Ethereum's 2026 Biannual Upgrade Roadmap: From Mega-Upgrades to Strategic Incrementalism
When Ethereum's core developers announced Fusaka and Glamsterdam—two major network upgrades slated for 2026—they weren't just unveiling a technical roadmap. They were signaling a fundamental shift in how the world's largest smart contract platform evolves: from monolithic "big bang" releases to predictable, biannual incremental improvements. This strategic pivot could be the difference between Ethereum maintaining its dominance and losing ground to faster-moving competitors.
The stakes have never been higher. With Layer 2 solutions processing billions in daily volume, institutional adoption accelerating, and competitors like Solana claiming "100,000 TPS" headlines, Ethereum faces a credibility test: can it scale without compromising decentralization or security? The 2026 roadmap answers with a resounding yes—but the path isn't what most expected.
The New Ethereum: Incremental Revolution Over Monolithic Disruption
Ethereum's historical approach to upgrades has been characterized by years-long development cycles culminating in transformative releases. The Merge in 2022 took nearly six years from conception to execution, transitioning the network from Proof-of-Work to Proof-of-Stake in one fell swoop. While successful, this model carries inherent risks: extended development timelines, coordination complexity across thousands of nodes, and the potential for catastrophic failures that could freeze billions in assets.
The 2026 strategy represents a departure from this model. Ethereum developers now plan two major network upgrades annually, prioritizing smaller, iterative updates that reduce the risk of large-scale disruptions while ensuring continuous optimization. This biannual cadence prioritizes predictability and safety, a stark contrast to the "big bang" overhauls of the past.
Why the shift? The answer lies in Ethereum's maturation as critical financial infrastructure. With over $68 billion in DeFi total value locked and institutional players like BlackRock tokenizing assets on-chain, the network can no longer afford multi-year gaps between improvements. The biannual model borrows from software development best practices: ship early, ship often, and iterate based on real-world performance.
Fusaka: The Scalability Foundation That Just Went Live
Fusaka activated on Ethereum mainnet on December 3, 2025, marking the first implementation of this new upgrade philosophy. Far from a mere incremental patch, Fusaka bundles 13 EIPs organized around three core objectives: scaling Layer 2s, improving Layer 1 execution efficiency, and enhancing developer and user experience.
PeerDAS: The Headline Innovation
The crown jewel of Fusaka is PeerDAS (Peer Data Availability Sampling), defined in EIP-7594. PeerDAS introduces a new networking protocol that allows nodes to verify blob data availability through sampling rather than downloading entire blobs. This fundamentally changes Ethereum's data availability model.
Previously, every full node needed to store every blob—the data packets used by Layer 2 rollups to post transaction data to Ethereum. This created a bottleneck: as blob usage increased, node hardware requirements ballooned, threatening decentralization. PeerDAS solves this by splitting blob data across many nodes and collectively verifying its availability through cryptographic sampling.
The impact is dramatic. Following Fusaka's activation, Ethereum implemented Blob Parameter Only (BPO) forks to gradually increase blob capacity:
- BPO 1 (December 17, 2025): Target 10 blobs per block, maximum 15
- BPO 2 (January 7, 2026): Target 14 blobs per block, maximum 21
Early data shows 40–60% Layer 2 fee reductions within the first month as PeerDAS activated and blob throughput scaled, with projections of 90%+ reductions as the network ramps to higher blob counts throughout 2026. For context, Optimism and Arbitrum—two of the largest Ethereum L2s—saw transaction fees drop from cents to fractions of cents, making DeFi and NFT transactions economically viable at scale.
Gas Limit Increases and Execution Efficiency
Beyond data availability, Fusaka also targets Layer 1 execution capacity. Ethereum's available block gas limit will rise from 45 million to 60 million, expanding computation and transactions per block. This increase, combined with EIP-7825's transaction gas limit cap, improves block composability and guarantees more transactions per block.
These changes aren't just about raw throughput. They're about eliminating execution and block propagation bottlenecks that currently force transactions through a mostly linear pipeline. Fusaka increases both the raw throughput and the effective throughput, ensuring that Ethereum can handle peak demand without network congestion.
Additional optimizations include:
- ModExp Precompile Improvements (EIP-7883 and EIP-7823): These EIPs optimize cryptographic operations by increasing gas costs to accurately reflect computational complexity and setting upper bounds for ModExp operations, ensuring resource-intensive tasks are properly priced.
