跳到主要内容

2 篇博文 含有标签「MCP」

查看所有标签

Web3生态系统中的MCP:全面评论

· 阅读需 52 分钟
Dora Noda
Software Engineer

#Web3生态系统中的MCP:全面评论

##1。MCP在Web3上下文中的定义和起源

**模型上下文协议(MCP)**是一个开放标准,它将AI助手(例如大语言模型)连接到外部数据源,工具和环境。 MCP通常被描述为“ AI的USB-C端口”,这是由于其通用的插件性质,是由Anthropic开发的,并于2024年11月下旬首次引入。它是一种解决方案,可以通过将AI模型与“数据库和APIS到开发环境”和“ APIS”和“ APIS和APIS环境”和“ APIS”和“ APIS和Bloxchains”和“ APIS和APIS”的“系统”安全地隔离而脱离隔离。

MCP最初是Anthropic的实验性侧面项目,很快就获得了吸引力。到2024年中,出现了开源参考实现,到2025年初,它已成为代理AI集成的事实上的标准**,领先的AI实验室(OpenAI,Google DeepMind,Meta AI)本地采用它。在** Web3社区**中,这种快速的吸收尤其值得注意。区块链开发人员将MCP视为将AI功能注入分散应用程序的一种方式,从而导致社区构建的MCP连接器扩散,以用于链上数据和服务。实际上,一些分析师认为,MCP可以通过使用自然语言接口来增强用户能力,以比区块链更实用的方式实现Web3的原始愿景。

总而言之,MCP不是区块链或代币**,而是AI世界中出生的开放协议,该协议在Web3生态系统中迅速接受为AI代理和分散数据源之间的桥梁。人类为标准(具有最初的GitHub规格和SDK)开源,并在其周围培养了一个开放的社区。这种社区驱动的方法为MCP集成到Web3中奠定了基础,现在它被视为针对AI支持的分散应用程序的基础基础架构。

2。技术架构和核心协议

MCP在轻量级客户端 - 服务器架构中运行,并带有三个主要角色:

  • ** MCP主机:** AI应用程序或代理本身,该应用程序安排请求。这可能是聊天机器人(Claude,ChatGpt)或需要外部数据的AI功能应用程序。主机启动交互,通过MCP询问工具或信息。
  • ** MCP客户端:**主机用来与服务器通信的连接器组件。客户端维护连接,管理请求/响应消息,并可以并行处理多个服务器。例如,像光标或VS Code代理模式之类的开发人员工具可以充当MCP客户端,桥接具有各种MCP服务器的本地AI环境。
  • ** MCP服务器:向AI暴露某些上下文数据或功能的服务。服务器提供工具**,资源提示 AI可以使用的**。实际上,MCP服务器可以与数据库,云应用程序或区块链节点接口,并向AI呈现一组标准化的操作集。每个客户端服务器对通过其自己的频道进行通信,因此AI代理可以同时点击多个服务器以满足不同的需求。

核心原始图: MCP定义了一组构建AI-Tool交互的标准消息类型和原语。这三个基本原则是:

  • 工具: AI可以在服务器上调用的离散操作或功能。例如,一个“搜索Documents”工具或“ ETH_CALL”工具。工具封装了诸如查询API,执行计算或调用智能合约功能之类的操作。 MCP客户端可以从服务器请求可用工具的列表,并根据需要致电。
  • **资源:**数据终点可以通过服务器读取(或有时写入)的数据终点。这些可能是文件,数据库条目,区块链状态(块,交易)或任何上下文数据。 AI可以列出资源并通过标准MCP消息检索其内容(例如listreSources'和readResource'请求)。
  • **提示:**结构化提示模板或服务器可以提供的指令指导AI的推理。例如,服务器可能会提供格式模板或预定义的查询提示。 AI可以请求提示模板的列表,并使用它们来保持其与该服务器的交互方式的一致性。

在引擎盖下,MCP通信通常基于JSON,并遵循类似于RPC(远程过程调用)的请求响应模式。该协议的规范定义了诸如InitializereQuestListToolscalltool','listresources等的消息'',这些消息确保任何符合MCP的客户端都可以以统一的方式与任何MCP服务器交谈。此标准化是什么使AI代理可以 *发现 *可以做什么:连接到新服务器后,它可以询问“您提供哪些工具和数据?”然后动态决定如何使用它们。

安全性和执行模型: MCP考虑了安全的,可控的交互。 AI模型本身不会执行任意代码;它将高级意图(通过客户端)发送到服务器,然后执行实际操作(例如获取数据或调用API)并返回结果。这种分离意味着敏感的动作(例如区块链交易或数据库写入)可以是沙盒子或需要明确的用户批准。例如,有诸如ping'(保持连接活力)之类的消息,甚至还有createMessagereQuest',它允许MCP服务器要求客户端的AI生成子响应,通常通过用户确认使用。正在积极开发身份验证,访问控制和审计记录之类的功能,以确保可以在企业和分散的环境中安全地使用MCP(在路线图部分中提供更多信息)。

总而言之,MCP的体系结构依赖于标准化的消息协议(带有JSON-RPC样式调用),该消息将AI代理(主机)连接到提供工具,数据和操作的灵活服务器。这种开放的体系结构是模型 - 敏捷和**平台 - agnostic ** - 任何AI代理都可以使用MCP与任何资源进行交谈,任何开发人员都可以为数据源创建新的MCP服务器,而无需修改AI的核心代码。这种插件的可扩展性使MCP在Web3中的功能强大:可以为区块链节点,智能合约,钱包或甲壳构建服务器,并使AI代理将这些功能无缝集成到Web2 API上。

##3。MCP在Web3中的用例和应用

MCP通过启用AI驱动的应用程序来访问区块链数据并以安全,高级的方式访问区块链或链链操作,从而解锁了广泛的用例。以下是一些关键应用程序,并且有助于在Web3域中解决:

  • 链上数据分析和查询: AI代理可以实时查询实时区块链状态,以提供见解或触发操作。例如,连接到以太坊节点的MCP服务器允许AI获取帐户余额,读取智能合约存储,跟踪交易或按需检索事件日志。这将聊天机器人或编码助手变成了区块链资源管理器。开发人员可以问一个AI助理问题,例如“ Uniswap池中目前的流动性是什么?”或“模拟该以太坊交易的气体成本”,AI将使用MCP工具调用RPC节点并从现场链中获取答案。这比依靠AI的培训数据或静态快照要强大得多。
  • 自动化的Defi投资组合管理:通过组合数据访问和操作工具,AI代理可以管理加密货币组合或Defi位置。例如,“ AI Vault Optimizer” 可以监视用户在收益农场的位置,并根据实时市场条件自动建议或执行重新平衡策略。同样,AI可以充当 Defi Portfolio经理,在风险或费率变化时调整协议之间的分配。 MCP提供了AI的标准接口,以读取链上指标(价格,流动性,抵押比率),然后在允许的情况下调用工具以执行交易(例如移动资金或交换资产)。这可以帮助用户以难以手动执行的方式最大程度地提高收益率或管理风险24/7。
  • ** AI驱动的交易用户代理:想想可以处理用户的区块链交互的个人AI助手。使用MCP,这样的代理可以与钱包和DAPP集成以通过自然语言命令执行任务。例如,用户可以说:“ AI,将0.5 ETH从我的钱包发送到爱丽丝或“将我的令牌放在最高疗法池中”。通过MCP,AI将使用安全的钱包服务器**(持有用户的私钥)来创建和签署事务,并使用区块链MCP服务器来广播。这种情况将复杂的命令行或metAmask互动变成对话体验。至关重要的是,这里使用安全的钱包MCP服务器,从而执行权限和确认,但最终结果是通过AI援助来简化链上交易。
  • 开发人员助理和智能合同调试: Web3开发人员可以利用基于MCP的AI助手,这些助理可以了解区块链基础架构。例如,**链条的MCP服务器用于EVM和SOLANA ** **使AI编码副驾驶员可以深入了解开发人员的区块链环境。使用AI助手(在VS代码或IDE中)的智能合同工程师可以使AI在测试网上获取合同的当前状态,运行交易的模拟或检查日志 - 所有这些都是通过MCP调用到本地区块链节点的电话。这有助于调试和测试合同。 AI不再“盲目”编码;它实际上可以验证代码如何实时链链。该用例通过允许AI不断摄入最新的文档(通过文档MCP服务器)并直接查询区块链,减少幻觉并提出建议更准确,从而解决了一个主要的痛点。
  • 交叉协调:由于MCP是统一接口,因此单个AI代理可以同时跨多个协议和服务协调 - 这在Web3互连的景观中非常强大。想象一个自治贸易代理,可以监视各种套利平台进行套利。通过MCP,一个代理可以通过连贯的界面与AAVE的贷款市场,Layerzero的跨链桥和MEV(矿工可提取值)分析服务进行交互。 AI可以在一个“思考过程”中,从以太坊(通过以太坊节点上的MCP服务器)收集流动性数据,获取价格信息或Oracle数据(通过另一台服务器),甚至调用桥接或交换操作。以前,这种多平台协调将需要复杂的自定义编码机器人,但是MCP为AI提供了一种可推广的方法,使AI可以浏览整个Web3生态系统,就好像它是一个大数据/资源池一样。这可以使晚期用例(例如跨链产量优化或自动清算保护)可以主动移动资产或抵押品的自动清算保护。
  • ** AI咨询和支持机器人:另一个类别是Crypto应用程序中面向用户的顾问。例如,已集成到uniswap或化合物等平台中的 defi帮助聊天机器人可以使用MCP为用户提供实时信息。如果用户问:“对冲我的职位的最佳方法是什么?”,AI可以通过MCP获取当前费率,波动性数据和用户的投资组合详细信息,然后给出上下文感知的答案。平台正在探索** ai驱动的助手**嵌入在钱包或DAPP中的平台,可以指导用户完成复杂的交易,解释风险,甚至通过批准执行步骤序列。这些AI代理有效地坐落在多个Web3服务(DEXES,贷款池,保险协议)的顶部,使用MCP查询并根据需要命令它们,从而简化了用户体验。
  • **超越Web3 - 多域工作流程:**尽管我们的焦点是Web3,但值得注意的是,MCP的用例扩展到了AI需要外部数据的任何域。它已经被用来将AI连接到Google Drive,Slack,Github,Figma等。实际上,单个AI代理可以跨越Web3和Web2: MCP的灵活性允许跨域自动化(例如,“如果我的DAO投票通过,请安排我的会议,并通过电子邮件发送结果”),将区块链动作与日常工具融合在一起。

