Ethereum and Plume, meaning users or institutions can deposit USDC on Ethereum and receive pUSD on Plume, or vice versa. By tying pUSD 1:1 to USDC (and ultimately to USD reserves), Plume ensures its stablecoin remains fully collateralized and liquid, which is critical for RWA transactions (where predictability and stability of the medium of exchange are required). In practice, pUSD provides a common stable liquidity layer for all RWA apps on Plume – whether it’s buying tokenized bonds, investing in RWA yield vaults, or trading assets on a DEX, pUSD is the stablecoin that underpins value exchange.

Overall, Plume’s tokenomics aim to balance network utility with growth incentives. $PLUME ensures the network is self-sustaining (through fees and staking security) and community-governed, while large allocations to ecosystem funds and airdrops help drive early adoption. Meanwhile, pUSD anchors the financial ecosystem in a trustworthy stable asset, making it easier for traditional capital to enter Plume and for DeFi users to measure returns on real-world investments.

Founding Team and Backers

Plume Network was founded in 2022 by a trio of entrepreneurs with backgrounds in crypto and finance: Chris Yin (CEO), Eugene Shen (CTO), and Teddy Pornprinya (CBO). Chris Yin is described as the visionary product leader of the team, driving the platform’s strategy and thought leadership in the RWA space. Eugene Shen leads the technical development as CTO (previously having worked on modular blockchain architectures, given his note about “customizing geth” and building from the ground up). Teddy Pornprinya, as Chief Business Officer, spearheads partnerships, business development, and marketing – he was instrumental in onboarding dozens of projects into the Plume ecosystem early on. Together, the founders identified the gap in the market for an RWA-optimized chain and quit their prior roles to build Plume, officially launching the project roughly a year after conception.

Plume has attracted significant backing from both crypto-native VCs and traditional finance giants, signaling strong confidence in its vision:

  • In May 2023, Plume raised a $10 million seed round led by Haun Ventures (the fund of former a16z partner Katie Haun). Other participants in the seed included Galaxy Digital, Superscrypt (Temasek’s crypto arm), A Capital, SV Angel, Portal Ventures, and Reciprocal Ventures. This diverse investor base gave Plume a strong start, combining crypto expertise and institutional connections.

  • By late 2024, Plume secured a $20 million Series A funding to accelerate its development. This round was backed by top-tier investors such as Brevan Howard Digital, Haun Ventures (returning), Galaxy, and Faction VC. The inclusion of Brevan Howard, one of the world’s largest hedge funds with a dedicated crypto arm, is especially notable and underscored the growing Wall Street interest in RWAs on blockchain.

  • In April 2025, Apollo Global Management – one of the world’s largest alternative asset managers – made a strategic investment in Plume. Apollo’s investment was a seven-figure (USD) amount intended to help Plume scale its infrastructure and bring more traditional financial products on-chain. Apollo’s involvement is a strong validation of Plume’s approach: Christine Moy, Apollo’s Head of Digital Assets, said their investment “underscores Apollo’s focus on technologies that broaden access to institutional-quality products… Plume represents a new kind of infrastructure focused on digital asset utility, investor engagement, and next-generation financial solutions”. In other words, Apollo sees Plume as key infrastructure to make private markets more liquid and accessible via blockchain.

  • Another strategic backer is YZi Labs, formerly Binance Labs. In early 2025, YZi (Binance’s venture arm rebranded) announced a strategic investment in Plume Network as well. YZi Labs highlighted Plume as a “cutting-edge Layer-2 blockchain designed for scaling real world assets”, and their support signals confidence that Plume can bridge TradFi and DeFi at a large scale. (It’s worth noting Binance Labs’ rebranding to YZi Labs indicates continuity of their investments in core infrastructure projects like Plume.)

  • Plume’s backers also include traditional fintech and crypto institutions through partnerships (detailed below) – for example, Mercado Bitcoin (Latin America’s largest digital asset platform) and Anchorage Digital (a regulated crypto custodian) are ecosystem partners, effectively aligning themselves with Plume’s success. Additionally, Grayscale Investments – the world’s largest digital asset manager – has taken notice: in April 2025, Grayscale officially added $PLUME to its list of assets “Under Consideration” for future investment products. Being on Grayscale’s radar means Plume could potentially be included in institutional crypto trusts or ETFs, a major nod of legitimacy for a relatively new project.

In summary, Plume’s funding and support comes from a who’s-who of top investors: premier crypto VCs (Haun, Galaxy, a16z via GFI’s backing of Goldfinch, etc.), hedge funds and TradFi players (Brevan Howard, Apollo), and corporate venture arms (Binance/YZi). This mix of backers brings not just capital but also strategic guidance, regulatory expertise, and connections to real-world asset originators. It has also provided Plume with war-chest funding (at least $30M+ over seed and Series A) to build out its specialized blockchain and onboard assets. The strong backing serves as a vote of confidence that Plume is positioned as a leading platform in the fast-growing RWA sector.

Ecosystem Partners and Integrations

Plume has been very active in forging ecosystem partnerships across both crypto and traditional finance, assembling a broad network of integrations even before (and immediately upon) mainnet launch. These partners provide the assets, infrastructure, and distribution that make Plume’s RWA ecosystem functional:

  • Nest Protocol (Nest Credit): An RWA yield platform that operates on Plume, allowing users to deposit stablecoins into vaults and receive yield-bearing tokens backed by real-world assets. Nest is essentially a DeFi frontend for RWA yields, offering products like tokenized U.S. Treasury Bills, private credit, mineral rights, etc., but abstracting away the complexity so they “feel like crypto.” Users swap USDC (or pUSD) for Nest-issued tokens that are fully backed by regulated, audited assets held by custodians. Nest works closely with Plume – a testimonial from Anil Sood of Anemoy (a partner) highlights that “partnering with Plume accelerates our mission to bring institutional-grade RWAs to every investor… This collaboration is a blueprint for the future of RWA innovation.”. In practice, Nest is Plume’s native yield marketplace (sometimes called “Nest Yield” or RWA staking platform), and many of Plume’s big partnerships funnel into Nest vaults.

  • Mercado Bitcoin (MB): The largest digital asset exchange in Latin America (based in Brazil) has partnered with Plume to tokenize ~$40 million of Brazilian real-world assets. This initiative, announced in Feb 2025, involves MB using Plume’s blockchain to issue tokens representing Brazilian asset-backed securities, consumer credit portfolios, corporate debt, and accounts receivable. The goal is to connect global investors with yield-bearing opportunities in Brazil’s economy – effectively opening up Brazilian credit markets to on-chain investors worldwide through Plume. These Brazilian RWA tokens will be available from day one of Plume’s mainnet on the Nest platform, providing stable on-chain returns backed by Brazilian small-business loans and credit receivables. This partnership is notable because it gives Plume a geographic reach (LATAM) and a pipeline of emerging-market assets, showcasing how Plume can serve as a hub connecting regional asset originators to global liquidity.

  • Superstate: Superstate is a fintech startup founded by Robert Leshner (former founder of Compound), focused on bringing regulated U.S. Treasury fund products on-chain. In 2024, Superstate launched a tokenized U.S. Treasury fund (approved as a 1940 Act mutual fund) targeted at crypto users. Plume was chosen by Superstate to power its multi-chain expansion. In practice, this means Superstate’s tokenized T-bill fund (which offers stable yield from U.S. government bonds) is being made available on Plume, where it can be integrated into Plume’s DeFi ecosystem. Leshner himself said: “by expanding to Plume – the unique RWAfi chain – we can demonstrate how purpose-built infrastructure can enable great new use-cases for tokenized assets. We’re excited to build on Plume.”. This indicates Superstate will deploy its fund tokens (e.g., maybe an on-chain share of a Treasuries fund) on Plume, allowing Plume users to hold or use them in DeFi (perhaps as collateral for borrowing, or in Nest vaults for auto-yield). It is a strong validation that Plume’s chain is seen as a preferred home for regulated asset tokens like Treasuries.

  • Ondo Finance: Ondo is a well-known DeFi project that pivoted into the RWA space by offering tokenized bonds and yield products (notably, Ondo’s OUSG token, which represents shares in a short-term U.S. Treasury fund, and USDY, representing an interest-bearing USD deposit product). Ondo is listed among Plume’s ecosystem partners, implying a collaboration where Ondo’s yield-bearing tokens (like OUSG, USDY) can be used on Plume. In fact, Ondo’s products align closely with Plume’s goals: Ondo established legal vehicles (SPVs) to ensure compliance, and its OUSG token is backed by BlackRock’s tokenized money market fund (BUIDL), providing ~4.5% APY from Treasuries. By integrating Ondo, Plume gains blue-chip RWA assets like U.S. Treasuries on-chain. Indeed, as of late 2024, Ondo’s RWA products had a market value around $600+ million, so bridging them to Plume adds significant TVL. This synergy likely allows Plume users to swap into Ondo’s tokens or include them in Nest vaults for composite strategies.

  • Centrifuge: Centrifuge is a pioneer in RWA tokenization (operating its own Polkadot parachain for RWA pools). Plume’s site lists Centrifuge as a partner, suggesting collaboration or integration. This could mean that Centrifuge’s pools of assets (trade finance, real estate bridge loans, etc.) might be accessible from Plume, or that Centrifuge will use Plume’s infrastructure for distribution. For example, Plume’s SkyLink omnichain yield might route liquidity from Plume into Centrifuge pools on Polkadot, or Centrifuge could tokenize certain assets directly onto Plume for deeper DeFi composability. Given Centrifuge leads the private credit RWA category with ~$409M TVL in its pools, its participation in Plume’s ecosystem is significant. It indicates an industry-wide move toward interoperability among RWA platforms, with Plume acting as a unifying layer for RWA liquidity across chains.

  • Credbull: Credbull is a private credit fund platform that partnered with Plume to launch a large tokenized credit fund. According to CoinDesk, Credbull is rolling out up to a $500M private credit fund on Plume, offering a fixed high yield to on-chain investors. This likely involves packaging private credit (loans to mid-sized companies or other credit assets) into a vehicle where on-chain stablecoin holders can invest for a fixed return. The significance is twofold: (1) It adds a huge pipeline of yield assets (~half a billion dollars) to Plume’s network, and (2) it exemplifies how Plume is attracting real asset managers to originate products on its chain. Combined with other pipeline assets, Plume said it planned to tokenize about $1.25 billion worth of RWAs by late 2024, including Credbull’s fund, plus $300M of renewable energy assets (solar farms via Plural Energy), ~$120M of healthcare receivables (Medicaid-backed invoices), and even oil & gas mineral rights. This large pipeline shows that at launch, Plume isn’t empty – it comes with tangible assets ready to go.

