Web3生态系统中的MCP:全面评论
#Web3生态系统中的MCP:全面评论
##1。MCP在Web3上下文中的定义和起源
**模型上下文协议(MCP)**是一个开放标准,它将AI助手(例如大语言模型)连接到外部数据源,工具和环境。 MCP通常被描述为“ AI的USB-C端口”,这是由于其通用的插件性质,是由Anthropic开发的,并于2024年11月下旬首次引入。它是一种解决方案,可以通过将AI模型与“数据库和APIS到开发环境”和“ APIS”和“ APIS和APIS环境”和“ APIS”和“ APIS和Bloxchains”和“ APIS和APIS”的“系统”安全地隔离而脱离隔离。
MCP最初是Anthropic的实验性侧面项目,很快就获得了吸引力。到2024年中,出现了开源参考实现,到2025年初,它已成为代理AI集成的事实上的标准**,领先的AI实验室(OpenAI,Google DeepMind,Meta AI)本地采用它。在** Web3社区**中,这种快速的吸收尤其值得注意。区块链开发人员将MCP视为将AI功能注入分散应用程序的一种方式,从而导致社区构建的MCP连接器扩散,以用于链上数据和服务。实际上,一些分析师认为,MCP可以通过使用自然语言接口来增强用户能力,以比区块链更实用的方式实现Web3的原始愿景。
总而言之,MCP不是区块链或代币**,而是AI世界中出生的开放协议,该协议在Web3生态系统中迅速接受为AI代理和分散数据源之间的桥梁。人类为标准(具有最初的GitHub规格和SDK)开源,并在其周围培养了 一个开放的社区。这种社区驱动的方法为MCP集成到Web3中奠定了基础,现在它被视为针对AI支持的分散应用程序的基础基础架构。
2。技术架构和核心协议
MCP在轻量级客户端 - 服务器架构中运行,并带有三个主要角色:
- ** MCP主机:** AI应用程序或代理本身,该应用程序安排请求。这可能是聊天机器人(Claude,ChatGpt)或需要外部数据的AI功能应用程序。主机启动交互,通过MCP询问工具或信息。
- ** MCP客户端:**主机用来与服务器通信的连接器组件。客户端维护连接,管理请求/响应消息,并可以并行处理多个服务器。例如,像光标或VS Code代理模式之类的开发人员工具可以充当MCP客户端,桥接具有各种MCP服务器的本地AI环境。
- ** MCP服务器:向AI暴露某些上下文数据或功能的服务。服务器提供工具**,资源或提示 AI可以使用的**。实际上,MCP服务器可以与数据库,云应用程序或区块链节点接口,并向AI呈现一组标准化的操作集。每个客户端服务器对通过其自己的频道进行通信,因此AI代理可以同时点击多个服务器以满足不同的需求。
核心原始图: MCP定义了一组构建AI-Tool交互的标准消息类型和原语。这三个基本原则是:
- 工具: AI可以在服务器上调用的离散操作或功能。例如,一个“搜索Documents”工具或“ ETH_CALL”工具。工具封装了诸如查询API,执行计算或调用智能合约功能之类的操作。 MCP客户端可以从服务器请求可用工具的列表,并根据需要致电。
- **资源:**数据终点可以通过服务器读取(或有时写入)的数据终点。这些可能是文件,数据库条目,区块链状态(块,交易)或任何上下文数据。 AI可以列出资源并通过标准MCP消息检索其内容(例如
listreSources'和readResource'请求)。 - **提示:**结构化提示模板或服务器可以提供的指令指导AI的推理。例如,服务器可能会提供格式模板或预定义的查询提示。 AI可以请求提示模板的列表,并使用它们来保持其与该服务器的交互方式的一致性。
在引擎盖下,MCP通信通常基于JSON,并遵循类似于RPC(远程过程调用)的请求响应模式。该协议的规范定义了诸如InitializereQuest,ListTools,calltool','listresources等的消息'',这些消息确保任何符合MCP的客户端都可以以统一的方式与任何MCP服务器交谈。此标准化是什么使AI代理可以 *发现 *可以做什么:连接到新服务器后,它可以询问“你提供哪些工具和数据?”然后动态决定如何使用它们。