解决的问题:总体问题MCP地址是缺乏AI与实时数据和服务交互的统一接口。在MCP之前,如果您希望AI使用新服务,则必须以临时方式手工编码该特定服务API的插件或集成。在Web3中,这特别繁琐 - 每个区块链或协议都有自己的界面,并且没有人工智能希望支持它们。 MCP通过标准化AI描述其想要的内容(自然语言映射到工具调用)以及服务如何描述其提供的内容来解决此问题。这大大减少了整合工作。例如,开发人员可以为该协议编写一个MCP服务器,而不是为每个Fefi协议编写自定义插件(本质上是用自然语言注释其功能)。然后,任何启用MCP的AI(Claude,Chatgpt还是开源型号)都可以立即使用它。这使AI 可扩展以插件方式,就像通过通用端口添加新设备的方式比安装新接口卡更容易。

总而言之,Web3中的MCP使** AI代理可以通过安全,标准化的渠道成为区块链世界的一流公民** - 查询,分析,甚至在分散系统之间进行交易。这为更自主的DAPP,更智能的用户代理以及链和链智能的无缝集成打开了大门。

4。代币学和治理模型

与典型的Web3协议不同,** MCP没有天然令牌或加密货币。因此,没有内置的代币学 - 没有使用MCP固有的代币发行,积分或费用模型。 AI应用程序和服务器通过MCP通信,而无需涉及任何加密货币;例如,通过MCP呼叫区块链的AI可能会为区块链交易支付汽油费,但MCP本身没有增加额外的代币费用。该设计反映了MCP在AI社区中的起源:它是作为改善AI-Tool互动的技术标准而不是作为令牌化项目的技术标准。

** MCP的治理是以开源的,社区驱动的方式进行的。在将MCP作为公开标准发布后,人类表明了对协作发展的承诺。一个广泛的指导委员会和工作组成立了,以使协议的发展。值得注意的是,到2025年中,像微软和Github这样的主要利益相关者与人类同行加入了MCP指导委员会。这是在2025年Microsoft Build Build宣布的,表明行业参与者指导MCP的路线图和标准决策。委员会和维护者通过公开治理过程进行工作:通常会公开讨论更改或扩展MCP的建议(例如,通过GitHub问题和“ SEP” - 标准增强建议 - 指南 - 指南)。还有一个** MCP注册表工作组**(带有Block,Pulsemcp,Github和Anthropic公司等公司的维护者),例如多方治理。 2025年初,来自至少9个不同组织的贡献者合作建立了一个统一的MCP服务器注册表以进行发现,并证明了如何在社区成员之间分散发展,而不是由一个实体控制。

由于没有令牌,治理激励措施依靠利益相关者(AI公司,云提供商,区块链开发人员等)的共同利益来改善所有人的协议。这有点类似于W3C或IETF标准如何控制,但以更快的方式以GitHub为中心的过程。例如,Microsoft和Anthropic共同努力,为MCP(集成了Oauth和Single Sign-On之类的内容)设计了改进的授权规范,Github在官方MCP注册表服务上合作列出了可用的服务器。这些增强功能又为MCP规范做出了贡献。

值得注意的是,尽管MCP本身没有被象征化,但在MCP之上,关于经济激励措施和权力下放的前瞻性想法。 Web3中的一些研究人员和思想领导者预见了**“ MCP Networks” 的出现 - 基本上是MCP服务器的分散网络和使用类似区块链机制来发现,信任和奖励的代理。在这种情况下,人们可以想象一个令牌被用来奖励那些运行高质量MCP服务器的人(类似于矿工或节点运营商的激励方式)。智能合约或区块链可以促进声誉评级,可验证的计算和节点发现等功能,并具有令牌驾驶诚实的行为。这仍然是概念上的,但是MIT的NAMDA(稍后讨论)等项目正在尝试使用MCP的AI代理网络的基于令牌的激励机制。如果这些想法成熟,MCP可能会更直接地与链上的代酮组学相交,但是截至2025年核心MCP标准仍然是无令状的

总之,MCP的“治理模型”是开放技术标准的:由社区和专家指导委员会协作,没有链子治理令牌。决策以技术优点和广泛的共识为指导,而不是硬币加权投票。这将MCP与许多Web3协议区分开来 - 它旨在通过开放的软件和标准来实现Web3的理想(权力下放,互操作性,用户授权),不是通过专有区块链或代币。用一个分析的话说, *“ Web3的承诺最终可以通过区块链和加密货币来实现,而是通过自然语言和AI代理人实现” *,将MCP定位为该愿景的关键推动者。就是说,随着MCP网络的增长,我们可能会看到混合模型,基于区块链的治理或激励机制增加了生态系统,这是一个密切关注的空间。

5。社区和生态系统

MCP生态系统在短时间内爆炸性增长,涵盖了AI开发人员,开源贡献者,Web3工程师和主要科技公司。这是一项充满活力的社区努力,与主要的贡献者和合作伙伴关系**,包括:

  • **人类:**作为创建者,通过开源MCP规格和几个参考服务器(用于Google Drive,Slack,Github等),人类种子为生态系统播种。 Anthropic继续领导开发(例如,Theodora Chu之类的员工担任MCP产品经理,而Anthropic的团队为规格更新和社区支持做出了巨大贡献)。 Anthropic的开放性吸引了其他人在MCP上建立,而不是将其视为单一公司工具。

  • **早期采用者(Block,Apollo,Zed,Replit,Codeium,SourceGraph):发行后的头几个月,一波早期采用者在其产品中实施了MCP。 块(以前为正方形)集成的MCP探索金融科技中的AI代理系统 - Block的CTO称赞MCP是将AI连接到现实世界应用程序的开放式桥梁。 ** Apollo (可能是Apollo GraphQl)还集成了MCP,以允许AI访问内部数据。 ** ZED(代码编辑器) REPLAIT(Cloud IDE) CONEIM(AI Coding Assistans) sourceGraph(代码搜索)**每个人都在添加MCP支持。例如,SourceGraph使用MCP,因此AI编码助手可以从存储库中检索相关代码以回答问题,并且Repliting的IDE代理可以在特定于项目的环境中提取。这些早期采用者提供了MCP的信誉和知名度。

  • 大型技术认可 - Openai,Microsoft,Google:在一个显着的转弯处,否则竞争对手在MCP上保持一致的公司。 ** OpenAI的首席执行官Sam Altman在2025年3月公开宣布 Openai将在其产品中增加MCP支持(包括Chatgpt的桌面应用程序),说“人们喜欢MCP,我们很高兴能在我们的产品中增加支持”*。这意味着OpenAI的代理API和ChatGpt插件会说MCP,从而确保互操作性。几周后,** Google DeepMind的首席执行官Demis Hassabis 透露,Google即将推出的Gemini模型和工具将支持MCP,称其为“ AI Agesic ERA”的良好协议和开放标准。 ** Microsoft 不仅加入了指导委员会,而且与Anthropic合作,为MCP构建了官方的C#SDK,以服务于企业开发人员社区。 Microsoft的GitHub单元将MCP集成到 GitHub Copilot(vs Code的“ Copilot Labs/Agents”模式),使Copilot能够将MCP服务器用于存储库搜索和运行测试用例之类的内容。此外,Microsoft宣布Windows 11将公开某些OS功能(例如文件系统访问),因为MCP服务器可以安全地与操作系统进行交互。 Openai,Microsoft,Google和Anthropic(所有人都在MCP围绕MCP集会)之间的合作是非凡的,并强调了该标准的社区竞争精神。

  • ** Web3开发人员社区:许多区块链开发人员和初创公司都接受了MCP。创建了几个社区驱动的MCP服务器**,以服务区块链用例:

  • ** Alchemy (领先的区块链基础架构提供商)的团队构建了 Alchemy MCP服务器**,该服务器通过MCP提供按需区块链分析工具。这可能使AI通过使用自然语言的API获得区块链统计数据(例如历史交易,地址活动)。