- Enhanced Block Propagation: Improvements that reduce latency between block production and network-wide validation, critical for maintaining security as block sizes increase.
Glamsterdam: The Parallel Execution Breakthrough
If Fusaka lays the foundation for scalability, Glamsterdam—scheduled for the first half of 2026—delivers the architectural breakthrough that could push Ethereum toward 100,000+ TPS. The upgrade introduces Block Access Lists and enshrined Proposer-Builder Separation (ePBS), two innovations that fundamentally transform how Ethereum processes transactions.
Block Access Lists: Unlocking Parallel Execution
Ethereum's current execution model is largely sequential: transactions are processed one after another in the order they appear in a block. This works for a single-threaded system but wastes the potential of modern multi-core processors. Block Access Lists enable a transition toward a multi-core processing model where independent transactions can be executed simultaneously.
The mechanism is elegant: transactions declare upfront which parts of Ethereum's state they will read or modify (the "access list"). Validators can then identify transactions that don't conflict and execute them in parallel across multiple CPU cores. For example, a swap on Uniswap and a transfer on a completely different token contract can run concurrently, doubling effective throughput without changing hardware requirements.
Parallel execution pushes Ethereum's mainnet toward near-parallel transaction processing, with nodes handling multiple independent chunks of state simultaneously, cutting bottlenecks that currently force transactions through a mostly linear pipeline. Once the new execution model proves stable, core teams plan to ratchet the gas limit from around 60 million to roughly 200 million, a 3.3x increase that would bring Ethereum's Layer 1 capacity into territory previously reserved for "high-performance" chains.
Enshrined Proposer-Builder Separation (ePBS): Democratizing MEV
Maximum Extractable Value (MEV)—the profit validators can extract by reordering, inserting, or censoring transactions—has become a controversial topic in Ethereum. Specialized block builders currently capture billions annually by optimizing transaction ordering for profit, creating centralization pressures and raising censorship concerns.
ePBS is a protocol-level change designed to mitigate risks by moving block-building logic directly into the core code. Instead of validators outsourcing block construction to third-party builders, the protocol itself handles the separation between block proposers (who validate) and block builders (who optimize ordering).
This democratizes the rewards of block production by ensuring that MEV is distributed more fairly across all validators, not just those with access to sophisticated builder infrastructure. It also lays groundwork for parallel transaction processing by standardizing how transactions are batched and ordered, enabling future optimizations that would be impossible with today's ad-hoc builder ecosystem.
Hegota: The Stateless Node Endgame
Scheduled for the second half of 2026, Hegota represents the culmination of Ethereum's 2026 roadmap: the transition to stateless nodes. Hegota introduces Verkle Trees, a data structure replacing Merkle Patricia Trees. This transition enables the creation of significantly smaller cryptographic proofs, allowing for the launch of "stateless clients," which can verify the entire blockchain without requiring participants to store hundreds of gigabytes of historical data.
Today, running an Ethereum full node requires 1TB+ of storage and substantial bandwidth. This creates a barrier to entry for individuals and small operators, pushing them toward centralized infrastructure providers. Stateless nodes change the equation: by using Verkle proofs, a node can validate the current state of the network with just a few megabytes of data, dramatically lowering hardware requirements.
The implications for decentralization are profound. If anyone can run a full node on a laptop or even a smartphone, Ethereum's validator set could expand from tens of thousands to hundreds of thousands or even millions. This hardening of the network against centralization pressures is perhaps the most strategic element of the 2026 roadmap—scalability without sacrificing decentralization, the blockchain trilemma's holy grail.
Why Biannual Upgrades Matter: Strategic vs. Tactical Scaling
The shift to biannual upgrades isn't just about faster iteration—it's about strategic positioning in a competitive landscape. Ethereum's competitors haven't been idle. Solana claims 65,000 TPS with sub-second finality. Sui and Aptos leverage parallel execution from day one. Even Bitcoin is exploring Layer 2 programmability through projects like Stacks and Citrea.
Ethereum's traditional upgrade cycle—multi-year gaps between major releases—created windows of opportunity for competitors to capture market share. Developers frustrated with high gas fees migrated to alternative chains. DeFi protocols forked to faster networks. The 2026 roadmap closes this window by ensuring continuous improvement: every six months, Ethereum delivers meaningful enhancements that keep it at the technological frontier.