  • Goldfinch: Goldfinch is a decentralized credit protocol that provided undercollateralized loans to fintech lenders globally. In 2023, Goldfinch pivoted to “Goldfinch Prime”, targeting accredited and institutional investors by offering on-chain access to top private credit funds. Plume and Goldfinch announced a strategic partnership to bring Goldfinch Prime’s offerings to Plume’s Nest platform, effectively marrying Goldfinch’s institutional credit deals with Plume’s user base. Through this partnership, institutional investors on Plume can stake stablecoins into funds managed by Apollo, Golub Capital, Aries, Stellus, and other leading private credit managers via Goldfinch’s integration. The ambition is massive: collectively these managers represent over $1 trillion in assets, and the partnership aims to eventually make portions of that available on-chain. In practical terms, a user on Plume could invest in a diversified pool that earns yield from hundreds of real-world loans made by these credit funds, all tokenized through Goldfinch Prime. This not only enhances Plume’s asset diversity but also underscores Plume’s credibility to partner with top-tier RWA platforms.

  • Infrastructure Partners (Custody and Connectivity): Plume has also integrated key infrastructure players. Anchorage Digital, a regulated crypto custodian bank, is a partner – Anchorage’s involvement likely means institutional users can custody their tokenized assets or $PLUME securely in a bank-level custody solution (a must for big money). Paxos is another listed partner, which could relate to stablecoin infrastructure (Paxos issues USDP stablecoin and also provides custody and brokerage services – possibly Paxos could be safeguarding the reserves for pUSD or facilitating asset tokenization pipelines). LayerZero is mentioned as well, indicating Plume uses LayerZero’s interoperability protocol for cross-chain messaging. This would allow assets on Plume to move to other chains (and vice versa) in a trust-minimized way, complementing Plume’s rollup bridge.

  • Other DeFi Integrations: Plume’s ecosystem page cites 180+ protocols, including RWA specialists and mainstream DeFi projects. For instance, names like Nucleus Yield (a platform for tokenized yields), and possibly on-chain KYC providers or identity solutions, are part of the mix. By the time of mainnet, Plume had over 200 integrated protocols in its testnet environment – meaning many existing dApps (DEXs, money markets, etc.) have deployed or are ready to deploy on Plume. This ensures that once real-world assets are tokenized, they have immediate utility: e.g., a tokenized solar farm revenue stream could be traded on an order-book exchange, or used as collateral for a loan, or included in an index – because the DeFi “money lego” pieces (DEXs, lending platforms, asset management protocols) are available on the chain from the start.

In summary, Plume’s ecosystem strategy has been aggressive and comprehensive: secure anchor partnerships for assets (e.g. funds from Apollo, BlackRock via Superstate/Ondo, private credit via Goldfinch and Credbull, emerging market assets via Mercado Bitcoin), ensure infrastructure and compliance in place (Anchorage custody, Paxos, identity/AML tooling), and port over the DeFi primitives to allow a flourishing of secondary markets and leverage. The result is that Plume enters 2025 as potentially the most interconnected RWA network in Web3 – a hub where various RWA protocols and real-world institutions plug in. This “network-of-networks” effect could drive significant total value locked and user activity, as indicated by early metrics (Plume’s testnet saw 18+ million unique wallets and 280+ million transactions in a short span, largely due to incentive campaigns and the breadth of projects testing the waters).

Roadmap and Development Milestones

Plume’s development has moved at a rapid clip, with a phased approach to scaling up real-world assets on-chain:

  • Testnet and Community Growth (2023): Plume launched its incentivized testnet (code-named “Miles”) in mid-late 2023. The testnet campaign was extremely successful in attracting users – over 18 million testnet wallet addresses were created, executing 280 million+ transactions. This was likely driven by testnet “missions” and an airdrop campaign (Season 1 of Plume’s airdrop was claimed by early users). The testnet also onboarded over 200 protocols and saw 1 million NFTs (“Goons”) minted, indicating a vibrant trial ecosystem. This massive testnet was a milestone proving out Plume’s tech scalability and generating buzz (and a large community: Plume now counts ~1M Twitter followers and hundreds of thousands in Discord/Telegram).

  • Mainnet Launch (Q1 2025): Plume targeted the end of 2024 or early 2025 for mainnet launch. Indeed, by February 2025, partners like Mercado Bitcoin announced their tokenized assets would go live “from the first day of Plume’s mainnet launch.”. This implies Plume mainnet went live or was scheduled to go live around Feb 2025. Mainnet launch is a crucial milestone, bringing the testnet’s lessons to production along with the initial slate of real assets (~$1B+ worth) ready to be tokenized. The launch likely included the release of Plume’s core products: the Plume Chain (mainnet), Arc for asset onboarding, pUSD stablecoin, and Plume Passport wallet, as well as initial DeFi dApps (DEXs, money markets) deployed by partners.

  • Phased Asset Onboarding: Plume has indicated a “phased onboarding” strategy for assets to ensure a secure, liquid environment. In early phases, simpler or lower-risk assets (like fully backed stablecoins, tokenized bonds) come first, alongside controlled participation (perhaps whitelisted institutions) to build trust and liquidity. Each phase then unlocks more use cases and asset classes as the ecosystem proves itself. For example, Phase 1 might focus on on-chain Treasuries and private credit fund tokens (relatively stable, yield-generating assets). Subsequent phases could bring more esoteric or higher-yield assets like renewable energy revenue streams, real estate equity tokens, or even exotic assets (the docs amusingly mention “GPUs, uranium, mineral rights, durian farms” as eventual on-chain asset possibilities). Plume’s roadmap thus expands the asset menu over time, parallel with developing the needed market depth and risk management on-chain.

  • Scaling and Decentralization: Following mainnet, a key development goal is to decentralize the Plume chain’s operations. Currently, Plume has a sequencer model (likely run by the team or a few nodes). Over time, they plan to introduce a robust validator/sequencer set where $PLUME stakers help secure the network, and possibly even transition to a fully independent consensus. The founder’s note about building an optimized L1 with a new crypto-economic model hints that Plume might implement a novel Proof-of-Stake or hybrid security model to protect high-value RWAs on-chain. Milestones in this category would include open-sourcing more of the stack, running incentivized testnet for node operators, and implementing fraud proofs or zk-proofs (if moving beyond an optimistic rollup).

  • Feature Upgrades: Plume’s roadmap also includes adding advanced features demanded by institutions. This could involve:

    • Privacy enhancements: e.g., integrating zero-knowledge proofs for confidential transactions or identity, so that sensitive financial details of RWAs (like borrower info or cashflow data) can be kept private on a public ledger. The mention of FHE and zkTLS suggests research in enabling private yet verifiable asset handling.
    • Compliance and Identity: Plume already has AML screening and compliance modules, but future work will refine on-chain identity (perhaps DID integration in Plume Passport) so that RWA tokens can enforce transfer restrictions or only be held by eligible investors when required.
    • Interoperability: Further integrations with cross-chain protocols (expanding on LayerZero) and bridges so that Plume’s RWA liquidity can seamlessly flow into major ecosystems like Ethereum mainnet, Layer-2s, and even other app-chains. The SkyLink omnichain yield product is likely part of this, enabling users on other chains to tap yields from Plume’s RWA pools.
  • Growth Targets: Plume’s leadership has publicly stated goals like “tokenize $3 billion+ in assets by Q4 2024” and eventually far more. While $1.25B was the short-term pipeline at launch, the journey to $3B in tokenized RWAs is an explicit milestone. Longer term, given the trillions in institutional assets potentially tokenizable, Plume will measure success in how much real-world value it brings on-chain. Another metric is TVL and user adoption: by April 2025 the RWA tokenization market crossed $20B in TVL overall, and Plume aspires to capture a significant share of that. If its partnerships mature (e.g., if even 5% of that $1 trillion Goldfinch pipeline comes on-chain), Plume’s TVL could grow exponentially.

  • Recent Highlights: By spring 2025, Plume had several noteworthy milestones:

    • The Apollo investment (Apr 2025) – which not only brought funding but also the opportunity to work with Apollo’s portfolio (Apollo manages $600B+ including credit, real estate, and private equity assets that could eventually be tokenized).
    • Grayscale consideration (Apr 2025) – being added to Grayscale’s watchlist is a milestone in recognition, potentially paving the way for a Plume investment product for institutions.
    • RWA Market Leadership: Plume’s team frequently publishes the “Plumeberg” Newsletters noting RWA market trends. In one, they celebrated RWA protocols surpassing $10B TVL and noted Plume’s key role in the narrative. They have positioned Plume as core infrastructure as the sector grows, which suggests a milestone of becoming a reference platform in the RWA conversation.

In essence, Plume’s roadmap is about scaling up and out: scale up in terms of assets (from hundreds of millions to billions tokenized), and scale out in terms of features (privacy, compliance, decentralization) and integrations (connecting to more assets and users globally). Each successful asset onboarding (be it a Brazilian credit deal or an Apollo fund tranche) is a development milestone in proving the model. If Plume can maintain momentum, upcoming milestones might include major financial institutions launching products directly on Plume (e.g., a bank issuing a bond on Plume), or government entities using Plume for public asset auctions – all part of the longer-term vision of Plume as a global on-chain marketplace for real-world finance.

Metrics and Traction

While still early, Plume Network’s traction can be gauged by a combination of testnet metrics, partnership pipeline, and the overall growth of RWA on-chain:

  • Testnet Adoption: Plume’s incentivized testnet (2023) saw extraordinary participation. 18 million+ unique addresses and 280 million transactions were recorded – numbers rivaling or exceeding many mainnets. This was driven by an enthusiastic community drawn by Plume’s airdrop incentives and the allure of RWAs. It demonstrates a strong retail interest in the platform (though many may have been speculators aiming for rewards, it nonetheless seeded a large user base). Additionally, over 200 DeFi protocols deployed contracts on the testnet, signaling broad developer interest. This effectively primed Plume with a large user and developer community even before launch.

  • Community Size: Plume quickly built a social following in the millions (e.g., 1M followers on X/Twitter, 450k in Discord, etc.). They brand their community members as “Goons” – over 1 million “Goon” NFTs were minted as a part of testnet achievements. Such gamified growth reflects one of the fastest community buildups in recent Web3 memory, indicating that the narrative of real-world assets resonates with a wide audience in crypto.