    • 贡献者开发了一个比特币和闪电网络MCP服务器与比特币节点和闪电支付网络进行交互,使AI代理能够读取比特币块数据,甚至通过标准工具创建闪电发票。
    • Crypto Media and Education Group 无资金创建了一个** OnChain MCP服务器**专注于Web3财务互动,可能为AI助手提供了DEFI协议(发送交易,查询偏差职位等)的接口。
    • 诸如** rolup.codes (以太坊第2层的知识库)之类的项目制作了一个 MCP服务器,用于滚动生态系统信息**,因此AI可以通过查询该服务器来回答有关汇总的技术问题。
    • ** Chainstack **,一个区块链节点提供商,为文档,EVM链数据和Solana推出了一套MCP服务器(涵盖了前面),明确将其作为“将您的AI放在web3构建器上的区块链类固醇上”。

此外,以Web3为中心的社区在MCP周围涌现。例如,** pulsemcp 鹅**是社区倡议,称为帮助建立MCP注册表。我们还看到与AI代理框架的交叉授粉:Langchain社区集成的适配器,因此所有MCP服务器都可以用作Langchain-Power驱动代理中的工具,以及Hugging Face TGI(Text-Generation-generation-interference)的开源AI平台都在探索MCP兼容性。结果是一个丰富的生态系统,几乎每天都会宣布新的MCP服务器,从数据库到IoT设备的所有内容。

  • **采用量表:可以在一定程度上量化牵引力。到2025年2月(发布后仅三个月),社区已经建造了1,000多个MCP服务器/连接器。这个数字只有增长,表明整个行业的一体化。迈克·克里格(Mike Krieger)(拟人化的首席产品官)于2025年春季指出,MCP已成为“蓬勃发展的公开标准,具有成千上万的集成和成长” **。官方的MCP注册表(于2025年9月在预览中启动)正在对公开可用的服务器进行分类,从而更容易发现工具。注册表的开放API允许任何人搜索“以太坊”或“概念”并找到相关的MCP连接器。这降低了新进入者的障碍,并进一步燃烧增长。

  • **合作伙伴关系:**我们已经谈到了许多隐式合作伙伴关系(与Microsoft等人的拟人化)。重点介绍几个:

  • **人类与Slack **:通过Slack合作,通过MCP将Claude与Slack的数据集成在一起(Slack拥有官方MCP服务器,使AI能够检索Slack消息或发布警报)。

    • 云提供商:Amazon(AWS)和Google Cloud已与Anthropic合作以主持Claude,并且很可能在这些环境中支持MCP(例如,AWS Bedrock可能允许MCP连接器用于企业数据)。尽管没有明确的引用,但这些云伙伴关系对于企业采用至关重要。
    • 学术合作:MIT和IBM研究项目NAMDA(下一个讨论)代表了学术界与行业之间的合作伙伴关系,以在分散的环境中推动MCP的限制。
    • ** GitHub&vs Code **:增强开发人员体验的合作伙伴关系 - 例如,VS代码的团队积极地为MCP做出了贡献(注册表维护者之一来自VS代码团队)。
    • 许多初创企业:许多AI启动(代理启动,工作流动自动化启动)正在MCP上构建,而不是重新发明轮子。这包括新兴的Web3 AI初创公司希望提供“ AI为DAO”或自主经济代理商。

总体而言,** MCP社区的多样化和迅速扩展**。它包括核心科技公司(用于标准和基础工具),Web3专家(带来区块链知识和用例)以及独立的开发人员(他们通常为其喜欢的应用程序或协议贡献连接器)。这种精神是协作的。例如,对第三方MCP服务器的安全问题促使社区讨论和最佳实践的贡献(例如,为MCP服务器开展安全工具的Stacklok贡献者)。社区快速迭代的能力(MCP在几个月内看到了几次规范升级,添加流媒体响应和更好的auth等功能)证明了广泛的参与度。

特别是在Web3生态系统中,MCP培养了**“ AI + Web3” 项目的迷你生态系统。这不仅是使用协议;它催化了新想法,例如AI驱动的Daos,AI分析的链链治理以及跨域自动化(例如将链上事件与AI通过AI联系起来)。 Limechain的Zhivko Todorov 的存在 - 例如 Zhivko Todorov 表示“ MCP表示AI和区块链的不可避免的整合” - 表明,区块链退伍军人正在积极倡导它。 AI和区块链公司之间的合作伙伴关系(例如人类和区块之间的合作伙伴,或微软的Azure Cloud,使MCP易于与区块链服务一起部署)暗示了 AI代理和智能合约手工工作**的未来。

可以说,MCP点燃了AI开发人员社区与Web3开发人员社区的第一个真正的融合。现在,黑客马拉松和聚会以MCP曲目为特色。 As a concrete measure of ecosystem adoption: by mid-2025, OpenAI, Google, and Anthropic – collectively representing the majority of advanced AI models – all support MCP, and on the other side, leading blockchain infrastructure providers (Alchemy, Chainstack), crypto companies (Block, etc.), and decentralized projects are building MCP hooks.这个双面网络效果非常好,可以使MCP成为持久的标准。

6。路线图和发展里程碑

MCP的开发节奏很快。在这里,我们概述了迄今为止的主要里程碑,而前方的路线图从官方来源和社区更新中收集到:

  • ** 2024年末 - 初始版本:** ** 2024年11月25日**,拟人化正式宣布了MCP并开源了规格和初始SDK。除了规格外,他们发布了一些用于通用工具的MCP服务器实现(Google Drive,Slack,Github等),并在Claude AI Assistant(Claude Desktop App)中增加了支持,以连接到本地MCP服务器。这标志着MCP的1.0发布。拟人化的早期概念验证集成展示了Claude如何使用MCP读取文件或以自然语言查询SQL数据库,从而验证了概念。
  • ** Q1 2025 - 快速采用和迭代:在2025年的前几个月,MCP看到了广泛的行业采用**。 ** 2025年3月**,OpenAI和其他AI提供者宣布了支持(如上所述)。此期间还看到了** Spec Evolution :拟人更新的MCP,包括流式功能**(允许大量结果或连续数据流逐步发送)。该更新于2025年4月注明了C#SDK新闻,表明MCP现在支持诸如张大响应或实时供稿集成之类的功能。社区还以各种语言(Python,JavaScript等)建立了参考实现,超越了人类的SDK,从而确保了多声支持。
  • ** Q2 2025 - 生态系统工具和治理: 2025年5月**,Microsoft和Github加入了努力,促使正式的治理和增强安全性。在2025年的Build 2025上,Microsoft揭幕了** Windows 11 MCP Integration 的计划,并详细介绍了MCP 中的授权流的合作。大约在同一时间,将 MCP注册表**的想法引入了可用的索引服务器(根据注册表博客,最初的头脑风暴始于2025年3月)。 **“标准曲目” **过程(SEP - 标准增强提案)是在GitHub上建立的,类似于以太坊的EIPS或Python的Peps,以有序地管理贡献。社区电话和工作组(用于安全,注册表,SDK)开始召集。
  • ** 2025年中 - 功能扩展:**到2025年中,路线图优先考虑了几个关键改进:
  • **异步和长期运行的任务支持:**计划允许MCP处理长期操作而不会阻止连接。例如,如果AI触发需要几分钟的云作业,则MCP协议将支持异步响应或重新连接以获取结果。
  • 身份验证和细粒度的安全性:开发精细授权敏感动作的机制。这可能包括将OAuth流,API密钥和Enterprise SSO集成到MCP服务器中,以便可以安全地管理AI访问。鉴于允许AI调用强大的工具的安全风险,到2025年中期,MCP安全性的指南和最佳实践正在进行中。目的是,例如,如果AI是通过MCP访问用户的私有数据库,则应遵循安全的授权流(通过用户同意),而不仅仅是一个开放式终点。
  • 验证和合规性测试:认识到对可靠性的需求,社区优先建筑物合规性测试套件参考实施。通过确保所有MCP客户端/服务器遵守规格(通过自动测试),它们旨在防止分裂。参考服务器(可能是具有远程部署和AUTH的最佳实践的示例),也在路线图上,以及一个参考客户端应用程序,展示了使用AI的完整MCP使用情况。
    • 多模态支持:将MCP扩展到文本之外,以支持图像,音频,视频数据等模式。例如,AI可能会从MCP服务器(例如设计资产或图表)请求图像或输出图像。规格讨论包括添加对 *流和块的消息 *的支持 *以交互方式处理大型多媒体内容。关于“ MCP流”的早期工作已经在进行中(以支持实时音频供稿或持续传感器数据诸如AI的情况)。
    • 中央注册表与发现:实施中央 MCP注册表的计划在2025年中期执行了服务器发现服务。 ** 2025年9月,官方的MCP注册表在预览中启动。该注册表为公开可用的MCP服务器提供了一个的真理,允许客户端通过名称,类别或功能找到服务器。从本质上讲,它就像是AP商店(但开放)的AI工具。该设计允许公共注册表(全球索引)和私人索引(特定于企业索引),所有这些都可以通过共享API互操作。注册表还引入了一种审核机制,以通过社区审核模型来旗帜或恶意服务器,以保持质量。
  • ** 2025年末及以后 - 走向分散的MCP网络:虽然还没有“官方”路线图项目,但该轨迹指向更多权力下放和Web3 Synergy **:
  • 研究人员正在积极探索如何向MCP添加分散的发现,声誉和激励层。 ** MCP网络**(或“ MCP端点市场”)的概念正在孵化。这可能涉及基于智能合约的注册表(因此,没有单个服务器列表的失败点),服务器/客户端具有链子身份的声誉系统,并且具有良好行为的链接,并且可能可以为运行可靠的MCP节点的奖励**。
    • ** MIT的NAMDA **项目始于2024年,是朝这个方向朝着这个方向迈出的具体步骤。到2025年,NAMDA已在MCP的基础上构建了一个原型分布式代理框架,包括动态节点发现,跨代理簇的负载平衡以及使用区块链技术分散注册表等功能。他们甚至具有基于实验令牌的激励措施和用于多代理协作的出处跟踪。 NAMDA的里程碑表明,拥有许多具有无信任协调的机器的MCP代理网络是可行的。如果采用了NAMDA的概念,我们可能会看到MCP演变为结合其中一些想法(可能是通过可选扩展或顶部分层的单独协议)。
    • 企业硬化:在企业方面,到2025年底,我们希望MCP集成到主要的企业软件产品中(Microsoft在Windows和Azure中包含在Windows和Azure中)。该路线图包括企业友好的功能,例如 SSO集成和强大的访问控件。 MCP注册表和工具包的一般可用性可能在2025年底之前大规模部署MCP(例如,在公司网络中)。