But there's a deeper strategic logic at play. The biannual cadence prioritizes smaller, more frequent upgrades over monolithic releases, ensuring continuous improvement without destabilizing the ecosystem. This matters for institutional adoption: banks and asset managers need predictability. A network that ships regular, tested improvements is far more attractive than one that undergoes radical transformations every few years.
Consider the contrast with the Merge. While successful, it represented an existential risk: if consensus had failed, the entire network could have halted. The 2026 upgrades, by comparison, are additive. PeerDAS doesn't replace the existing data availability system—it extends it. Block Access Lists don't break existing transaction processing—they enable an additional parallel execution layer. This incremental approach de-risks each upgrade while maintaining momentum.
The Technical Trilemma: Can Ethereum Have It All?
The blockchain trilemma—the notion that blockchains can only achieve two of three properties: decentralization, security, and scalability—has haunted Ethereum since its inception. The 2026 roadmap represents Ethereum's most ambitious attempt to prove the trilemma wrong.
Scalability: Fusaka's PeerDAS and Glamsterdam's parallel execution deliver 10x–100x throughput improvements. The target of 100,000+ TPS puts Ethereum in the same league as Visa's peak capacity.
Decentralization: Hegota's stateless nodes lower hardware requirements, expanding the validator set. PeerDAS's sampling mechanism distributes data storage across thousands of nodes, preventing centralization around a few high-capacity operators.
Security: ePBS reduces MEV-related censorship risks. The incremental upgrade model minimizes the attack surface of each change. And Ethereum's $68B+ in staked ETH provides economic security unmatched by any other blockchain.
But the real test isn't technical—it's adoption. Will Layer 2s migrate to take advantage of cheaper blob fees? Will developers build applications that leverage parallel execution? Will institutions trust a network undergoing biannual upgrades?
What This Means for Developers and Users
For developers building on Ethereum, the 2026 roadmap offers concrete benefits:
-
Lower Layer 2 Costs: With blob fees potentially dropping 90%, deploying rollup-based applications becomes economically viable for use cases previously relegated to centralized databases—think micro-transactions, gaming, and social media.
-
Higher Layer 1 Throughput: The gas limit increase to 200 million means complex smart contracts that previously couldn't fit in a single block become feasible. DeFi protocols can offer more sophisticated financial instruments. NFT marketplaces can handle batch mints at scale.
-
Improved User Experience: Account abstraction via EIP-7702 (introduced in the earlier Pectra upgrade) combined with Glamsterdam's execution efficiency means users can interact with dApps without worrying about gas fees, transaction batching, or wallet seed phrases. This UX leap could finally bring blockchain to mainstream adoption.
For users, the changes are equally significant:
- Cheaper Transactions: Whether trading on Uniswap, minting NFTs, or transferring tokens, transaction costs on Layer 2s will drop to fractions of a cent.
- Faster Confirmations: Parallel execution means transactions settle faster, reducing the "pending" state that frustrates users.
- Enhanced Security: ePBS and stateless nodes make Ethereum more resilient to censorship and centralization, protecting user sovereignty.
Risks and Trade-offs: What Could Go Wrong?
No upgrade roadmap is without risks. The 2026 plan introduces several potential failure modes:
Coordination Complexity: Biannual upgrades require tight coordination across client teams, infrastructure providers, and the broader ecosystem. A bug in any of the 13+ EIPs could delay or derail the entire release.
Validator Centralization: While stateless nodes lower barriers to entry, the reality is that most validators run on cloud infrastructure (AWS, Azure, Google Cloud). If the gas limit increases to 200 million, only high-performance servers may be able to keep up, potentially centralizing validation despite stateless client availability.
MEV Evolution: ePBS aims to democratize MEV, but sophisticated actors may find new ways to extract value, creating an arms race between protocol designers and profit-seeking builders.
Layer 2 Fragmentation: As blob fees drop, the number of Layer 2s could explode, fragmenting liquidity and user experience across dozens of incompatible chains. Cross-chain interoperability remains an unsolved challenge.
The Ethereum roadmap includes a validator risk that's bigger than many think: to deliver the massive throughput gains, the network must balance increased computational demands with the need to maintain a diverse, decentralized validator set.
Looking Ahead: The Post-2026 Roadmap
The 2026 upgrades aren't endpoints—they're waypoints on Ethereum's multi-year scaling journey. Vitalik Buterin's roadmap envisions further improvements beyond Glamsterdam and Hegota:
- The Surge: Continued scaling work to reach 100,000+ TPS through Layer 2 optimizations and data availability improvements.