  • Ecosystem and TVL Pipeline: At mainnet launch, Plume projected having over $1 billion in real-world assets tokenized or available on day one. In a statement, co-founder Chris Yin highlighted proprietary access to high-yield, privately held assets that are “exclusively” coming to Plume. Indeed, specific assets lined up included:

    • $500M from a Credbull private credit fund,
    • $300M in solar energy farms (Plural Energy),
    • $120M in healthcare (Medicaid receivables),
    • plus mineral rights and other esoteric assets. These sum to ~$1B, and Yin stated the aim to reach $3B tokenized by end of 2024. Such figures, if realized, would place Plume among the top chains for RWA TVL. By comparison, the entire RWA sector’s on-chain TVL was about $20B as of April 2025, so $3B on one platform would be a very significant share.
  • Current TVL / Usage: Since mainnet launch is recent, concrete TVL figures on Plume aren’t yet publicly reported like on DeFiLlama. However, we know several integrated projects bring their own TVL:

    • Ondo’s products (OUSG, etc.) had $623M in market value around early 2024 – some of that may now reside or be mirrored on Plume.
    • The tokenized assets via Mercado Bitcoin (Brazil) add $40M pipeline.
    • Goldfinch Prime’s pool could attract large deposits (Goldfinch’s legacy pools originated ~$100M+ of loans; Prime could scale higher with institutions).
    • If Nest vaults aggregate multiple yields, that could quickly accumulate nine-figure TVL on Plume as stablecoin holders seek 5-10% yields from RWAs. As a qualitative metric, demand for RWA yields has been high even in bear markets – for instance, tokenized Treasury funds like Ondo’s saw hundreds of millions in a few months. Plume, concentrating many such offerings, could see a rapid uptick in TVL as DeFi users rotate into more “real” yields.
  • Transactions and Activity: We might anticipate relatively lower on-chain transaction counts on Plume compared to say a gaming chain, because RWA transactions are higher-value but less frequent (e.g., moving millions in a bond token vs. many micro-transactions). That said, if secondary trading picks up (on an order book exchange or AMM on Plume), we could see steady activity. The presence of 280M test txns suggests Plume can handle high throughput if needed. With Plume’s low fees (designed to be cheaper than Ethereum) and composability, it encourages more complex strategies (like looping collateral, automated yield strategies by smart contracts) which could drive interactions.

  • Real-World Impact: Another “metric” is traditional participation. Plume’s partnership with Apollo and others means institutional AuM (Assets under Management) connected to Plume is in the tens of billions (just counting Apollo’s involved funds, BlackRock’s BUIDL fund, etc.). While not all that value is on-chain, even a small allocation from each could quickly swell Plume’s on-chain assets. For example, BlackRock’s BUIDL fund (tokenized money market) hit $1B AUM within a year. Franklin Templeton’s on-chain government money fund reached $368M. If similar funds launch on Plume or existing ones connect, those figures reflect potential scale.

  • Security/Compliance Metrics: It’s worth noting Plume touts being fully onchain 24/7, permissionless yet compliant. One measure of success will be zero security incidents or defaults in the initial cohorts of RWA tokens. Metrics like payment yields delivered to users (e.g., X amount of interest paid out via Plume smart contracts from real assets) will build credibility. Plume’s design includes real-time auditing and on-chain verification of asset collateral (some partners provide daily transparency reports, as Ondo does for USDY). Over time, consistent, verified yield payouts and perhaps credit ratings on-chain could become key metrics to watch.

In summary, early indicators show strong interest and a robust pipeline for Plume. The testnet numbers demonstrate crypto community traction, and the partnerships outline a path to significant on-chain TVL and usage. As Plume transitions to steady state, we will track metrics like how many asset types are live, how much yield is distributed, and how many active users (especially institutional) engage on the platform. Given that the entire RWA category is growing fast (over $22.4B TVL as of May 2025, with a 9.3% monthly growth rate), Plume’s metrics should be viewed in context of this expanding pie. There is a real possibility that Plume could emerge as a leading RWA hub capturing a multi-billion-dollar share of the market if it continues executing.


Real-World Assets (RWA) in Web3: Overview and Significance

Real-World Assets (RWAs) refer to tangible or financial assets from the traditional economy that are tokenized on blockchain – in other words, digital tokens that represent ownership or rights to real assets or cash flows. These can include assets like real estate properties, corporate bonds, trade invoices, commodities (gold, oil), stocks, or even intangible assets like carbon credits and intellectual property. RWA tokenization is arguably one of the most impactful trends in crypto, because it serves as a bridge between traditional finance (TradFi) and decentralized finance (DeFi). By bringing real-world assets on-chain, blockchain technology can inject transparency, efficiency, and broader access into historically opaque and illiquid markets.

The significance of RWAs in Web3 has grown dramatically in recent years:

  • They unlock new sources of collateral and yield for the crypto ecosystem. Instead of relying on speculative token trading or purely crypto-native yield farming, DeFi users can invest in tokens that derive value from real economic activity (e.g., revenue from a real estate portfolio or interest from loans). This introduces “real yield” and diversification, making DeFi more sustainable.
  • For traditional finance, tokenization promises to increase liquidity and accessibility. Assets like commercial real estate or loan portfolios, which typically have limited buyers and cumbersome settlement processes, can be fractionalized and traded 24/7 on global markets. This can reduce financing costs and democratize access to investments that were once restricted to banks or large funds.
  • RWAs also leverage blockchain’s strengths: transparency, programmability, and efficiency. Settlement of tokenized securities can be near-instant and peer-to-peer, eliminating layers of intermediaries and reducing settlement times from days to seconds. Smart contracts can automate interest payments or enforce covenants. Additionally, the immutable audit trail of blockchains enhances transparency – investors can see exactly how an asset is performing (especially when coupled with oracle data) and trust that the token supply matches real assets (with on-chain proofs of reserve, etc.).
  • Importantly, RWA tokenization is seen as a key driver of the next wave of institutional adoption of blockchain. Unlike the largely speculative DeFi summer of 2020 or the NFT boom, RWAs appeal directly to the finance industry’s core, by making familiar assets more efficient. A recent report by Ripple and BCG projected that the market for tokenized assets could reach **$18.9 trillion** by 2033, underscoring the vast addressable market. Even nearer term, growth is rapid – as of May 2025, RWA projects’ TVL was $22.45B (up ~9.3% in one month) and projected to hit ~$50B by end of 2025. Some estimates foresee **$1–$3 trillion tokenized by 2030**, with upper scenarios as high as $30T if adoption accelerates.

In short, RWA tokenization is transforming capital markets by making traditional assets more liquid, borderless, and programmable. It represents a maturation of the crypto industry – moving beyond purely self-referential assets toward financing the real economy. As one analysis put it, RWAs are “rapidly shaping up to be the bridge between traditional finance and the blockchain world”, turning the long-hyped promise of blockchain disrupting finance into a reality. This is why 2024–2025 has seen RWAs touted as the growth narrative in Web3, attracting serious attention from big asset managers, governments, and Web3 entrepreneurs alike.

Key Protocols and Projects in the RWA Space

The RWA landscape in Web3 is broad, comprising various projects each focusing on different asset classes or niches. Here we highlight some key protocols and platforms leading the RWA movement, along with their focus areas and recent progress:

Project / ProtocolFocus & Asset TypesBlockchainNotable Metrics / Highlights
CentrifugeDecentralized securitization of private credit – tokenizing real-world payment assets like invoices, trade receivables, real estate bridge loans, royalties, etc. via asset pools (Tinlake). Investors earn yield from financing these assets.Polkadot parachain (Centrifuge Chain) with Ethereum dApp (Tinlake) integrationTVL ≈ $409M in pools; pioneered RWA DeFi with MakerDAO (Centrifuge pools back certain DAI loans). Partners with institutions like New Silver and FortunaFi for asset origination. Launching Centrifuge V3 for easier cross-chain RWA liquidity.
Maple FinanceInstitutional lending platform – initially undercollateralized crypto loans (to trading firms), now pivoted to RWA-based lending. Offers pools where accredited lenders provide USDC to borrowers (now often backed by real-world collateral or revenue). Launched a Cash Management Pool for on-chain U.S. Treasury investments and Maple Direct for overcollateralized BTC/ETH loans.Ethereum (V2 & Maple 2.0), previously Solana (deprecated)$2.46B in total loans originated to date; shifted to fully collateralized lending after defaults in unsecured lending. Maple’s new Treasury pool allows non-US investors to earn ~5% on T-Bills via USDC. Its native token MPL (soon converting to SYRUP) captures protocol fees; Maple ranks #2 in private credit RWA TVL and is one of few with a liquid token.
GoldfinchDecentralized private credit – originally provided undercollateralized loans to fintech lenders in emerging markets (Latin America, Africa, etc.) by pooling stablecoin from DeFi investors. Now launched Goldfinch Prime, targeting institutional investors to provide on-chain access to multi-billion-dollar private credit funds (managed by Apollo, Ares, Golub, etc.) in one diversified pool. Essentially brings established private debt funds on-chain for qualified investors.EthereumFunded ~$100M in loans across 30+ borrowers since inception. Goldfinch Prime (2023) is offering exposure to top private credit funds (Apollo, Blackstone, T. Rowe Price, etc.) with thousands of underlying loans. Backed by a16z, Coinbase Ventures, etc. Aims to merge DeFi capital with proven TradFi credit strategies, with yields often 8-10%. GFI token governs the protocol.
Ondo FinanceTokenized funds and structured products – pivoted from DeFi services to focusing on on-chain investment funds. Issuer of tokens like OUSG (Ondo Short-Term Government Bond Fund token – effectively tokenized shares of a U.S. Treasury fund) and OSTB/OMMF (money market fund tokens). Also offers USDY (tokenized deposit yielding ~5% from T-bills + bank deposits). Ondo also built Flux, a lending protocol to allow borrowing against its fund tokens.Ethereum (tokens also deployed on Polygon, Solana, etc. for accessibility)$620M+ in tokenized fund AUM (e.g. OUSG, USDY, etc.). OUSG is one of the largest on-chain Treasury products, at ~$580M AUM providing ~4.4% APY. Ondo’s funds are offered under SEC Reg D/S exemptions via a broker-dealer, ensuring compliance. Ondo’s approach of using regulated SPVs and partnering with BlackRock’s BUIDL fund has set a model for tokenized securities in the US. ONDO token (governance) has a ~$2.8B FDV with 15% in circulation (indicative of high investor expectations).
MakerDAO (RWA Program)Decentralized stablecoin issuer (DAI) that has increasingly allocated its collateral to RWA investments. Maker’s RWA effort involves vaults that accept real-world collateral (e.g. loans via Huntingdon Valley Bank, or tokens like CFG (Centrifuge) pools, DROP tokens, and investments into short-term bonds through off-chain structures with partners like BlockTower and Monetalis). Maker essentially invests DAI into RWA to earn yield, which shores up DAI’s stability.EthereumAs of late 2023, Maker had over $1.6B in RWA exposure, including >$1B in U.S. Treasury and corporate bonds and hundreds of millions in loans to real estate and banks (Maker’s Centrifuge vaults, bank loans, and Société Générale bond vault). This now comprises a significant portion of DAI’s collateral, contributing real yield (~4-5% on those assets) to Maker. Maker’s pivot to RWA (part of “Endgame” plan) has been a major validation for RWA in DeFi. However, Maker does not tokenize these assets for broader use; it holds them in trust via legal entities to back DAI.
TruFi & Credix(Grouping two similar credit protocols) TruFi – a protocol for uncollateralized lending to crypto and TradFi borrowers, with a portion of its book in real-world loans (e.g. lending to fintechs). Credix – a Solana-based private credit marketplace connecting USDC lenders to Latin American credit deals (often receivables and SME loans, tokenized as bonds). Both enable underwriters to create loan pools that DeFi users can fund, thus bridging to real economy lending.Ethereum (TruFi), Solana (Credix)TruFi facilitated ~$500M in loans (crypto + some RWA) since launch, though faced defaults; its focus is shifting to credit fund tokenization. Credix has funded tens of millions in receivables in Brazil/Colombia, and in 2023 partnered with Circle and VISA on a pilot to convert receivables to USDC for faster financing. These are notable but smaller players relative to Maple/Goldfinch. Credix’s model influenced Goldfinch’s design.
Securitize & Provenance (Figure)These are more CeFi-oriented RWA platforms: Securitize provides tokenization technology for enterprises (it tokenized private equity funds, stocks, and bonds for clients, operating under full compliance; recently partnered with Hamilton Lane to tokenzie parts of its $800M funds). Provenance Blockchain (Figure), built by Figure Technologies, is a fintech platform mainly for loan securitization and trading (they’ve done HELOC loans, mortgage-backed securities, etc. on their private chain).Private or permissioned chains (Provenance is a Cosmos-based chain; Securitize issues tokens on Ethereum, Polygon, etc.)Figure’s Provenance has facilitated over $12B in loan originations on-chain (mostly between institutions) and is arguably one of the largest by volume (it is the “Figure” noted as top in private credit sector). Securitize has tokenized multiple funds and even enabled retail to buy tokenized equity in companies like Coinbase pre-IPO. They aren’t “DeFi” platforms but are key bridges for RWAs – often working with regulated entities and focusing on compliance (Securitize is a registered broker-dealer/transfer agent). Their presence underscores that RWA tokenization spans both decentralized and enterprise realms.

(Table sources: Centrifuge TVL, Maple transition and loan volume, Goldfinch Prime description, Ondo stats, Ondo–BlackRock partnership, Maker & market projection, Maple rank.)

Centrifuge: Often cited as the first RWA DeFi protocol (launched 2019), Centrifuge allows asset originators (like financing companies) to pool real-world assets and issue ERC-20 tokens called DROP (senior tranche) and TIN (junior tranche) representing claims on the asset pool. These tokens can be used as collateral in MakerDAO or held for yield. Centrifuge operates its own chain for efficiency but connects to Ethereum for liquidity. It currently leads the pack in on-chain private credit TVL (~$409M), demonstrating product-market fit in areas like invoice financing. A recent development is Centrifuge partnering with Clearpool’s upcoming RWA chain (Ozea) to expand its reach, and working on Centrifuge V3 which will enable assets to be composable across any EVM chain (so Centrifuge pools could be tapped by protocols on chains like Ethereum, Avalanche, or Plume).

Maple Finance: Maple showed the promise and perils of undercollateralized DeFi lending. It provided a platform for delegate managers to run credit pools lending to market makers and crypto firms on an unsecured basis. After high-profile defaults in 2022 (e.g. Orthogonal Trading’s collapse related to FTX) which hit Maple’s liquidity, Maple chose to reinvent itself with a safer model. Now Maple’s focus is twofold: (1) RWA “cash management” – giving stablecoin lenders access to Treasury yields, and (2) overcollateralized crypto lending – requiring borrowers to post liquid collateral (BTC/ETH). The Treasury pool (in partnership with Icebreaker Finance) was launched on Solana in 2023, then on Ethereum, enabling accredited lenders to earn ~5% on USDC by purchasing short-duration U.S. Treasury notes. Maple also introduced Maple Direct pools that lend to institutions against crypto collateral, effectively becoming a facilitator for more traditional secured lending. The Maple 2.0 architecture (launched Q1 2023) improved transparency and control for lenders. Despite setbacks, Maple has facilitated nearly $2.5B in loans cumulatively and remains a key player, now straddling both crypto and RWA lending. Its journey underscores the importance of proper risk management and has validated the pivot to real-world collateral for stability.

Goldfinch: Goldfinch’s innovation was to allow “borrower pools” where real-world lending businesses (like microfinance institutions or fintech lenders) could draw stablecoin liquidity from DeFi without posting collateral, instead relying on the “trust-through-consensus” model (where backers stake junior capital to vouch for the borrower). It enabled loans in places like Kenya, Nigeria, Mexico, etc., delivering yields often above 10%. However, to comply with regulations and attract larger capital, Goldfinch introduced KYC gating and Prime. Now with Goldfinch Prime, the protocol is basically onboarding well-known private credit fund managers and letting non-US accredited users provide capital to them on-chain. For example, rather than lending to a single fintech lender, a Goldfinch Prime user can invest in a pool that aggregates many senior secured loans managed by Ares or Apollo – essentially investing in slices of those funds (which off-chain are massive, e.g. Blackstone’s private credit fund is $50B+). This moves Goldfinch upmarket: it’s less about frontier market fintech loans and more about giving crypto investors an entry to institutional-grade yield (with lower risk). Goldfinch’s GFI token and governance remain, but the user base and pool structures have shifted to a more regulated stance. This reflects a broader trend: RWA protocols increasingly working directly with large TradFi asset managers to scale.

Ondo Finance: Ondo’s transformation is a case study in adapting to demand. When DeFi degen yields dried up in the bear market, the thirst for safe yield led Ondo to tokenize T-bills and money market funds. Ondo set up a subsidiary (Ondo Investments) and registered offerings so that accredited and even retail (in some regions) could buy regulated fund tokens. Ondo’s flagship OUSG token is effectively tokenized shares of a short-term US Treasuries ETF; it grew quickly to over half a billion in circulation, confirming huge demand for on-chain Treasuries. Ondo also created USDY, which takes a step further by mixing T-bills and bank deposits to approximate a high-yield savings account on-chain. At ~4.6% APY and a low $500 entry, USDY aims for mass market within crypto. To complement these, Ondo’s Flux protocol lets holders of OUSG or USDY borrow stablecoins against them (solving liquidity since these tokens might otherwise be lockups). Ondo’s success has made it a top-3 RWA issuer by TVL. It’s a prime example of working within regulatory frameworks (SPVs, broker-dealers) to bring traditional securities on-chain. It also collaborates (e.g., using BlackRock’s fund) rather than competing with incumbents, which is a theme in RWA: partnership over disruption.

MakerDAO: While not a standalone RWA platform, Maker deserves mention because it effectively became one of the largest RWA investors in crypto. Maker realized that diversifying DAI’s collateral beyond volatile crypto could both stabilize DAI and generate revenue (through real-world yields). Starting with small experiments (like a loan to a U.S. bank, and vaults for Centrifuge pool tokens), Maker ramped up in 2022-2023 by allocating hundreds of millions of DAI to buy short-term bonds and invest in money market funds via custody accounts. By mid-2023 Maker had allocated $500M to a BlackRock-managed bond fund and a similar amount to a startup (Monetalis) to invest in Treasuries – these are analogous to Ondo’s approach but done under Maker governance. Maker also onboarded loans like the Societe Generale $30M on-chain bond, and vaults for Harbor Trade’s Trade Finance pool, etc. The revenue from these RWA investments has been substantial – by some reports, Maker’s RWA portfolio generates tens of millions in annualized fees, which has made DAI’s system surplus grow (and MKR token started buybacks using those profits). This RWA strategy is central to Maker’s “Endgame” plan, where eventually Maker might spin out specialized subDAOs to handle RWA. The takeaway is that even a decentralized stablecoin protocol sees RWA as key to sustainability, and Maker’s scale (with DAI ~$5B supply) means it can materially impact real-world markets by deploying liquidity there.

Others: There are numerous other projects in the RWA space, each carving out a niche:

  • Tokenized Commodities: Projects like Paxos Gold (PAXG) and Tether Gold (XAUT) have made gold tradable on-chain (combined market cap of ~$1.4B). These tokens give the convenience of crypto with the stability of gold and are fully backed by physical gold in vaults.
  • Tokenized Stocks: Firms like Backed Finance and Synthesized (formerly Mirror, etc.) have issued tokens mirroring equity like Apple (bAAPL) or Tesla. Backed’s tokens (e.g., bNVDA for Nvidia) are 100% collateralized by shares held by a custodian and available under EU regulatory sandbox exemptions, enabling 24/7 trading of stocks on DEXs. The total for tokenized stocks is still small (~$0.46B), but growing as interest in around-the-clock trading and fractional ownership picks up.
  • Real Estate Platforms: Lofty AI (Algorand-based) allows fractional ownership of rental properties with tokens as low as $50 per fraction. RealT (Ethereum) offers tokens for shares in rental homes in Detroit and elsewhere (paying rental income as USDC dividends). Real estate is a huge market ($300T+ globally), so even a fraction coming on-chain could dwarf other categories; projections see $3–4 Trillion in tokenized real estate by 2030-2035 if adoption accelerates. While current on-chain real estate is small, pilots are underway (e.g., Hong Kong’s government sold tokenized green bonds; Dubai is running a tokenized real estate sandbox).
  • Institutional Funds: Beyond Ondo, traditional asset managers are launching tokenized versions of their funds. We saw BlackRock’s BUIDL (a tokenized money market fund that grew from $100M to $1B AUM in one year). WisdomTree issued 13 tokenized ETFs by 2025. Franklin Templeton’s government money fund (BENJI token on Polygon) approached $370M AUM. These efforts indicate that large asset managers view tokenization as a new distribution channel. It also means competition for crypto-native issuers, but overall it validates the space. Many of these tokens target institutional or accredited investors initially (to comply with securities laws), but over time could open to retail as regulations evolve.