到目前为止,回顾一些密钥的发展里程碑(清晰的时间表格式):

  • ** 2024年11月:** MCP 1.0发布(拟人化)。
  • ** 2024年12月 - 2025年1月:**社区建立了第一波MCP服务器; Anthropic通过MCP支持释放Claude桌面;小规模的飞行员bake,阿波罗等。
  • ** 2025年2月:** 1000+社区MCP连接器已达到;人类主办研讨会(例如,在AI峰会上,驾驶教育)。
  • ** 2025年3月:** OpenAI宣布支持(ChatGpt Agents SDK)。
  • ** 2025年4月:** Google DeepMind宣布支持(双子座将支持MCP); Microsoft发布C#SDK的预览。
  • ** 2025年5月:**指导委员会扩展(Microsoft/github);构建2025演示(Windows MCP集成)。
  • ** 2025年6月:** Chainstack启动Web3 MCP服务器(EVM/SOLANA)供公众使用。
  • ** 2025年7月:** MCP Spec版本更新(流,身份验证改进);官方路线图在MCP网站上发布。
  • ** 2025年9月:** MCP注册表(预览)启动; MCP可能会在更多产品(Claude的工作等)中达到一般可用性。
  • ** 2025年末(预计):**注册表v1.0 live;安全最佳实践指南发布;可能具有分散发现的初始实验(NAMDA结果)。

视觉前进是,MCP变得像HTTP或JSON一样无处不在,这是许多应用程序在引擎盖下使用的常见层。对于Web3,路线图提出了更深的融合:在其中AI代理不仅会使用Web3(区块链)作为信息的来源或水槽,而且Web3基础架构本身可能会开始将AI代理(通过MCP)作为操作的一部分(例如,DAO可能会运行MCP Compatiabil AI来管理某些任务,或者可能会通过MCP出版MCP来管理某些任务。路线图的重点是诸如可验证性和身份验证之类的事物暗示,这些内容沿线信任最小的MCP交互可能是现实 - 想象AI输出带有加密证明的AI输出,或者是AI呼叫审核目的的AI工具的链上日志。这些可能性模糊了AI和区块链网络之间的界线,而MCP是该融合的核心。

总之,MCP的发展是高度动态的。它达到了重大的早期里程碑(在发布后的一年内广泛采用和标准化),并以明确的路线图强调安全性,可扩展性和发现,继续迅速发展。实现和计划的里程碑确保MCP在扩展时将保持强大:应对长期运行的任务,安全许可以及数千个工具的绝对可发现性。这种向前的动量表明,MCP不是静态的规格,而是一个不断增长的标准,可能会纳入更多的Web3味功能(服务器的分散治理,激励对齐),因为这些功能会出现。社区有望将MCP适应新的用例(多模式AI,IoT等),同时关注核心承诺:在Web3时代,使AI 更加连接,上下文感知和用户授权 **。

7。与类似的Web3项目或协议进行比较

MCP独特的人工智能和连接性的融合意味着并不多直接苹果到苹果对等效物,但是将其与Web3和AI交集的其他项目进行比较,或者具有类似的目标是有启发性的:

  • ** SingularityNet(AGI/X)** - 分散的AI市场:SingularityNet,由Ben Goertzel博士和其他人于2017年推出,是基于区块链的AI服务市场。它允许开发人员将AI算法获利为服务和用户消费这些服务,这些服务都是由用于付款和治理的代币(AGIX)促进的。从本质上讲,SingularityNet试图通过在网络上托管AI模型供应,任何人都可以致电AI服务以换取令牌。从根本上讲,这与MCP有所不同。 MCP不会托管或货币化AI模型;取而代之的是,它为AI(无论在何处运行)提供了一个标准接口,以访问数据/工具。可以想象使用MCP将AI连接到SingularityNet上列出的服务,但是SingularityNet本身专注于经济层(谁提供了AI服务以及如何获得付款)。另一个关键区别是:治理 - SingularityNet具有链政府(通过 SingularityNet增强建议(SNEP)和Agix代币投票)可以发展其平台。相比之下,MCP的治理是没有令牌的链和协作的。总而言之,SingularityNet和MCP都为更开放的AI生态系统而努力,但是SingularityNet大约是AI算法标记网络,而MCP则涉及AI-Tool互操作性协议标准。他们可以补充:例如,SingularityNet上的AI可以使用MCP获取所需的外部数据。但是SingularityNet并没有试图标准化工具使用;它使用区块链协调AI服务,而MCP使用软件标准使AI与任何服务一起使用。
  • ** fetch.ai(FET)** - 基于代理的分散平台:fetch.ai是另一个将AI和区块链混合的项目。它启动了自己的风险验证区块链和框架,用于构建自主代理,以执行任务并在分散网络上进行交互。在Fetch的愿景中,数以百万计的“软件代理”(代表人员,设备或组织)可以使用FET令牌进行交易进行谈判和交换价值。 Fetch.ai提供了代理框架(UAGENT)和基础架构,用于其分类帐中的代理之间的发现和通信。例如,获取代理商可能通过与其他代理进行停车和运输,或自动管理供应链工作流来帮助优化城市中的流量。这与MCP相比如何?两者都涉及代理商的概念,但是Fetch.ai的代理商与其区块链和代币经济密切相关 - 他们生活在Fetch Network 上并使用链逻辑。 MCP代理(AI主机)是模型驱动的(如LLM),而不是与任何单个网络绑定的; MCP满足于通过Internet或在云设置中运行,而无需区块链。 Fetch.ai试图从头开始建立一个新的分散的AI经济经济体(具有自身的信任和交易的分类帐),而MCP则是 layer-agnoffient ** - 它在现有网络上(可以在HTTPS上使用,甚至可以在blockchain的顶部使用),以启用AI II互动)。有人可能会说,提取更多是关于自治经济代理和MCP关于智能工具的代理。有趣的是,这些可能会相交:fetch.ai上的自治代理可能会使用MCP与链脱链资源或其他区块链进行交互。相反,可以使用MCP来构建利用不同区块链(不仅仅是一个)的多代理系统。在实践中,MCP的采用速度更快,因为它不需要自己的网络 - 它可以与以太坊,Solana,Web2 API等一起使用。 Fetch.ai的方法更重量级,创建了一个参与者必须加入(并获取代币)的整个生态系统。总而言之, fetch.ai vs mcp **:fetch是一个平台,具有自己的令牌/区块链,适用于AI代理,重点是代理之间的互操作性和经济交流,而MCP则是协议(在任何环境中)可以用来插入工具和数据。他们的目标重叠在启用AI驱动的自动化方面,但它们可以解决堆栈的不同层,并且具有非常不同的建筑哲学(封闭的生态系统与开放标准)。
  • 连锁链接和分散的Oracles ** - *将区块链连接到链链数据:*链链接不是AI项目,而是与web3协议相关的互补问题:如何将块链连接到外部数据和计算。 ChainLink是一个分散的节点(ORACLES)网络,以信任最小的方式获取,验证和传递链链数据。例如,Chainlink Oracles通过链链接功能代表智能合约为DEFI协议提供价格提要或调用外部API。相比之下,MCP将 AI模型连接到外部数据/工具(其中一些可能是区块链)。可以说连锁链接将数据带入区块链,而MCP将数据带入了AI 。有一个概念上的相似之处:两者都在原本孤立的系统之间建立桥梁。 ChainLink专注于提供链上数据的数据的可靠性,权力下放和安全性(解决单点故障的“甲骨文问题”)。 MCP专注于AI如何访问数据的灵活性和标准化(解决AI代理的“集成问题”)。他们在不同的域(智能合约与AI助手)运行,但可能会将MCP服务器与Oracles进行比较:价格数据的MCP服务器可能将同一API称为链条节点。区别在于消费者** - 在MCP的情况下,消费者是AI或面向用户的助手,而不是确定性的智能合约。同样,MCP并不能固有地提供链链接确实可以保证的信任(MCP服务器可以集中或社区运行,并且在应用程序级别管理信任)。但是,如前所述,分散MCP网络的想法可以从Oracle网络中借入 - 例如,可以查询多个MCP服务器并进行了交叉检查结果,以确保AI不会提供不良数据,类似于多个链接链接节点的汇总方式。简而言之,**链链接与MCP **:链链接为Web3中间件,用于消耗外部数据,MCP是AI中间件,用于模型消耗外部数据(其中可能包括区块链数据)。它们解决了不同领域的类似需求,甚至可以补充:使用MCP的AI可能会作为可靠的资源获取链条提供的数据供稿,相反,AI可以作为分析的来源,链条Oracle会带来链链(尽管后一种情况会引起验证性问题)。
  • ** ChatGpt插件 / OpenAI功能与MCP ** - *AI工具集成方法:*虽然不是Web3项目,但需要快速比较,因为Chatgpt插件和OpenAI的功能调用功能还将AI连接到外部工具。 ChatGpt插件使用服务提供的OpenAPI规范,然后该模型可以按照规格调用这些API。局限性是它是一个封闭的生态系统(在OpenAI的服务器上运行的OpenAI批准的插件),每个插件都是孤立的集成。 Openai的较新 “代理” * SDK在概念上更接近MCP,让开发人员定义了AI可以使用的工具/功能,但最初它特定于OpenAI的生态系统。 ** langchain 类似地提供了为LLMS工具提供代码的框架。 MCP通过为此提供开放的,模型的不可能标准**而有所不同。正如一个分析所说,Langchain为工具创建了一个面向开发人员的标准(Python接口),而MCP创建了 针对模型的标准 * - AI代理可以在没有自定义代码的情况下在运行时发现并使用任何MCP定义的工具。实际上,MCP的服务器生态系统比Chatgpt插件在几个月内增长更大,更多样化。与其具有自己的插件格式的每个模型(Openai具有不同的插件),而是在MCP周围合并。 OpenAI本身表示对MCP的支持,从本质上将其功能方法与更广泛的标准保持一致。因此,将 OpenAI插件与MCP **进行比较:插件是一种策划的集中式方法,而MCP是一种分散的社区驱动方法。在Web3心态中,MCP更“开源和无许可”,而专有插件生态系统更加封闭。即使不是区块链,这也使MCP类似于Web3的精神 - 它可以启用互操作性和用户控制(您可以为数据运行自己的MCP服务器,而不是将其全部提供给一个AI提供商)。这种比较表明了为什么许多人认为MCP具有更长期的潜力:它没有锁定到一个供应商或一个模型。
  • 项目NAMDA和分散代理框架: NAMDA值得一个单独的注释,因为它将MCP与Web3概念明确结合在一起。如前所述,NAMDA(网络代理模块化分布式体系结构)是MIT/IBM计划于2024年启动,以使用MCP作为通信层建立一个可扩展的,AI代理的分布式网络。它将MCP视为消息传递主链(因为MCP使用标准的JSON-RPC样消息,非常适合与代理间通信),然后使用区块链启发的技术添加了用于动态发现,容错和可验证的识别的图层。 NAMDA的代理可以在任何地方(云,边缘设备等),但是分散的注册表(有点像DHT或区块链)可以以防篡改的方式跟踪它们及其功能。他们甚至探索给代理商代币激励合作或资源共享。从本质上讲,NAMDA是一个“ MCP的Web3版本” 可能的实验。这还不是一个广泛部署的项目,而是精神上最接近的“类似协议”之一。如果我们查看NAMDA vs MCP:NAMDA使用MCP(因此不是竞争标准),而是通过以信任最小的方式进行联网和协调多个代理的协议扩展它。可以将NAMDA与加密社区所看到的 Autonolas或多代理系统(MAS)等框架进行比较,但是这些框架通常缺乏强大的AI组件或共同的协议。 NAMDA + MCP一起展示了分散的代理网络如何运作,区块链提供身份,声誉以及可能的代币激励措施**,以及MCP提供代理通信和工具使用