安全性和执行模型: MCP考虑了安全的,可控的交互。 AI模型本身不会执行任意代码;它将高级意图(通过客户端)发送到服务器,然后执行实际操作(例如获取数据或调用API)并返回结果。这种分离意味着敏感的动作(例如区块链交易或数据库写入)可以是沙盒子或需要明确的用户批准。例如,有诸如ping'(保持连接活力)之类的消息,甚至还有createMessagereQuest',它允许MCP服务器要求客户端的AI生成子响应,通常通过用户确认使用。正在积极开发身份验证,访问控制和审计记录之类的功能,以确保可以在企业和分散的环境中安全地使用MCP(在路线图部分中提供更 多信息)。
总而言之,MCP的体系结构依赖于标准化的消息协议(带有JSON-RPC样式调用),该消息将AI代理(主机)连接到提供工具,数据和操作的灵活服务器。这种开放的体系结构是模型 - 敏捷和**平台 - agnostic ** - 任何AI代理都可以使用MCP与任何资源进行交谈,任何开发人员都可以为数据源创建新的MCP服务器,而无需修改AI的核心代码。这种插件的可扩展性使MCP在Web3中的功能强大:可以为区块链节点,智能合约,钱包或甲壳构建服务器,并使AI代理将这些功能无缝集成到Web2 API上。
##3。MCP在Web3中的用例和应用
MCP通过启用AI驱动的应用程序来访问区块链数据并以安全,高级的方式访问区块链或链链操作,从而解锁了广泛的用例。以下是一些关键应用程序,并且有助于在Web3域中解决:
- 链上数据分析和查询: AI代理可以实时查询实时区块链状态,以提供见解或触发操作。例如,连接到以太坊节点的MCP服务器允许AI获取帐户余额,读取智能合约存储,跟踪交易或按需检索事件日志。这将聊天机器人或编码助手变成了区块链资源管理器。开发人员可以问一个AI助理问题,例如“ Uniswap池中目前的流动性是什么?”或“模拟该以太坊交易的气体成本”,AI将使用MCP工具调用RPC节点并从现场链中获取答案。这比依靠AI的培训数据或静态快照要强大得多。
- 自动化的Defi投资组合管理:通过组合数据访问和操作工具,AI代理可以管理加密货币组合或Defi位置。例如,“ AI Vault Optimizer” 可以监视用户在收益农场的位置,并根据实时市场条件自动建议或执行重新平衡策略。同样,AI可以充当 Defi Portfolio经理,在风险或费率变化时调 整协议之间的分配。 MCP提供了AI的标准接口,以读取链上指标(价格,流动性,抵押比率),然后在允许的情况下调用工具以执行交易(例如移动资金或交换资产)。这可以帮助用户以难以手动执行的方式最大程度地提高收益率或管理风险24/7。
- ** AI驱动的交易用户代理:想想可以处理用户的区块链交互的个人AI助手。使用MCP,这样的代理可以与钱包和DAPP集成以通过自然语言命令执行任务。例如,用户可以说:“ AI,将0.5 ETH从我的钱包发送到爱丽丝或“将我的令牌放在最高疗法池中”。通过MCP,AI将使用安全的钱包服务器**(持有用户的私钥)来创建和签署事务,并使用区块链MCP服务器来广播。这种情况将复杂的命令行或metAmask互动变成对话体验。至关重要的是,这里使用安全的钱包MCP服务器,从而执行权限和确认,但最终结果是通过AI援助来简化链上交易。
- 开发人员助理和智能合同调试: Web3开发人员可以利用基于MCP的AI助手,这些助理可以了解区块链基础架构。例如,**链条的MCP服务器用于EVM和SOLANA ** **使AI编码副驾驶员可以深入了解开发人员的区块链环境。使用AI助手(在VS代码或IDE中)的智能合同工程师可以使AI在测试网上获取合同的当前状态,运行交易的模拟或检查日志 - 所有这些都是通过MCP调用到本地区块链节点的电话。这有助于调试和测试合同。 AI不再“盲目”编码;它实际上可以验证代码如何实时链链。该用例通过允许AI不断摄入最新的文档(通过文档MCP服务器)并直接查询区块链,减少幻觉并提出建议更准确,从而解决了一个主要的痛点。
- 交叉协调:由于MCP是统一接口,因此单个AI代理可以同时跨多个协议和服务协调 - 这在Web3互连的景观中非常强大。想 象一个自治贸易代理,可以监视各种套利平台进行套利。通过MCP,一个代理可以通过连贯的界面与AAVE的贷款市场,Layerzero的跨链桥和MEV(矿工可提取值)分析服务进行交互。 AI可以在一个“思考过程”中,从以太坊(通过以太坊节点上的MCP服务器)收集流动性数据,获取价格信息或Oracle数据(通过另一台服务器),甚至调用桥接或交换操作。以前,这种多平台协调将需要复杂的自定义编码机器人,但是MCP为AI提供了一种可推广的方法,使AI可以浏览整个Web3生态系统,就好像它是一个大数据/资源池一样。这可以使晚期用例(例如跨链产量优化或自动清算保护)可以主动移动资产或抵押品的自动清算保护。