Why multiple approaches? The RWA sector has a diverse cast because the space “real-world assets” is extremely broad. Different asset types have different risk, return, and regulatory profiles, necessitating specialized platforms:

  • Private credit (Maple, Goldfinch, Centrifuge) focuses on lending and debt instruments, requiring credit assessment and active management.
  • Tokenized securities/funds (Ondo, Backed, Franklin) deal with regulatory compliance to represent traditional securities on-chain one-to-one.
  • Real estate involves property law, titles, and often local regulations – some platforms work on REIT-like structures or NFTs that confer ownership of an LLC that owns a property.
  • Commodities like gold have simpler one-to-one backing models but require trust in custody and audits.

Despite this fragmentation, we see a trend of convergence and collaboration: e.g., Centrifuge partnering with Clearpool, Goldfinch partnering with Plume (and indirectly Apollo), Ondo’s assets being used by Maker and others, etc. Over time, we may get interoperability standards (perhaps via projects like RWA.xyz, which is building a data aggregator for all RWA tokens).

Common Asset Types Being Tokenized

Almost any asset with an income stream or market value can, in theory, be tokenized. In practice, the RWA tokens we see today largely fall into a few categories:

  • Government Debt (Treasuries & Bonds): This has become the largest category of on-chain RWA by value. Tokenized U.S. Treasury bills and bonds are highly popular as they carry low risk and ~4-5% yield – very attractive to crypto holders in a low DeFi yield environment. Multiple projects offer this: Ondo’s OUSG, Matrixdock’s treasury token (MTNT), Backed’s TBILL token, etc. As of May 2025, government securities dominate tokenized assets with ~$6.79B TVL on-chain, making it the single biggest slice of the RWA pie. This includes not just U.S. Treasuries, but also some European government bonds. The appeal is global 24/7 access to a safe asset; e.g., a user in Asia can buy a token at 3 AM that effectively puts money in U.S. T-Bills. We also see central banks and public entities experimenting: e.g., the Monetary Authority of Singapore (MAS) ran Project Guardian to explore tokenized bonds and forex; Hong Kong’s HSBC and CSOP launched a tokenized money market fund. Government bonds are likely the “killer app” of RWA to date.

  • Private Credit & Corporate Debt: These include loans to businesses, invoices, supply chain finance, consumer loans, etc., as well as corporate bonds and private credit funds. On-chain private credit (via Centrifuge, Maple, Goldfinch, Credix, etc.) is a fast-growing area and forms over 50% of the RWA market by count of projects (though not by value due to Treasuries being big). Tokenized private credit often offers higher yields (8-15% APY) because of higher risk and less liquidity. Examples: Centrifuge tokens (DROP/TIN) backed by loan portfolios; Goldfinch’s pools of fintech loans; Maple’s pools to market makers; JPMorgan’s private credit blockchain pilot (they did intraday repo on-chain); and startups like Flowcarbon (tokenizing carbon credit-backed loans). Even trade receivables from governments (Medicaid claims) are being tokenized (as Plume highlighted). Additionally, corporate bonds are being tokenized: e.g., European Investment Bank issued digital bonds on Ethereum; companies like Siemens did a €60M on-chain bond. There’s about $23B of tokenized “global bonds” on-chain as of early 2025 – a figure that’s still small relative to the $100+ trillion bond market, but the trajectory is upward.

  • Real Estate: Tokenized real estate can mean either debt (e.g., tokenized mortgages, real estate loans) or equity/ownership (fractional ownership of properties). Thus far, more activity has been in tokenized debt (because it fits into DeFi lending models easily). For instance, parts of a real estate bridge loan might be turned into DROP tokens on Centrifuge and used to generate DAI. On the equity side, projects like Lofty have tokenized residential rental properties (issuing tokens that entitle holders to rental income and a share of sale proceeds). We’ve also seen a few REIT-like tokens (RealT’s properties, etc.). Real estate is highly illiquid traditionally, so tokenization’s promise is huge – one could trade fractions of a building on Uniswap, or use a property token as collateral for a loan. That said, legal infrastructure is tricky (you often need each property in an LLC and the token represents LLC shares). Still, given projections of $3-4 Trillion tokenized real estate by 2030-35, many are bullish that this sector will take off as legal frameworks catch up. A notable example: RedSwan tokenized portions of commercial real estate (like student housing complexes) and raised millions via token sales to accredited investors.

  • Commodities: Gold is the poster child here. Paxos Gold (PAXG) and Tether Gold (XAUT) together have over $1.4B market cap, offering investors on-chain exposure to physical gold (each token = 1 fine troy ounce stored in vault). These have become popular as a way to hedge in crypto markets. Other commodities tokenized include silver, platinum (e.g., Tether has XAGT, XAUT, etc.), and even oil to some extent (there were experiments with tokens for oil barrels or hash-rate futures). Commodity-backed stablecoins like Ditto’s eggs or soybean tokens have popped up, but gold remains dominant due to its stable demand. We can also include carbon credits and other environmental assets: tokens like MCO2 (Moss Carbon Credit) or Toucan’s nature-based carbon tokens had a wave of interest in 2021 as corporates looked at on-chain carbon offsets. In general, commodities on-chain are straightforward as they’re fully collateralized, but they require trust in custodians and auditors.

  • Equities (Stocks): Tokenized stocks allow 24/7 trading and fractional ownership of equities. Platforms like Backed (out of Switzerland) and DX.Exchange / FTX (earlier) issued tokens mirroring popular stocks (Tesla, Apple, Google, etc.). Backed’s tokens are fully collateralized (they hold the actual shares via a custodian and issue ERC-20 tokens representing them). These tokens can be traded on DEXs or held in DeFi wallets, which is novel since conventional stock trading is weekdays only. As of 2025, about $460M of tokenized equities are circulating – still a tiny sliver of the multi-trillion stock market, but it’s growing. Notably, in 2023, MSCI launched indices tracking tokenized assets including tokenized stocks, signaling mainstream monitoring. Another angle is synthetic equities (Mirroring stock price via derivatives without holding the stock, as projects like Synthetix did), but regulatory pushback (they can be seen as swaps) made the fully backed approach more favored now.

  • Stablecoins (fiat-backed): It’s worth mentioning that fiat-backed stablecoins like USDC, USDT are essentially tokenized real-world assets (each USDC is backed by $1 in bank accounts or T-bills). In fact, stablecoins are the largest RWA by far – over $200B in stablecoins outstanding (USDT, USDC, BUSD, etc.), mostly backed by cash, Treasury bills, or short-term corporate debt. This has often been cited as the first successful RWA use-case in crypto: tokenized dollars became the lifeblood of crypto trading and DeFi. However, in the RWA context, stablecoins are usually considered separately, because they are currency tokens, not investment products. Still, the existence of stablecoins has paved the way for other RWA tokens (and indeed, projects like Maker and Ondo effectively channel stablecoin capital into real assets).

  • Miscellaneous: We are starting to see even more exotic assets:

    • Fine Art and Collectibles: Platforms like Maecenas and Masterworks explored tokenizing high-end artworks (each token representing a share of a painting). NFTs have proven digital ownership, so it’s conceivable real art or luxury collectibles can be fractionalized similarly (though legal custody and insurance are considerations).
    • Revenue-Sharing Tokens: e.g., CityDAO and other DAOs experimented with tokens that give rights to a revenue stream (like a cut of city revenue or business revenue). These blur the line between securities and utility tokens.
    • Intellectual Property and Royalties: There are efforts to tokenize music royalties (so fans can invest in an artist’s future streaming income) or patents. Royalty Exchange and others have looked into this, allowing tokens that pay out when, say, a song is played (using smart contracts to distribute royalties).
    • Infrastructure and Physical assets: Companies have considered tokenizing things like data center capacity, mining hashpower, shipping cargo space, or even infrastructure projects (some energy companies looked at tokenizing ownership in solar farms or oil wells – Plume itself mentioned “uranium, GPUs, durian farms” as possibilities). These remain experimental but show the broad range of what could be brought on-chain.

In summary, virtually any asset that can be legally and economically ring-fenced can be tokenized. The current focus has been on financial assets with clear cash flows or store-of-value properties (debt, commodities, funds) because they fit well with investor demand and existing law (e.g., an SPV can hold bonds and issue tokens relatively straightforwardly). More complex assets (like direct property ownership or IP rights) will likely take longer due to legal intricacies. But the tide is moving in that direction, as the technology proves itself with simpler assets first and then broadens.

It’s also important to note that each asset type’s tokenization must grapple with how to enforce rights off-chain: e.g., if you hold a token for a property, how do you ensure legal claim on that property? Solutions involve legal wrappers (LLCs, trust agreements) that recognize token holders as beneficiaries. Standardization efforts (like the ERC-1400 standard for security tokens or initiatives by the Interwork Alliance for tokenized assets) are underway to make different RWA tokens more interoperable and legally sound.

Trends & Innovations:

  • Institutional Influx: Perhaps the biggest trend is the entrance of major financial institutions and asset managers into the RWA blockchain space. In the past two years, giants like BlackRock, JPMorgan, Goldman Sachs, Fidelity, Franklin Templeton, WisdomTree, and Apollo have either invested in RWA projects or launched tokenization initiatives. For example, BlackRock’s CEO Larry Fink publicly praised “the tokenization of securities” as the next evolution. BlackRock’s own tokenized money market fund (BUIDL) reaching $1B AUM in one year is a proof-point. WisdomTree creating 13 tokenized index funds by 2025 shows traditional ETFs coming on-chain. Apollo not only invested in Plume but also partnered on tokenized credit (Apollo and Hamilton Lane worked with Figure’s Provenance to tokenize parts of their funds). The involvement of such institutions has a flywheel effect: it legitimizes RWA in the eyes of regulators and investors and accelerates development of compliant platforms. It’s telling that surveys show 67% of institutional investors plan to allocate an average 5.6% of their portfolio to tokenized assets by 2026. High-net-worth individuals similarly are showing ~80% interest in exposure via tokenization. This is a dramatic shift from the 2017-2018 ICO era, as now the movement is institution-led rather than purely grassroots crypto-led.

