跳到主要内容

1 篇博文 含有标签「verifiability」

查看所有标签

可验证 AI 动态:Lagrange Labs 的动态 zk-SNARKs 实现持续信任

· 阅读需 5 分钟
Dora Noda
Software Engineer

在人工智能与区块链快速融合的时代,对信任与透明度的需求前所未有。我们如何确保 AI 模型的输出准确且未被篡改?我们又如何在不牺牲安全性或可扩展性的前提下,对海量链上数据执行复杂计算?Lagrange Labs 正在通过其零知识(ZK)基础设施套件正面回应这些问题,致力于构建“可证明的 AI”。本文客观概述其使命、技术以及近期突破,重点聚焦其最新的动态 zk‑SNARKs 论文。

1. 团队与使命

Lagrange Labs 正在构建基础设施,为任何 AI 推理或链上应用生成密码学证明。其目标是让计算可验证,为数字世界注入全新信任层。生态系统围绕三大核心产品线:

  • ZK Prover Network:由超过 85 个证明节点组成的去中心化网络,提供从 AI、Rollup 到去中心化应用(dApp)等多种证明任务所需的计算能力。
  • DeepProve(zkML):专用于生成神经网络推理的 ZK 证明。Lagrange 声称其速度比竞争方案快 158 倍,让可验证 AI 成为可落地的现实。
  • ZK Coprocessor 1.0:首个基于 SQL 的 ZK 协处理器,允许开发者对海量链上数据执行自定义查询,并获得可验证的准确结果。

2. 可验证 AI 的路线图

Lagrange 按部就班执行路线图,逐步解决 AI 可验证性难题。

  • 2024 年 Q3:ZK Coprocessor 1.0 发布:引入超并行递归电路,平均提升约 2 倍。Azuki、Gearbox 等项目已在链上数据需求中 使用该协处理器
  • 2025 年 Q1:DeepProve 正式亮相:Lagrange 宣布推出针对零知识机器学习(zkML)的 DeepProve,支持 MLP、CNN 等主流网络结构。系统在一次性设置、证明生成、验证三个关键阶段均实现数量级加速,最高可达 158 倍
  • 2025 年 Q2:动态 zk‑SNARKs 论文(最新里程碑):该论文提出突破性的 “update” 算法。无需每次数据或计算变更时重新生成完整证明,而是将旧证明 (π) 打补丁 成新证明 (π'),复杂度仅为 O(√n log³n),大幅优于全量重算。此创新尤为适用于持续学习的 AI 模型、实时游戏逻辑以及可演化的智能合约。

3. 动态 zk‑SNARKs 的意义

可更新证明的出现标志着零知识技术成本模型的根本转变。

  • 全新成本范式:行业从“每次都全量重算”转向“基于变更规模的增量证明”,显著降低频繁小幅更新应用的计算与费用开支。

  • 对 AI 的影响

    • 持续微调:当模型参数微调幅度低于 1% 时,证明生成时间几乎与变更参数数量 (Δ 参数) 成线性关系,而非与模型整体规模成正比。
    • 流式推理:这 使得证明生成可以与推理过程同步进行,大幅压缩 AI 决策到链上结算并验证的延迟,开启链上 AI 服务、Rollup 压缩证明等新用例。
  • 对链上应用的影响

    • 动态 zk‑SNARKs 为频繁小幅状态变更的场景(如 DEX 订单簿、演化游戏状态、频繁增删的账本)带来巨大的 Gas 与时间优化。

4. 技术栈概览

Lagrange 的强大基础设施基于以下集成技术栈:

  • 电路设计:系统灵活,可直接在电路中嵌入 ONNX(开放神经网络交换)模型、SQL 解析器以及自定义算子。
  • 递归与并行:ZK Prover Network 支持分布式递归证明,ZK Coprocessor 通过 “微电路” 分片实现任务并行执行,最大化效率。
  • 经济激励:Lagrange 计划发行原生代币 LA,并将其纳入 双拍卖递归拍卖(DARA) 机制,构建完善的计算竞价市场,配套激励与惩罚以确保网络完整性。

5. 生态与真实落地

Lagrange 的技术已被多个项目在不同领域采纳:

  • AI 与 ML:如 0G LabsStory Protocol 等使用 DeepProve 验证 AI 输出,确保来源可信。
  • Rollup 与基础设施EigenLayerBaseArbitrum 等作为验证节点或集成伙伴加入 ZK Prover Network,提升网络安全与算力。
  • NFT 与 DeFiAzukiGearbox 等项目利用 ZK Coprocessor 增强数据查询可信度与奖励分配的公正性。

6. 挑战与前路

尽管进展显著,Lagrange Labs 与整个 ZK 领域仍面临若干障碍:

  • 硬件瓶颈:即便拥有分布式网络,可更新 SNARK 仍需高带宽,并依赖 GPU 友好的密码曲线以实现高效运算。
  • 标准化缺失:将 ONNX、PyTorch 等 AI 框架映射到 ZK 电路的过程尚未形成统一接口,导致开发者摩擦。
  • 竞争激烈:zkVM 与通用 zkCompute 平台的竞争日趋白热化,Risc‑Zero、Succinct 等竞争者亦在快速迭代。最终的胜者或许是最先实现商业化、开发者友好、社区驱动的完整工具链者。

7. 结论

Lagrange Labs 正在通过 可验证性 的视角系统性重塑 AI 与区块链的交叉领域。其整体解决方案包括:

  • DeepProve:解决 可信推理 的难题。
  • ZK Coprocessor:解决 可信数据 的难题。
  • 动态 zk‑SNARKs:将 持续更新 的真实需求直接嵌入证明系统。

只要 Lagrange 能保持性能优势、突破标准化瓶颈并继续壮大其网络,它有望成为新兴 “AI + ZK 基础设施” 领域的基石玩家。