总而言之,** MCP与大多数先前的Web3项目分开。诸如SingularityNet和Fetch.ai之类的项目旨在使用区块链 *分散AI计算或服务 *; MCP改为 *标准化与服务 *的AI集成 *,可以通过避免平台锁定来增强权力下放化。甲骨文网络(例如Chainlink)将数据传递求解到区块链; MCP将数据传递解决到AI(包括区块链数据)。如果Web3的核心理想是权力下放,互操作性和用户授权,则MCP正在攻击AI领域中的互操作性作品。它甚至影响了这些较旧的项目 - 例如,没有什么可以阻止SingularityNet通过MCP服务器提供其AI服务,或者使用MCP从使用MCP来与外部系统进行交谈。我们很可能会看到一种融合, *令牌驱动的AI网络将MCP用作其通用语言 *,将Web3的激励结构与MCP的灵活性结合在一起。

最后,如果我们考虑市场知觉:MCP通常被吹捧为AI,Web3希望为Internet做什么,请打破孤岛并授权用户。这已导致一些非正式地昵称MCP为“ AI的Web3”(即使不涉及区块链)。但是,重要的是要认识到MCP是协议标准,而大多数Web3项目是具有经济层次的全栈平台。相比之下,MCP通常是一种更轻巧,通用的解决方案,而区块链项目更重,专门的解决方案。根据用例,它们可以补充而不是严格竞争。随着生态系统的成熟,我们可能会将MCP视为一个模块(就像HTTP或JSON无处不在),而不是作为竞争对手项目。

8。公众的看法,市场牵引力和媒体报道

在AI和Web3社区中,对MCP的公众情绪一直是非常积极的,这些社区通常与热情接壤。许多人将其视为“改变游戏规则的**”,它悄悄地到达,但随后席卷了该行业。让我们分解感知,牵引力和著名的媒体叙事:

**市场牵引力和采用指标:**到2025年中,MCP在新协议中实现了很少的采用水平。如前所述。仅此一项就向市场发出了信号,即MCP可能会留在这里(类似于在互联网早期互联网时代的宽大支持TCP/IP或HTTP的广泛支持)。在Web3端, *牵引力在开发人员行为中很明显 *:黑客马拉松开始以MCP项目为特色,许多区块链开发工具现在将MCP集成作为卖点。经常引用“几个月内1000多个连接器”和迈克·克里格(Mike Krieger)的“成千上万个集成”报价的统计数据,以说明MCP捕获的速度。这表明网络效果强大 - MCP可用的工具越多,它越有用,促使采用更多(积极的反馈循环)。风投和分析师指出,MCP在一年以下实现了一年以下的“ AI互操作性”尝试在几年以来未能做到的事情,这在很大程度上是由于时间安排(在AI代理商中占据了兴趣浪潮)和开源。在Web3媒体中,有时会根据开发人员的思维方式和集成到项目中来衡量牵引力,而MCP现在在两个方面都得分很高。

**在AI和Web3社区中的公众看法:最初,MCP在第一次宣布时(2024年底)在雷达下飞行。但是到2025年初,随着成功故事的出现,感知转变为兴奋。 AI从业人员将MCP视为“缺少拼图”,以使AI代理在玩具示例之外真正有用。另一方面,Web3构建器将其视为最终将AI纳入DAPP的桥梁,而不会丢弃权力下放 - 例如,AI可以使用链上的数据而无需集中的Oracle。 思想领导者一直在赞美:例如,耶稣·罗德里格斯(Jesus Rodriguez)(著名的Web3 AI作家)在Coindesk中写道,MCP可能是“ AI时代最具变革性的协议之一,并且非常适合Web3架构”。 Rares Crisan在一个著名的资本博客中认为,MCP可以通过使互联网更加以用户为中心和自然互动来实现Web3的承诺。这些叙述将MCP视为革命性而实用的,而不仅仅是炒作。

公平地说,并非所有评论都是不可判的。像Reddit这样的论坛上的一些AI开发人员指出,MCP“不做所有事情” - 这是一种通信协议,而不是开箱即用的代理商或推理引擎。例如,一个标题为“ MCP是死胡同”的Reddit讨论认为,MCP本身并不能管理代理认知或保证质量。它仍然需要良好的代理设计和安全控制。这种观点表明,MCP可以被淘汰为银弹。但是,这些批评更多地是关于回火的期望,而不是拒绝MCP的实用性。他们强调MCP解决了工具连接性,但仍必须建立强大的代理逻辑(即MCP不会神奇地创建智能代理,它可以用工具为工具)。 **共识是,即使在谨慎的声音中,MCP也是向前迈出的一大步。 Hugging Face的社区博客指出,尽管MCP并不是一个解决方案,但它是集成,上下文意识到的AI的主要推动者,因此开发人员因此而围绕它进行集会。

媒体报道: MCP在主流技术媒体和利基区块链媒体上都获得了明显的报道:

  • ** TechCrunch **经营多个故事。他们介绍了2024年推出的最初概念(“拟人化提出了一种将数据连接到AI聊天机器人连接到AI聊天机器人的新方法”。2025年,TechCrunch强调了每个大收养时刻:OpenAI的支持,Google的Embrace,Microsoft/Github的参与。这些文章通常强调MCP围绕MCP的行业团结。例如,TechCrunch引用了Sam Altman的认可,并指出了从竞争对手标准到MCP的迅速转变。这样一来,他们将MCP描绘成新兴的标准,类似于没有人希望在90年代被排除在Internet协议之外。在一个著名的出口中,这种报道向更广泛的科技界发出了信号,即MCP是重要和真实的,而不仅仅是一个边缘开放源项目。
  • ** Coindesk 和其他加密出版物锁定在 Web3 Angle **上。罗德里格斯(Rodriguez)(2025年7月)的意见文章经常被引用;它绘制了一张未来派的图片,每个区块链都可以是MCP服务器,而新的MCP网络可能会在区块链上运行。它将MCP连接到分散的身份,身份验证和可验证性等概念 - 讲区块链受众的语言,并建议MCP可能是真正将AI与分散框架融合在一起的协议。 CoIntelegraph,Bankless和其他人还在“ AI代理和defi”和类似主题的背景下讨论了MCP,通常对可能性进行了乐观的态度(例如,Bankless有一篇关于使用MCP让AI管理链链交易的文章,并为自己的MCP服务器提供了一种方法)。
  • **著名的VC博客 /分析师报告:**著名的资本博客文章(2025年7月)是Venture Analysis绘制MCP和Web协议演变之间相似之处的示例。它本质上认为MCP可以为Web3做HTTP对Web1所做的事情 - 提供了一个新的接口层(自然语言接口),该界面层(自然语言接口)无法替代基础基础架构,但可实现。这种叙述令人信服,并在面板和播客中得到了回应。它可以将MCP定位为不像区块链竞争,而是与最终允许普通用户(通过AI)轻松利用区块链和Web服务的下一个抽象。
  • **开发人员社区的嗡嗡声:**在正式文章之外,MCP的崛起可以通过其在开发人员话语中的存在来衡量 - 会议演讲,YouTube频道,新闻通讯。例如,诸如“ MCP:Agentic AI的丢失链接”之类的流行博客文章?在Runtime.news和新闻通讯(例如AI研究人员Nathan Lambert)等网站上,讨论了与MCP的实践实验及其与其他工具使用框架的比较。总体语气是好奇心和兴奋:开发人员分享了将AI连接到他们的家庭自动化或加密钱包的演示,只使用MCP服务器几行,这是不久前的科幻服务。这种基层兴奋很重要,因为它表明MCP超越了公司认可。
  • **企业的观点:**专注于企业AI的媒体和分析师也将MCP视为关键开发。例如, *新的堆栈 *介绍了人类为Claude中的远程MCP服务器的添加支持以供企业使用。这里的角度是,企业可以使用MCP将其内部知识库和系统安全地连接到AI。这对Web3也很重要,因为许多区块链公司都是企业本身,并且可以在内部利用MCP(例如,加密交易所可以使用MCP让AI分析内部交易日志以进行欺诈检测)。

**引人注目的引文和反应:**一些值得一提的是封装公众的看法:

  • *“就像HTTP彻底改变了Web通信一样,MCP提供了一个通用的框架...用单个协议代替了零散的集成。” * - Coindesk。与HTTP的比较非常强大。它将MCP框架为基础架构级创新。
  • *“ MCP已成为一个蓬勃发展的开放标准,具有成千上万的集成和增长。在连接您已经拥有的数据时,LLM最有用...” * - Mike Krieger(人类)。这是对牵引力和核心价值主张的官方确认,在社交媒体上已广泛分享。
  • *“ Web3的承诺...最终可以通过自然语言和AI代理来实现。....MCP是我们在群众面前看到的最接近的Web3。” * - 值得注意的资本。这个大胆的声明引起了人们对加密型UX缓慢改善感到沮丧的人的共鸣。它表明AI可能会通过抽象复杂性来破解主流采用的代码。

**挑战和怀疑:**热情很高,媒体也讨论了挑战:

  • **安全问题:**诸如新堆栈或安全博客之类的插座提出,如果不打磨,允许AI执行工具可能是危险的。如果恶意的MCP服务器试图获得AI执行有害动作怎么办? Limechain博客明确警告了 *具有社区开发的MCP服务器的“重大安全风险” *(例如,处理私钥的服务器必须非常安全)。讨论中已经回应了这些问题:从本质上讲,MCP扩大了AI的能力,但权力带来了风险。社区的反应(指南,身份机制)也得到了涵盖,通常会确保正在建立缓解。尽管如此,任何对MCP的高调滥用(例如,AI引发了意外的加密转移)都会影响感知,因此媒体在这方面受到注意。
  • **绩效和成本:**一些分析师指出,与直接调用API相比,使用使用工具的AI代理可能会慢或更昂贵(因为AI可能需要多个来回步骤来获得所需的东西)。在高频交易或链上执行环境中,该潜伏期可能会出现问题。目前,这些被视为优化的技术障碍(通过更好的代理设计或流媒体),而不是破坏交易。
  • **炒作管理:**与任何趋势技术一样,都有一些炒作。一些声音警告不要将MCP宣布为所有问题。例如,拥抱的脸部文章问“ MCP是银弹吗?”答案否 - 开发人员仍然需要处理上下文管理,而MCP则可以与良好的提示和内存策略结合使用。这种平衡的意义在话语中是健康的。

**整体媒体情绪:**出现的叙述在很大程度上充满希望和前瞻性:

-MCP被视为一种实用工具,现在可以提供真正的改进(因此不是蒸气软件),该工具通过引用工作示例来强调:Claude Reading Files,使用MCP在VSCODE中使用MCP,AI在演示中完成SOLANA交易的AI等。

  • 它也被描绘成AI和Web3的未来的战略关键。媒体经常得出结论,MCP或类似的事物对于“分散的AI”或“ Web4”或一个用于下一代Web的任何术语至关重要。有一种感觉,MCP打开了一扇门,现在的创新正在流动 - 无论是NAMDA的分散代理商还是将传统系统与AI连接到AI的企业,许多未来的故事情节都追溯到MCP的介绍。

在市场上,可以通过在MCP生态系统周围形成初创企业和资金来评估牵引力。确实,有传言/报告有创业公司专注于“ MCP市场”或托管MCP平台获得资金(关于其著名的资本写作表明VC兴趣)。我们可以期望媒体开始切向覆盖这些内容 - 例如,“启动X使用MCP让您的AI管理您的加密产品组合 - 筹集了Y百万美元”。

**感知的结论:**到2025年下半年,MCP享有突破性促进技术的声誉。它在人工智能和加密货币中都具有有影响力的人物的强烈倡导。公共叙述已经从 *“这是一个整洁的工具” *变成 * *“这可能是下一个网络的基础” *。同时,实际覆盖范围证实了它正在工作和被采用,并借用了信誉。只要社区继续应对挑战(安全性,规模安全)并且没有发生重大灾难,MCP的公开形象可能会保持积极的态度,甚至成为标志性的,因为“使AI和Web3共同发挥作用的协议”。

媒体可能会密切关注:

  • 成功案例(例如,如果主要道路通过MCP实现AI司库,或者政府使用MCP用于开放数据AI系统)。
  • 任何安全事件(评估风险)。
  • MCP网络的发展以及任何令牌或区块链组件是否正式进入图片(这将是桥接AI和加密货币的大新闻)。

但是,到目前为止,可以通过Coindesk的一行来概括覆盖范围: *“ Web3和MCP的组合可能只是分散的AI的新基础。”

参考:

  • 拟人新闻: *“介绍模型上下文协议”, * 2024年11月 -Limechain博客: *“什么是MCP,它如何适用于区块链?” * 2025年5月
  • 链堆博客: *“ Web3构建器的MCP:Solana,EVM和文档”, * 2025年6月 -Coindesk Op-Ed: *“代理协议:Web3的MCP潜力”, * 7月2025年
  • 著名的资本: *“为什么MCP代表真正的Web3机会”, * 7月2025年 -TechCrunch: *“ Openai采用人类标准……”, * 2025年3月26日 -TechCrunch: *“ Google要接受人类的标准……”, * 2025年4月9日 -TechCrunch: *“ Github,Microsoft Ably…(MCP指导委员会)”, * 2025年5月19日
  • Microsoft Dev博客: *“ MCP的官方C#SDK”, * 2025年4月
  • 拥抱脸博客: *“#14:什么是MCP,为什么每个人都在谈论它?” * 2025年3月
  • 弥赛亚研究: *“ fetch.ai个人资料,” * 2023
  • 中(NU BINDIMES): *“揭开singularitynet”, * 2024年3月

通过 MCP 连接 AI 与 Web3:全景分析

· 阅读需 19 分钟
Dora Noda
Software Engineer

引言

AI 与 Web3 正在以强大的方式融合,AI 通用接口如今被设想为去中心化网络的连接组织。在这种融合中出现的一个关键概念是 MCP,它可以是“模型上下文协议”(Model Context Protocol,由 Anthropic 提出),或在更广泛的讨论中被粗略地描述为元宇宙连接协议(Metaverse Connection Protocol)。本质上,MCP 是一个标准化的框架,让 AI 系统能够以自然、安全的方式与外部工具和网络进行交互——这有可能将 AI 代理“接入”到 Web3 生态系统的每一个角落。本报告将全面分析 AI 通用接口(如大型语言模型代理和神经符号系统)如何通过 MCP 连接 Web3 世界中的一切,涵盖其历史背景、技术架构、行业格局、风险及未来潜力。