  • Regulated On-Chain Funds: A notable innovation is bringing regulated investment funds directly on-chain. Instead of creating new instruments from scratch, some projects register traditional funds with regulators and then issue tokens that represent shares. Franklin Templeton’s OnChain U.S. Government Money Fund is a SEC-registered mutual fund whose share ownership is tracked on Stellar (and now Polygon) – investors buy a BENJI token which is effectively a share in a regulated fund, subject to all the usual oversight. Similarly, ARB ETF (Europe) launched a fully regulated digital bond fund on a public chain. This trend of tokenized regulated funds is crucial because it marries compliance with blockchain’s efficiency. It basically means the traditional financial products we know (funds, bonds, etc.) can gain new utility by existing as tokens that trade anytime and integrate with smart contracts. Grayscale’s consideration of $PLUME and similar moves by other asset managers to list crypto or RWA tokens in their offerings also indicates convergence of TradFi and DeFi product menus.

  • Yield Aggregation and Composability: As more RWA yield opportunities emerge, DeFi protocols are innovating to aggregate and leverage them. Plume’s Nest is one example of aggregating multiple yields into one interface. Another example is Yearn Finance beginning to deploy vaults into RWA products (Yearn considered investing in Treasuries through protocols like Notional or Maple). Index Coop created a yield index token that included RWA yield sources. We are also seeing structured products like tranching on-chain: e.g., protocols that issue a junior-senior split of yield streams (Maple explored tranching pools to offer safer vs. riskier slices). Composability means you could one day do things like use a tokenized bond as collateral in Aave to borrow a stablecoin, then use that stablecoin to farm elsewhere – complex strategies bridging TradFi yield and DeFi yield. This is starting to happen; for instance, Flux Finance (by Ondo) lets you borrow against OUSG and then you could deploy that into a stablecoin farm. Leveraged RWA yield farming may become a theme (though careful risk management is needed).

  • Real-Time Transparency & Analytics: Another innovation is the rise of data platforms and standards for RWA. Projects like RWA.xyz aggregate on-chain data to track the market cap, yields, and composition of all tokenized RWAs across networks. This provides much-needed transparency – one can see how big each sector is, track performance, and flag anomalies. Some issuers provide real-time asset tracking: e.g., a token might be updated daily with NAV (net asset value) data from the TradFi custodian, and that can be shown on-chain. The use of oracles is also key – e.g., Chainlink oracles can report interest rates or default events to trigger smart contract functions (like paying out insurance if a debtor defaults). The move towards on-chain credit ratings or reputations is also starting: Goldfinch experimented with off-chain credit scoring for borrowers, Centrifuge has models to estimate pool risk. All of this is to make on-chain RWAs as transparent (or more so) than their off-chain counterparts.

  • Integration with CeFi and Traditional Systems: We see more blending of CeFi and DeFi in RWA. For instance, Coinbase introduced “Institutional DeFi” where they funnel client funds into protocols like Maple or Compound Treasury – giving institutions a familiar interface but yield sourced from DeFi. Bank of America and others have discussed using private blockchain networks to trade tokenized collateral with each other (for faster repo markets, etc.). On the retail front, fintech apps may start offering yields that under the hood come from tokenized assets. This is an innovation in distribution: users might not even know they’re interacting with a blockchain, they just see better yields or liquidity. Such integration will broaden the reach of RWA beyond crypto natives.

Challenges:

Despite the excitement, RWA tokenization faces several challenges and hurdles:

  • Regulatory Compliance and Legal Structure: Perhaps the number one challenge. By turning assets into digital tokens, you often turn them into securities in the eyes of regulators (if they weren’t already). This means projects must navigate securities laws, investment regulations, money transmitter rules, etc. Most RWA tokens (especially in the US) are offered under Reg D (private placement to accredited investors) or Reg S (offshore) exemptions. This limits participation: e.g., retail US investors usually cannot buy these tokens legally. Additionally, each jurisdiction has its own rules – what’s allowed in Switzerland (like Backed’s stock tokens) might not fly in the US without registration. There’s also the legal enforceability angle: a token is a claim on a real asset; ensuring that claim is recognized by courts is crucial. This requires robust legal structuring (LLCs, trusts, SPVs) behind the scenes. It’s complex and costly to set up these structures, which is why many RWA projects partner with legal firms or get acquired by existing players with licenses (for example, Securitize handles a lot of heavy lifting for others). Compliance also means KYC/AML: unlike DeFi’s permissionless nature, RWA platforms often require investors to undergo KYC and accreditation checks, either at token purchase or continuously via whitelists. This friction can deter some DeFi purists and also means these platforms can’t be fully open to “anyone with a wallet” in many cases.

  • Liquidity and Market Adoption: Tokenizing an asset doesn’t automatically make it liquid. Many RWA tokens currently suffer from low liquidity/low trading volumes. For instance, if you buy a tokenized loan, there may be few buyers when you want to sell. Market makers are starting to provide liquidity for certain assets (like stablecoins or Ondo’s fund tokens on DEXes), but order book depth is a work in progress. In times of market stress, there’s concern that RWA tokens could become hard to redeem or trade, especially if underlying assets themselves aren’t liquid (e.g., a real estate token might effectively only be redeemable when the property is sold, which could take months/years). Solutions include creating redemption mechanisms (like Ondo’s funds allow periodic redemptions through the Flux protocol or directly with the issuer), and attracting a diverse investor base to trade these tokens. Over time, as more traditional investors (who are used to holding these assets) come on-chain, liquidity should improve. But currently, fragmentation across different chains and platforms also hinders liquidity – efforts to standardize and maybe aggregate exchanges for RWA tokens (perhaps a specialized RWA exchange or more cross-listings on major CEXes) are needed.

  • Trust and Transparency: Ironically for blockchain-based assets, RWAs often require a lot of off-chain trust. Token holders must trust that the issuer actually holds the real asset and won’t misuse funds. They must trust the custodian holding collateral (in case of stablecoins or gold). They also must trust that if something goes wrong, they have legal recourse. There have been past failures (e.g., some earlier “tokenized real estate” projects that fizzled, leaving token holders in limbo). So, building trust is key. This is done through audits, on-chain proof-of-reserve, reputable custodians (e.g., Coinbase Custody, etc.), and insurance. For example, Paxos publishes monthly audited reports of PAXG reserves, and USDC publishes attestations of its reserves. MakerDAO requires overcollateralization and legal covenants when engaging in RWA loans to mitigate risk of default. Nonetheless, a major default or fraud in a RWA project could set the sector back significantly. This is why, currently, many RWA protocols focus on high-credit quality assets (government bonds, senior secured loans) to build a track record before venturing into riskier territory.

  • Technological Integration: Some challenges are technical. Integrating real-world data on-chain requires robust oracles. For example, pricing a loan portfolio or updating NAV of a fund requires data feeds from traditional systems. Any lag or manipulation in oracles can lead to incorrect valuations on-chain. Additionally, scalability and transaction costs on mainnets like Ethereum can be an issue – moving potentially thousands of real-world payments (think of a pool of hundreds of loans, each with monthly payments) on-chain can be costly or slow. This is partly why specialized chains or Layer-2 solutions (like Plume, or Polygon for some projects, or even permissioned chains) are being used – to have more control and lower cost for these transactions. Interoperability is another technical hurdle: a lot of RWA action is on Ethereum, but some on Solana, Polygon, Polkadot, etc. Bridging assets between chains securely is still non-trivial (though projects like LayerZero, as used by Plume, are making progress). Ideally, an investor shouldn’t have to chase five different chains to manage a portfolio of RWAs – smoother cross-chain operability or a unified interface will be important.

  • Market Education and Perception: Many crypto natives originally were skeptical of RWAs (seeing them as bringing “off-chain risk” into DeFi’s pure ecosystem). Meanwhile, many TradFi people are skeptical of crypto. There is an ongoing need to educate both sides about the benefits and risks. For crypto users, understanding that a token is not just another meme coin but a claim on a legal asset with maybe lock-up periods, etc., is crucial. We’ve seen cases where DeFi users got frustrated that they couldn’t instantly withdraw from a RWA pool because off-chain loan settlements take time – managing expectations is key. Similarly, institutional players often worry about issues like custody of tokens (how to hold them securely), compliance (avoiding wallets that interact with sanctioned addresses, etc.), and volatility (ensuring the token technology is stable). Recent positive developments, like Binance Research showing RWA tokens have lower volatility and even considered “safer than Bitcoin” during certain macro events, help shift perception. But broad acceptance will require time, success stories, and likely regulatory clarity that holding or issuing RWA tokens is legally safe.

  • Regulatory Uncertainty: While we covered compliance, a broader uncertainty is regulatory regimes evolving. The U.S. SEC has not yet given explicit guidance on many tokenized securities beyond enforcing existing laws (which is why most issuers use exemptions or avoid U.S. retail). Europe introduced MiCA (Markets in Crypto Assets) regulation which mostly carves out how crypto (including asset-referenced tokens) should be handled, and launched a DLT Pilot Regime to let institutions trade securities on blockchain with some regulatory sandboxes. That’s promising but not permanent law yet. Countries like Singapore, UAE (Abu Dhabi, Dubai), Switzerland are being proactive with sandboxes and digital asset regulations to attract tokenization business. A challenge is if regulations become too onerous or fragmented: e.g., if every jurisdiction demands a slightly different compliance approach, it adds cost and complexity. On the flip side, regulatory acceptance (like Hong Kong’s recent encouragement of tokenization or Japan exploring on-chain securities) could be a boon. In the U.S., a positive development is that certain tokenized funds (like Franklin’s) got SEC approval, showing that it’s possible within existing frameworks. But the looming question: will regulators eventually allow wider retail access to RWA tokens (perhaps through qualified platforms or raising the caps on crowdfunding exemptions)? If not, RWAfi might remain predominantly an institutional play behind walled gardens, which limits the “open finance” dream.