- The Scourge: Further MEV mitigation and censorship resistance beyond ePBS.
- The Verge: Full stateless client implementation with Verkle Trees and eventually, quantum-resistant cryptography.
- The Purge: Reducing historical data storage requirements, making the network even more lightweight.
- The Splurge: All the other improvements that don't fit neatly into categories—account abstraction enhancements, cryptographic upgrades, and developer tooling.
The biannual upgrade model makes this long-term roadmap executable. Instead of waiting years for "The Surge" to complete, Ethereum can ship components incrementally, validating each step before moving forward. This adaptive approach ensures the network evolves in response to real-world usage patterns rather than theoretical projections.
Institutional Implications: Why Wall Street Cares About Upgrades
Ethereum's 2026 roadmap matters far beyond the crypto community. BlackRock's BUIDL tokenized money market fund holds over $1.8 billion in on-chain assets. Fidelity, JPMorgan, and Goldman Sachs are experimenting with blockchain-based settlement. The European Central Bank is testing digital euro prototypes on Ethereum.
For these institutions, predictability is paramount. The biannual upgrade cadence provides a transparent, scheduled roadmap that allows enterprises to plan infrastructure investments with confidence. They know that in H1 2026, Glamsterdam will deliver parallel execution. They know that in H2 2026, Hegota will enable stateless nodes. This visibility de-risks blockchain adoption for risk-averse institutions.
Moreover, the technical improvements directly address institutional pain points:
- Lower Costs: Reduced blob fees make tokenized asset transfers economically competitive with traditional settlement rails.
- Higher Throughput: The 200 million gas limit target ensures Ethereum can handle institutional-scale transaction volumes—think thousands of tokenized stock trades per second.
- Regulatory Compliance: ePBS's MEV mitigation reduces the risk of front-running and market manipulation, addressing SEC concerns about fair markets.
BlockEden.xyz provides enterprise-grade Ethereum infrastructure designed to scale with the network's 2026 upgrades—PeerDAS-optimized data availability, parallel execution-ready RPC endpoints, and seamless support across Ethereum mainnet and all major Layer 2s. Explore our Ethereum API services to build on infrastructure that evolves with the protocol.
The Bottom Line: Ethereum's Defining Year
2026 could be the year Ethereum definitively answers its critics. The complaints are familiar: "too slow," "too expensive," "can't scale." The biannual upgrade roadmap addresses each one head-on. Fusaka delivered the data availability scaling Layer 2s desperately needed. Glamsterdam will unlock parallel execution, bringing Ethereum's Layer 1 throughput into direct competition with high-performance chains. Hegota will democratize validation through stateless nodes, hardening decentralization.
But the real innovation isn't any single technical feature—it's the meta-strategy of incremental, predictable improvements. By shifting from mega-upgrades to biannual releases, Ethereum has adopted the development cadence of successful software platforms: iterate quickly, learn from production usage, and ship continuously.
The question isn't whether Ethereum can reach 100,000 TPS. The technology is proven. The question is whether the ecosystem—developers, users, institutions—will adapt quickly enough to leverage these improvements. If they do, Ethereum's 2026 roadmap could cement its position as the settlement layer for the internet of value. If they don't, competitors will continue to nibble at the edges, offering specialized solutions for gaming, DeFi, or payments.
One thing is certain: the days of waiting years between Ethereum upgrades are over. The 2026 roadmap isn't just a technical plan—it's a declaration that Ethereum is no longer a research project. It's critical infrastructure, and it's evolving at the speed of the internet itself.
Sources
- Ethereum Fusaka Upgrade
- Ethereum Fusaka Upgrade Explained: Faster Transactions, PeerDAS and 11 EIPs
- What Is the Fusaka Upgrade: Ethereum's Next Hard Fork
- The Fusaka Upgrade: Scaling Meets Value Accrual
- Fusaka Mainnet Announcement
- Ethereum's Glamsterdam Upgrade Fork to Undergo Key Upgrades in 2026
- Ethereum Roadmap Locks in Glamsterdam and Hegota Upgrades for 2026
- Ethereum Developers Plan Two New Upgrades For 2026
- Ethereum bumps blob capacity ahead of Fusaka upgrade
- Ethereum Pectra Upgrade: Key Improvements and Impact