1. 发展背景

1.1 Web3 的演变与未竟的承诺

“Web3”一词于 2014 年左右被创造出来,用以描述一个由区块链驱动的去中心化网络。其愿景雄心勃勃:一个以用户所有权为中心的无许可互联网。爱好者们曾想象用基于区块链的替代方案取代 Web2 的中心化基础设施——例如,用以太坊域名服务(ENS)替代 DNS,用 Filecoin 或 IPFS 替代存储,用 DeFi 替代金融轨道。理论上,这将从大型科技平台手中夺回控制权,并赋予个人对数据、身份和资产的自我主权。

但现实未能如愿。尽管经过多年的发展和炒作,Web3 的主流影响力仍然微乎其微。普通互联网用户并未涌向去中心化的社交媒体,也没有开始管理自己的私钥。主要原因包括用户体验差、交易缓慢且昂贵、备受瞩目的骗局以及监管不确定性。这个去中心化的“所有权网络”在很大程度上**“未能实现”**,仅限于一个小众社区。到 2020 年代中期,即使是加密货币的支持者也承认,Web3 并未为普通用户带来范式转变。

与此同时,AI 正在经历一场革命。随着资本和开发者人才从加密领域转向 AI,深度学习和基础模型(GPT-3、GPT-4 等)的变革性进展吸引了公众的想象力。生成式 AI 展示了清晰的实用性——生成内容、代码和决策——这是加密应用一直难以做到的。事实上,大型语言模型在短短几年内的影响力,远远超过了区块链十年的用户采用速度。这种对比让一些人调侃道,“Web3 浪费在了加密货币上”,而真正的 Web 3.0 正在从 AI 浪潮中崛起。

1.2 AI 通用接口的兴起

几十年来,用户界面从静态网页(Web1.0)演变为交互式应用(Web2.0)——但始终局限于点击按钮和填写表单。随着现代 AI,尤其是大型语言模型(LLM)的出现,一种新的界面范式已经到来:自然语言。用户只需用通俗的语言表达意图,AI 系统就能跨多个领域执行复杂的操作。这一转变是如此深刻,以至于一些人建议将“Web 3.0”重新定义为 AI 驱动代理的时代(“代理网络”,The Agentic Web),而不是早期以区块链为中心的定义。

然而,早期对自主 AI 代理的实验暴露了一个关键瓶颈。这些代理——例如像 AutoGPT 这样的原型——可以生成文本或代码,但它们缺乏一种稳健的方式来与外部系统和彼此进行通信。当时*“没有通用的 AI 原生语言”*来实现互操作性。每一次与工具或数据源的集成都是一次定制化的修补,而 AI 之间的交互也没有标准协议。实际上,一个 AI 代理可能拥有强大的推理能力,但在执行需要使用 Web 应用或链上服务的任务时却会失败,仅仅因为它不知道如何与这些系统“对话”。这种强大的大脑与原始的输入/输出(I/O)之间的不匹配,就好比一个超级智能的软件被困在一个笨拙的图形用户界面(GUI)之后。

1.3 融合与 MCP 的出现

到 2024 年,情况变得明朗:要让 AI 发挥其全部潜力(并让 Web3 实现其承诺),需要一次融合:AI 代理需要无缝访问 Web3 的能力(去中心化应用、合约、数据),而 Web3 需要更多的智能和可用性,这正是 AI 可以提供的。MCP(模型上下文协议)正是在这样的背景下诞生的。MCP 由 Anthropic 在 2024 年末推出,是一个开放的 AI-工具通信标准,对 LLM 来说感觉很自然。它为 AI“宿主”(如 ChatGPT、Claude 等)提供了一种结构化、可发现的方式,通过 MCP 服务器来查找和使用各种外部工具和资源。换句话说,MCP 是一个通用的接口层,使 AI 代理能够接入 Web 服务、API 甚至区块链功能,而无需为每次集成编写定制代码。

可以把 MCP 想象成**“AI 接口的 USB-C”。就像 USB-C 标准化了设备的连接方式(这样你就不需要为每个设备准备不同的线缆),MCP 标准化了 AI 代理与工具和数据的连接方式。开发者无需为每个服务(Slack、Gmail、以太坊节点等)硬编码不同的 API 调用,只需实现一次 MCP 规范,任何兼容 MCP 的 AI 都能理解如何使用该服务。主要的 AI 参与者很快看到了其重要性:Anthropic 开源了 MCP,像 OpenAI 和 Google 这样的公司正在其模型中构建对它的支持。这一势头表明,MCP(或类似的“元连接协议”**)可能成为最终以可扩展的方式连接 AI 和 Web3 的支柱。

值得注意的是,一些技术专家认为,这种以 AI 为中心的连接才是 Web3.0 的真正实现。用 Simba Khadder 的话来说,“MCP 旨在标准化 LLM 与应用程序之间的 API”,类似于 REST API 如何促成了 Web 2.0——这意味着 Web3 的下一个时代可能由智能代理接口定义,而不仅仅是区块链。与为去中心化而中心化不同,与 AI 的融合可以通过将复杂性隐藏在自然语言和自主代理之后,使去中心化变得有用。本报告的其余部分将深入探讨 AI 通用接口(通过像 MCP 这样的协议)在技术上和实践上如何连接 Web3 世界中的一切

2. 技术架构:连接 Web3 技术的 AI 接口

将 AI 代理嵌入 Web3 技术栈需要在多个层面进行集成:区块链网络和智能合约、去中心化存储、身份系统以及基于代币的经济体。AI 通用接口——从大型基础模型到混合神经符号系统——可以作为连接这些组件的**“通用适配器”**。下面,我们分析这种集成的架构:

图:MCP 架构的概念图,展示了 AI 宿主(如 Claude 或 ChatGPT 等基于 LLM 的应用)如何使用 MCP 客户端接入各种 MCP 服务器。每个服务器都提供一个通往外部工具或服务(如 Slack、Gmail、日历或本地数据)的桥梁,类似于通过一个通用集线器连接的外围设备。这种标准化的 MCP 接口让 AI 代理可以通过一个通用协议访问远程服务和链上资源。

2.1 作为 Web3 客户端的 AI 代理(与区块链集成)

Web3 的核心是区块链和智能合约——能够以无需信任的方式强制执行逻辑的去中心化状态机。AI 接口如何与它们互动?可以从两个方向考虑:

  • AI 从区块链读取数据: AI 代理可能需要链上数据(如代币价格、用户资产余额、DAO 提案)作为其决策的上下文。传统上,检索区块链数据需要与节点 RPC API 或子图数据库进行交互。有了像 MCP 这样的框架,AI 可以查询一个标准化的*“区块链数据”* MCP 服务器来获取实时的链上信息。例如,一个支持 MCP 的代理可以请求某个代币的最新交易量,或某个智能合约的状态,而 MCP 服务器将处理连接到区块链的底层细节,并以 AI 可以使用的格式返回数据。这通过将 AI 与任何特定区块链的 API 格式解耦,提高了互操作性。

  • AI 向区块链写入数据: 更强大的是,AI 代理可以通过 Web3 集成执行智能合约调用或交易。例如,如果满足某些条件,AI 可以自主地在去中心化交易所执行一笔交易,或调整智能合约中的参数。这是通过 AI 调用一个封装了区块链交易功能的 MCP 服务器来实现的。一个具体的例子是用于 EVM 链的 thirdweb MCP 服务器,它允许任何兼容 MCP 的 AI 客户端通过抽象掉特定链的机制来与以太坊、Polygon、BSC 等进行交互。使用这样的工具,AI 代理可以*“无需人工干预”*地触发链上操作,从而实现自主的 dApp——例如,一个由 AI 驱动的 DeFi 金库,当市场条件变化时,通过签署交易来自我重新平衡

在底层,这些交互仍然依赖于钱包、密钥和 Gas 费,但可以给予 AI 接口对钱包的受控访问权限(通过适当的安全沙箱)来执行交易。预言机和跨链桥也发挥了作用:像 Chainlink 这样的预言机网络充当了 AI 与区块链之间的桥梁,允许 AI 的输出以可信的方式被输入到链上。例如,Chainlink 的跨链互操作性协议(CCIP)可以使一个被认为是可靠的 AI 模型代表用户同时在不同链上触发多个合约。总而言之,AI 通用接口可以作为一种新型的 Web3 客户端——一种既能消费区块链数据,又能通过标准化协议产生区块链交易的客户端。

2.2 神经符号协同:结合 AI 推理与智能合约

AI-Web3 集成的一个有趣方面是神经符号架构的潜力,它结合了 AI 的学习能力(神经网络)与智能合约的严谨逻辑(符号规则)。在实践中,这可能意味着 AI 代理处理非结构化的决策,并将某些任务交给智能合约进行可验证的执行。例如,AI 可能会分析市场情绪(一个模糊的任务),然后通过一个遵循预设风险规则的确定性智能合约来执行交易。MCP 框架及相关标准通过为 AI 提供一个通用接口来调用合约函数或在行动前查询 DAO 的规则,使这种交接成为可能。