  • Scaling Trustlessly: Another challenge is how to scale RWA platforms without introducing central points of failure. Many current implementations rely on a degree of centralization (an issuer that can pause token transfers to enforce KYC, a central party that handles asset custody, etc.). While this is acceptable to institutions, it’s philosophically at odds with DeFi’s decentralization. Over time, projects will need to find the right balance: e.g., using decentralized identity solutions for KYC (so it’s not one party controlling the whitelist but a network of verifiers), or using multi-sig/community governance to control issuance and custody operations. We’re seeing early moves like Maker’s Centrifuge vaults where MakerDAO governance approves and oversees RWA vaults, or Maple decentralizing pool delegate roles. But full “DeFi” RWA (where even legal enforcement is trustless) is a hard problem. Eventually, maybe smart contracts and real-world legal systems will interface directly (for example, a loan token smart contract that can automatically trigger legal action via a connected legal API if default occurs – this is futuristic but conceivable).

In summary, the RWA space is rapidly innovating to tackle these challenges. It’s a multi-disciplinary effort: requiring savvy in law, finance, and blockchain tech. Each success (like a fully repaid tokenized loan pool, or a smoothly redeemed tokenized bond) builds confidence. Each challenge (like a regulatory action or an asset default) provides lessons to strengthen the systems. The trajectory suggests that many of these hurdles will be overcome: the momentum of institutional involvement and the clear benefits (efficiency, liquidity) mean tokenization is likely here to stay. As one RWA-focused newsletter put it, “tokenized real-world assets are emerging as the new institutional standard… the infrastructure is finally catching up to the vision of on-chain capital markets.”

Regulatory Landscape and Compliance Considerations

The regulatory landscape for RWAs in crypto is complex and still evolving, as it involves the intersection of traditional securities/commodities laws with novel blockchain technology. Key points and considerations include:

  • Securities Laws: In most jurisdictions, if an RWA token represents an investment in an asset with an expectation of profit (which is often the case), it is deemed a security. For example, in the U.S., tokens representing fractions of income-generating real estate or loan portfolios squarely fall under the definition of investment contracts (Howey Test) or notes, and thus must be registered or offered under an exemption. This is why nearly all RWA offerings to date in the U.S. use private offering exemptions (Reg D 506(c) for accredited investors, Reg S for offshore, Reg A+ for limited public raises, etc.). Compliance with these means restricting token sales to verified investors, implementing transfer restrictions (tokens can only move between whitelisted addresses), and providing necessary disclosures. For instance, Ondo’s OUSG and Maple’s Treasury pool required investors to clear KYC/AML and accreditation checks, and tokens are not freely transferable to unapproved wallets. This creates a semi-permissioned environment, quite different from open DeFi. Europe under MiFID II/MiCA similarly treats tokenized stocks or bonds as digital representations of traditional financial instruments, requiring prospectuses or using the DLT Pilot regime for trading venues. Bottom line: RWA projects must integrate legal compliance from day one – many have in-house counsel or work with legal-tech firms like Securitize, because any misstep (like selling a security token to the public without exemption) could invite enforcement.

  • Consumer Protection and Licensing: Some RWA platforms may need additional licenses. For example, if a platform holds customer fiat to convert into tokens, it might need a money transmitter license or equivalent. If it provides advice or brokerage (matching borrowers and lenders), it might need broker-dealer or ATS (Alternative Trading System) licensing (this is why some partner with broker-dealers – Securitize, INX, Oasis Pro etc., which have ATS licenses to run token marketplaces). Custody of assets (like real estate deeds or cash reserves) might require trust or custody licenses. Anchorage being a partner to Plume is significant because Anchorage is a qualified custodian – institutions feel more at ease if a licensed bank is holding the underlying asset or even the private keys of tokens. In Asia and the Middle East, regulators have been granting specific licenses for tokenization platforms (e.g., the Abu Dhabi Global Market’s FSRA issues permissions for crypto assets including RWA tokens, MAS in Singapore gives project-specific approvals under its sandbox).

  • Regulatory Sandboxes and Government Initiatives: A positive trend is regulators launching sandboxes or pilot programs for tokenization. The EU’s DLT Pilot Regime (2023) allows approved market infrastructures to test trading tokenized securities up to certain sizes without full compliance with every rule – this has led to several European exchanges piloting blockchain bond trading. Dubai announced a tokenization sandbox to boost its digital finance hub. Hong Kong in 2023-24 made tokenization a pillar of its Web3 strategy, with Hong Kong’s SFC exploring tokenized green bonds and art. The UK in 2024 consulted on recognizing digital securities under English law (they already recognize crypto as property). Japan updated its laws to allow security tokens (they call them “electronically recorded transferable rights”) and several tokenized securities have been issued there under that framework. These official programs indicate a willingness by regulators to modernize laws to accommodate tokenization – which could eventually simplify compliance (e.g., creating special categories for tokenized bonds that streamline approval).

  • Travel Rule / AML: Crypto’s global nature triggers AML laws. FATF’s “travel rule” requires that when crypto (including tokens) above a certain threshold is transferred between VASPs (exchanges, custodians), identifying info travels with it. If RWA tokens are mainly transacted on KYC’ed platforms, this is manageable, but if they enter the wider crypto ecosystem, compliance gets tricky. Most RWA platforms currently keep a tight grip: transfers are often restricted to whitelisted addresses whose owners have done KYC. This mitigates AML concerns (as every holder is known). Still, regulators will expect robust AML programs – e.g., screening wallet addresses against sanctions (OFAC lists, etc.). There was a case of a tokenized bond platform in the UK that had to unwind some trades because a token holder became a sanctioned entity – such scenarios will test protocols’ ability to comply. Many platforms build in pause or freeze functions to comply with law enforcement requests (this is controversial in DeFi, but for RWA it’s often non-negotiable to have the ability to lock tokens tied to wrongdoing).

  • Taxation and Reporting: Another compliance consideration: how are these tokens taxed? If you earn yield from a tokenized loan, is it interest income? If you trade a tokenized stock, do wash sale rules apply? Tax authorities have yet to issue comprehensive guidance. In the interim, platforms often provide tax reports to investors (e.g., a Form 1099 in the US for interest or dividends earned via tokens). The transparency of blockchain can help here, as every payment can be recorded and categorized. But cross-border taxation (if someone in Europe holds a token paying US-source interest) can be complex – requiring things like digital W-8BEN forms, etc. This is more of an operational challenge than a roadblock, but it adds friction that automated compliance tech will need to solve.

  • Enforcement and Precedents: We’ve not yet seen many high-profile enforcement actions specifically for RWA tokens – likely because most are trying to comply. However, we have seen enforcement in adjacent areas: e.g., the SEC’s actions against crypto lending products (BlockFi, etc.) underscore that offering yields without registering can be a violation. If an RWA platform slipped up and, say, allowed retail to buy security tokens freely, it could face similar action. There’s also the question of secondary trading venues: If a decentralized exchange allows trading of a security token between non-accredited investors, is that unlawful? Likely yes in the US. This is why a lot of RWA tokens are not listed on Uniswap or are wrapped in a way that restricts addresses. It’s a fine line to walk between DeFi liquidity and compliance – many are erring on the side of compliance, even if it reduces liquidity.

  • Jurisdiction and Conflict of Laws: RWAs by nature connect to specific jurisdictions (e.g., a tokenized real estate in Germany falls under German property law). If tokens trade globally, there can be conflicts of law. Smart contracts might need to encode which law governs. Some platforms choose friendly jurisdictions for incorporation (e.g., the issuer entity in the Cayman Islands and the assets in the U.S., etc.). It’s complex but solvable with careful legal structuring.

  • Investor Protection and Insurance: Regulators will also care about investor protection: ensuring that token holders have clear rights. For example, if a token is supposed to be redeemable for a share of asset proceeds, the mechanism for that must be legally enforceable. Some tokens represent debt securities that can default – what disclosures were given about that risk? Platforms often publish offering memorandums or prospectuses (Ondo did for its tokens). Over time, regulators might require standardized risk disclosures for RWA tokens, much like mutual funds provide. Also, insurance might be mandated or at least expected – for instance, insuring a building in a real estate token, or having crime insurance for a custodian holding collateral.

  • Decentralization vs Regulation: There’s an inherent tension: the more decentralized and permissionless you make an RWA platform, the more it rubs against current regulations which assume identifiable intermediaries. One evolving strategy is to use Decentralized Identities (DID) and verifiable credentials to square this circle. E.g., a wallet could hold a credential that proves the owner is accredited without revealing their identity on-chain, and smart contracts could check for that credential before allowing transfer – making compliance automated and preserving some privacy. Projects like Xref (on XDC network) and Astra Protocol are exploring this. If successful, regulators might accept these novel approaches, which could allow permissionless trading among vetted participants. But that’s still in nascent stages.

In essence, regulation is the make-or-break factor for RWA adoption. The current landscape shows regulators are interested and cautiously supportive, but also vigilant. The RWA projects that thrive will be those that proactively embrace compliance yet innovate to make it as seamless as possible. Jurisdictions that provide clear, accommodative rules will attract more of this business (we’ve seen significant tokenization activity gravitate to places like Switzerland, Singapore, and the UAE due to clarity there). Meanwhile, the industry is engaging with regulators – for instance, by forming trade groups or responding to consultations – to help shape sensible policies. A likely outcome is that regulated DeFi will emerge as a category: platforms like those under Plume’s umbrella could become Alternative Trading Systems (ATS) or registered digital asset securities exchanges for tokenized assets, operating under licenses but with blockchain infrastructure. This hybrid approach may satisfy regulators’ objectives while still delivering the efficiency gains of crypto rails.

Investment and Market Size Data

The market for tokenized real-world assets has grown impressively and is projected to explode in the coming years, reaching into the trillions of dollars if forecasts hold true. Here we’ll summarize some key data points on market size, growth, and investment trends:

  • Current On-Chain RWA Market Size: As of mid-2025, the total on-chain Real-World Asset market (excluding traditional stablecoins) is in the tens of billions. Different sources peg slightly different totals depending on inclusion criteria, but a May 2025 analysis put it at $22.45 billion in Total Value Locked. This figure was up ~9.3% from the previous month, showcasing rapid growth. The composition of that ~$22B (as previously discussed) includes around $6.8B in government bonds, $1.5B in commodity tokens, $0.46B in equities, $0.23B in other bonds, and a few billion in private credit and funds. For perspective, this is still small relative to the broader crypto market (which is ~$1.2T in market cap as of 2025, largely driven by BTC and ETH), but it’s the fastest-growing segment of crypto. It’s also worth noting stablecoins (~$226B) if counted would dwarf these numbers, but usually they’re kept separate.

  • Growth Trajectory: The RWA market has shown a 32% annual growth rate in 2024. If we extrapolate or consider accelerating adoption, some estimate $50B by end of 2025 as plausible. Beyond that, industry projections become very large:

    • BCG and others (2030+): The often-cited BCG/Ripple report projected $16 trillion by 2030 (and ~$19T by 2033) in tokenized assets. This includes broad tokenization of financial markets (not just DeFi-centric usage). This figure would represent about 10% of all assets tokenized, which is aggressive but not unthinkable given tokenization of cash (stablecoins) is already mainstream.
    • Citi GPS Report (2022) talked about $4–5 trillion tokenized by 2030 as a base case, with higher scenarios if institutional adoption is faster.
    • The LinkedIn analysis we saw noted projections ranging from $1.3 trillion to $30 trillion by 2030 – indicating a lot of uncertainty but consensus that trillions are on the table.
    • Even the conservative end (say $1-2T by 2030) would mean a >50x increase from today’s ~$20B level, which gives a sense of the strong growth expectations.
  • Investment into RWA Projects: Venture capital and investment is flowing into RWA startups:

    • Plume’s own funding ($20M Series A, etc.) is one example of VC conviction.
    • Goldfinch raised ~$25M (led by a16z in 2021). Centrifuge raised ~$4M in 2021 and more via token sales; it’s also backed by Coinbase and others.
    • Maple raised $10M Series A in 2021, then additional in 2022.
    • Ondo raised $20M in 2022 (from Founders Fund and Pantera) and more recently did a token sale.
    • There’s also new dedicated funds: e.g., a16z’s crypto fund and others earmarked portions for RWA; Franklin Templeton in 2022 joined a $20M round for a tokenization platform; Matrixport launched a $100M fund for tokenized Treasuries.
    • Traditional finance is investing: Nasdaq Ventures invested in a tokenization startup (XYO Network), London Stock Exchange Group acquired TORA (with tokenization capabilities), etc.
    • We see mergers too: Securitize acquired Distributed Technology Markets to get a broker-dealer; INX (token exchange) raising money to expand offerings.

    Overall, tens of millions have been invested into the leading RWA protocols, and larger financial institutions are acquiring stakes or forming joint ventures in this arena. Apollo’s direct investment in Plume and Hamilton Lane partnering with Securitize to tokenize funds (with Hamilton Lane’s funds being multi-billion themselves) show that this is not just VC bets but real money engagement.

  • Notable On-Chain Assets and Performance: Some data on specific tokens can illustrate traction:

    • Ondo’s OUSG: launched early 2023, by early 2025 it had >$580M outstanding, delivering ~4-5% yield. It rarely deviates in price because it’s fully collateralized and redeemable.
    • Franklin’s BENJI: by mid-2023 reached $270M, and by 2024 ~$368M. It’s one of the first instances of a major US mutual fund being reflected on-chain.
    • MakerDAO’s RWA earnings: Maker, through its ~$1.6B RWA investments, was earning on the order of $80M+ annualized in yield by late 2023 (mostly from bonds). This turned Maker’s finances around after crypto yields dried up.
    • Maple’s Treasury pool: in its pilot, raised ~$22M for T-bill investments from <10 participants (institutions). Maple’s total lending after restructuring is smaller now (~$50-100M active loans), but it’s starting to tick up as trust returns.
    • Goldfinch: funded ~$120M loans and repaid ~$90M with ~<$1M in defaults (they had one notable default from a lender in Kenya but recovered partially). GFI token once peaked at a $600M market cap in late 2021, now much lower (~$50M), indicating market re-rating of risk but still interest.
    • Centrifuge: about 15 active pools. Some key ones (like ConsolFreight’s invoice pool, New Silver’s real estate rehab loan pool) each in the $5-20M range. Centrifuge’s token (CFG) has a market cap around $200M in 2025.
    • Overall RWA Returns: Many RWA tokens offer yields in the 4-10% range. For example, Aave’s yield on stablecoins might be ~2%, whereas putting USDC into Goldfinch’s senior pool yields ~8%. This spread draws DeFi capital gradually into RWA. During crypto market downturns, RWA yields looked especially attractive as they were stable, leading analysts to call RWAs a “safe haven” or “hedge” in Web3.
  • Geographical/Market Segments: A breakdown by region: A lot of tokenized Treasuries are US-based assets offered by US or global firms (Ondo, Franklin, Backed). Europe’s contributions are in tokenized ETFs and bonds (several German and Swiss startups, and big banks like Santander and SocGen doing on-chain bond issues). Asia: Singapore’s Marketnode platform is tokenizing bonds; Japan’s SMBC tokenized some credit products. The Middle East: Dubai’s DFSA approved a tokenized fund. Latin America: a number of experiments, e.g., Brazil’s central bank is tokenizing a portion of bank deposits (as part of their CBDC project, they consider tokenizing assets). Africa: projects like Kotani Pay looked at tokenized micro-asset financing. These indicate tokenization is a global trend, but the US remains the biggest source of underlying assets (due to Treasuries and large credit funds) while Europe is leading on regulatory clarity for trading.

  • Market Sentiment: The narrative around RWAs has shifted very positively in 2024-2025. Crypto media, which used to focus mostly on pure DeFi, now regularly reports on RWA milestones (e.g., “RWA market surpasses $20B despite crypto downturn”). Ratings agencies like Moody’s are studying on-chain assets; major consulting firms (BCG, Deloitte) publish tokenization whitepapers. The sentiment is that RWAfi could drive the next bull phase of crypto by bringing in trillions of value. Even Grayscale considering a Plume product suggests investor appetite for RWA exposure packaged in crypto vehicles. There’s also recognition that RWA is partly counter-cyclical to crypto – when crypto yields are low, people seek RWAs; when crypto booms, RWA provides stable diversification. This makes many investors view RWA tokens as a way to hedge crypto volatility (e.g., Binance research found RWA tokens remained stable and even considered “safer than Bitcoin” during certain macro volatility).

To conclude this section with hard numbers: $20-22B on-chain now, heading to $50B+ in a year or two, and potentially $1T+ within this decade. Investment is pouring in, with dozens of projects collectively backed by well over $200M in venture funding. Traditional finance is actively experimenting, with over $2-3B in real assets already issued on public or permissioned chains by big institutions (including multiple $100M+ bond issues). If even 1% of the global bond market (~$120T) and 1% of global real estate (~$300T) gets tokenized by 2030, that’d be several trillion dollars – which aligns with those bullish projections. There are of course uncertainties (regulation, interest rate environments, etc. can affect adoption), but the data so far supports the idea that tokenization is accelerating. As Plume’s team noted, “the RWA sector is now leading Web3 into its next phase” – a phase where blockchain moves from speculative assets to the backbone of real financial infrastructure. The deep research and alignment of heavyweights behind RWAs underscore that this is not a fleeting trend but a structural evolution of both crypto and traditional finance.


Sources:

  • Plume Network Documentation and Blog
  • News and Press: CoinDesk, The Block, Fortune (via LinkedIn)
  • RWA Market Analysis: RWA.xyz, LinkedIn RWA Report
  • Odaily/ChainCatcher Analysis
  • Goldfinch and Prime info, Ondo info, Centrifuge info, Maple info, Apollo quote, Binance research mention, etc.

The Radiant Capital Hack: How North Korean Hackers Used a Single PDF to Steal Hundreds of Millions

· 4 min read

In one of the most sophisticated cyber attacks of 2023, Radiant Capital, a decentralized cross-chain lending protocol built on LayerZero, lost approximately $50 million to hackers. The complexity and precision of this attack revealed the advanced capabilities of state-sponsored North Korean hackers, pushing the boundaries of what many thought possible in crypto security breaches.

The Radiant Capital Hack: How North Korean Hackers Used a Single PDF to Steal Hundreds of Millions

The Perfect Social Engineering Attack

On September 11, 2023, a Radiant Capital developer received what seemed like an innocent Telegram message. The sender posed as a former contractor, claiming they had switched careers to smart contract auditing and wanted feedback on a project report. This type of request is commonplace in the remote-work culture of crypto development, making it particularly effective as a social engineering tactic.

The attackers went the extra mile by creating a fake website that closely mimicked the supposed contractor's legitimate domain, adding another layer of authenticity to their deception.

The Trojan Horse

When the developer downloaded and unzipped the file, it appeared to be a standard PDF document. However, the file was actually a malicious executable called INLETDRIFT disguised with a PDF icon. Once opened, it silently installed a backdoor on the macOS system and established communication with the attackers' command server (atokyonews[.]com).

The situation worsened when the infected developer, seeking feedback, shared the malicious file with other team members, inadvertently spreading the malware within the organization.

The Sophisticated Man-in-the-Middle Attack

With the malware in place, the hackers executed a precisely targeted "bait-and-switch" attack. They intercepted transaction data when team members were operating their Gnosis Safe multi-signature wallet. While the transaction appeared normal on the web interface, the malware replaced the transaction content when it reached the Ledger hardware wallet for signing.

Due to the blind signing mechanism used in Safe multi-sig transactions, team members couldn't detect that they were actually signing a transferOwnership() function call, which handed control of the lending pools to the attackers. This allowed the hackers to drain user funds that had been authorized to the protocol's contracts.

The Swift Cleanup

Following the theft, the attackers demonstrated remarkable operational security. Within just three minutes, they removed all traces of the backdoor and browser extensions, effectively covering their tracks.

Key Lessons for the Industry

  1. Never Trust File Downloads: Teams should standardize on online document tools like Google Docs or Notion instead of downloading files. For example, OneKey's recruitment process only accepts Google Docs links, explicitly refusing to open any other files or links.

  2. Frontend Security is Critical: The incident highlights how easily attackers can spoof transaction information on the frontend, making users unknowingly sign malicious transactions.

  3. Blind Signing Risks: Hardware wallets often display oversimplified transaction summaries, making it difficult to verify the true nature of complex smart contract interactions.

  4. DeFi Protocol Safety: Projects handling large amounts of capital should implement timelock mechanisms and robust governance processes. This creates a buffer period for detecting and responding to suspicious activities before funds can be moved.

The Radiant Capital hack serves as a sobering reminder that even with hardware wallets, transaction simulation tools, and industry best practices, sophisticated attackers can still find ways to compromise security. It underscores the need for constant vigilance and evolution in crypto security measures.

As the industry matures, we must learn from these incidents to build more robust security frameworks that can withstand increasingly sophisticated attack vectors. The future of DeFi depends on it.