一个具体的例子是 SingularityNET 的 AI-DSL(AI 领域特定语言),它旨在标准化其去中心化网络上 AI 代理之间的通信。这可以被看作是迈向神经符号集成的一步:一种用于代理之间请求 AI 服务或数据的正式语言(符号)。同样,像 DeepMind 的 AlphaCode 或其他项目最终也可能被连接起来,以便智能合约可以调用 AI 模型进行链上问题解决。尽管今天直接在链上运行大型 AI 模型是不切实际的,但混合方法正在出现:例如,某些区块链允许通过零知识证明或可信执行来验证机器学习计算,从而实现在链上验证链下 AI 结果。总而言之,技术架构将 AI 系统和区块链智能合约设想为互补的组件,通过通用协议进行协调:AI 处理感知和开放式任务,而区块链提供完整性、记忆和对既定规则的执行。

2.3 用于 AI 的去中心化存储和数据

AI 依赖于数据,而 Web3 为数据存储和共享提供了新的范式。去中心化存储网络(如 IPFS/Filecoin、Arweave、Storj 等)既可以作为 AI 模型工件的存储库,也可以作为训练数据的来源,并带有基于区块链的访问控制。一个 AI 通用接口,通过 MCP 或类似协议,可以像从 Web2 API 那样轻松地从去中心化存储中获取文件或知识。例如,如果一个 AI 代理拥有适当的密钥或支付凭证,它可能会从 Ocean Protocol 的市场中提取一个数据集,或从分布式存储中获取一个加密文件。

Ocean Protocol 特别将自己定位为一个**“AI 数据经济”平台——使用区块链来将数据甚至 AI 服务代币化**。在 Ocean 中,数据集由数据代币(datatokens)表示,用于控制访问;一个 AI 代理可以获得一个数据代币(可能通过加密货币支付或某种访问权限),然后使用 Ocean MCP 服务器来检索实际数据进行分析。Ocean 的目标是为 AI 解锁“休眠数据”,在保护隐私的同时激励共享。因此,一个连接到 Web3 的 AI 可能会利用一个庞大的、去中心化的信息语料库——从个人数据保险库到开放的政府数据——这些数据以前是孤立的。区块链确保数据的使用是透明的,并且可以得到公平的回报,从而形成一个良性循环,即更多的数据可供 AI 使用,更多的 AI 贡献(如训练好的模型)可以被货币化。

去中心化身份系统在这里也扮演着一个角色(下一小节将详细讨论):它们可以帮助控制谁或什么被允许访问某些数据。例如,一个医疗 AI 代理可能需要出示一个可验证的凭证(链上证明其符合 HIPAA 或类似法规),然后才能从患者的个人 IPFS 存储中解密医疗数据集。通过这种方式,技术架构确保数据在适当的情况下流向 AI,但带有链上治理和审计跟踪来强制执行权限。

2.4 去中心化环境中的身份与代理管理

当自主 AI 代理在像 Web3 这样的开放生态系统中运行时,身份和信任变得至关重要。去中心化身份(DID)框架提供了一种为 AI 代理建立数字身份的方法,这些身份可以通过密码学进行验证。每个代理(或部署它的人/组织)都可以拥有一个 DID 和相关的可验证凭证,用于指定其属性和权限。例如,一个 AI 交易机器人可以持有一个由监管沙箱颁发的凭证,证明它可以在某些风险限制内操作,或者一个 AI 内容审核员可以证明它是由一个可信的组织创建的,并经过了偏见测试。

通过链上身份注册表和声誉系统,Web3 世界可以对 AI 的行为强制执行问责制。AI 代理执行的每一笔交易都可以追溯到其 ID,如果出现问题,凭证会告诉你是谁构建了它或谁对此负责。这解决了一个关键挑战:没有身份,恶意行为者可以创建虚假的 AI 代理来利用系统或传播错误信息,没有人能区分机器人和合法服务。去中心化身份通过实现强大的身份验证和区分真实的 AI 代理与欺骗性代理,帮助缓解了这一问题。

在实践中,一个与 Web3 集成的 AI 接口将使用身份协议来签署其操作和请求。例如,当一个 AI 代理调用 MCP 服务器使用工具时,它可能会包含一个与其去中心化身份绑定的令牌或签名,以便服务器可以验证该调用来自一个授权的代理。基于区块链的身份系统(如以太坊的 ERC-725 或锚定在账本上的 W3C DID)确保这种验证是无需信任且全球可验证的。新兴的**“AI 钱包”*概念与此相关——本质上是为 AI 代理提供与其身份相关联的加密货币钱包,这样它们就可以管理密钥、支付服务费用,或质押代币作为保证金(如果行为不当,可能会被罚没)。例如,ArcBlock 已经讨论过“AI 代理需要一个钱包”*和一个 DID 才能在去中心化环境中负责任地运作。

总而言之,技术架构预见到 AI 代理将成为 Web3 中的一等公民,每个代理都拥有链上身份,并可能在系统中持有股份,使用像 MCP 这样的协议进行交互。这创造了一个信任之网:智能合约可以在合作前要求 AI 的凭证,用户可以选择只将任务委托给那些满足某些链上认证的 AI。这是AI 能力与区块链信任保证的结合。

2.5 AI 的代币经济与激励机制

代币化是 Web3 的一个标志,它也延伸到了 AI 集成领域。通过代币引入经济激励,网络可以鼓励 AI 开发者和代理本身产生期望的行为。几种模式正在出现:

  • 服务付费: AI 模型和服务可以在链上进行货币化。SingularityNET 开创了这一模式,允许开发者部署 AI 服务,并为每次调用向用户收取原生代币(AGIX)。在支持 MCP 的未来,可以想象任何 AI 工具或模型都成为一个即插即用的服务,其使用通过代币或微支付来计量。例如,如果一个 AI 代理通过 MCP 使用第三方视觉 API,它可以通过将代币转移到服务提供商的智能合约来自动处理支付。Fetch.ai 同样设想了*“自主经济代理”*交易服务和数据的市场,其新的 Web3 LLM(ASI-1)可能会集成加密交易以进行价值交换。

  • 质押与声誉: 为确保质量和可靠性,一些项目要求开发者或代理质押代币。例如,DeMCP 项目(一个去中心化的 MCP 服务器市场)计划使用代币激励来奖励创建有用 MCP 服务器的开发者,并可能让他们质押代币作为对其服务器安全承诺的标志。声誉也可以与代币挂钩;例如,一个表现持续良好的代理可能会积累声誉代币或正面的链上评价,而行为不端的代理可能会失去质押或获得负面标记。这种代币化的声誉可以反馈到上面提到的身份系统中(智能合约或用户在信任代理前检查其链上声誉)。

  • 治理代币: 当 AI 服务成为去中心化平台的一部分时,治理代币允许社区引导其发展。像 SingularityNET 和 Ocean 这样的项目都有 DAO,代币持有者可以对协议变更或资助 AI 计划进行投票。在合并了 SingularityNET、Fetch.ai 和 Ocean Protocol 的新宣布的人工超级智能(ASI)联盟中,一个统一的代币(ASI)将用于治理一个联合的 AI+区块链生态系统的方向。这样的治理代币可以决定采用何种标准(例如,支持 MCP 或 A2A 协议)、孵化哪些 AI 项目,或如何处理 AI 代理的道德准则等政策。

  • 访问与效用: 代币不仅可以控制对数据的访问(如 Ocean 的数据代币),还可以控制对 AI 模型的使用。一种可能的情景是*“模型 NFT”*或类似的东西,其中拥有一个代币可以授予你对 AI 模型输出的权利或其利润的一部分。这可以支撑去中心化的 AI 市场:想象一个代表高性能模型部分所有权的 NFT;每当该模型被用于推理任务时,所有者共同赚取收益,并且他们可以投票决定对其进行微调。虽然这还处于实验阶段,但这与 Web3 将共享所有权理念应用于 AI 资产的精神是一致的。

在技术上,集成代币意味着 AI 代理需要钱包功能(如前所述,许多代理将拥有自己的加密钱包)。通过 MCP,一个 AI 可以拥有一个*“钱包工具”*,让它检查余额、发送代币或调用 DeFi 协议(也许是为了将一种代币换成另一种来支付服务费用)。例如,如果一个在以太坊上运行的 AI 代理需要一些 Ocean 代币来购买数据集,它可能会通过一个 DEX 使用 MCP 插件自动将一些 ETH 换成 $OCEAN,然后继续购买——所有这些都在其所有者设定的策略指导下,无需人工干预。

总的来说,代币经济在 AI-Web3 架构中提供了激励层,确保贡献者(无论是提供数据、模型代码、计算能力还是安全审计)得到回报,并确保 AI 代理有*“切身利益”*,这在某种程度上使它们与人类的意图保持一致。

3. 行业格局

AI 与 Web3 的融合催生了一个充满活力的生态系统,包括项目、公司和联盟。下面我们调查了推动这一领域的关键参与者和倡议,以及新兴的用例。表 1 概述了著名项目及其在 AI-Web3 格局中的角色:

**