- ** AI咨询和支持机器人:另一个类别是Crypto应用程序中面向用户的顾问。例如,已集成到uniswap或化合物等平台中的 defi帮助聊天机器人可以使用MCP为用户提供实时信息。如果用户问:“对冲我的职位的最佳方法是什么?”,AI可以通过MCP获取当前费率,波动性数据和用户的投资组合详细信息,然后给出上下文感知的答案。平台正在探索** ai驱动的助手**嵌入在钱包或DAPP中的平台,可以指导用户完成复杂的交易,解释风险,甚至通过批准执行步骤序列。这些AI代理有效地坐落在多个Web3服务(DEXES,贷款池,保险协议)的顶部,使用MCP查询并根据需要命令它们,从而简化了用户体验。
- **超越Web3 - 多域工作流程:**尽管我们的焦点是Web3,但值得注意的是,MCP的用例扩展到了AI需要外部数据的任何域。它已经被用来将AI连接到Google Drive,Slack,Github,Figma等。实际上,单个AI代理可以跨越Web3和Web2: MCP的灵活性允许跨域自动化(例如,“如果我的DAO投票通过,请安排我的会议,并通过电子邮件发送结 果”),将区块链动作与日常工具融合在一起。
解决的问题:总体问题MCP地址是缺乏AI与实时数据和服务交互的统一接口。在MCP之前,如果你希望AI使用新服务,则必须以临时方式手工编码该特定服务API的插件或集成。在Web3中,这特别繁琐 - 每个区块链或协议都有自己的界面,并且没有人工智能希望支持它们。 MCP通过标准化AI描述其想要的内容(自然语言映射到工具调用)以及服务如何描述其提供的内容来解决此问题。这大大减少了整合工作。例如,开发人员可以为该协议编写一个MCP服务器,而不是为每个Fefi协议编写自定义插件(本质上是用自然语言注释其功能)。然后,任何启用MCP的AI(Claude,Chatgpt还是开源型号)都可以立即使用它。这使AI 可扩展以插件方式,就像通过通用端口添加新设备的方式比安装新接口卡更容易。
总而言之,Web3中的MCP使** AI代理可以通过安全,标准化的渠道成为区块链世界的一流公民** - 查询,分析,甚至在分散系统之间进行交易。这为更自主的DAPP,更智能的用户代理以及链和链智能的无缝集成打开了大门。
4。代币学和治理模型
与典型的Web3协议不同,** MCP没有天然令牌或加密货币。因此,没有内置的代币学 - 没有使用MCP固有的代币发行,积分或费用模型。 AI应用程序和服务器通过MCP通信,而无需涉及任何加密货币;例如,通过MCP呼叫区块链的AI可能会为区块链交易支付汽油费,但MCP本身没有增加额外的代币费用。该设计反映了MCP在AI社区中的起 源:它是作为改善AI-Tool互动的技术标准而不是作为令牌化项目的技术标准。
** MCP的治理是以开源的,社区驱动的方式进行的。在将MCP作为公开标准发布后,人类表明了对协作发展的承诺。一个广泛的指导委员会和工作组成立了,以使协议的发展。值得注意的是,到2025年中,像微软和Github这样的主要利益相关者与人类同行加入了MCP指导委员会。这是在2025年Microsoft Build Build宣布的,表明行业参与者指导MCP的路线图和标准决策。委员会和维护者通过公开治理过程进行工作:通常会公开讨论更改或扩展MCP的建议(例如,通过GitHub问题和“ SEP” - 标准增强建议 - 指南 - 指南)。还有一个** MCP注册表工作组**(带有Block,Pulsemcp,Github和Anthropic公司等公司的维护者),例如多方治理。 2025年初,来自至少9个不同组织的贡献者合作建立了一个统一的MCP服务器注册表以进行发现,并证明了如何在社区成员之间分散发展,而不是由一个实体控制。
由于没有令牌,治理激励措施依靠利益相关者(AI公司,云提供商,区块链开发人员等)的共同利益来改善所有人的协议。这有点类似于W3C或IETF标准如何控制,但以更快的方式以GitHub为中心的过程。例如,Microsoft和Anthropic共同努力,为MCP(集成了Oauth和Single Sign-On之类的内容)设计了改进的授权规范,Github在官方MCP注册表服务上合作列出了可用的服务器。这些增强功能又为MCP规范做出了贡献。
值得注意的是,尽管MCP本身没有被象征化,但在MCP之上,关于经济激励措施和权力下放的前瞻性想法。 Web3中的一些研究人员和思想领导者预见了**“ MCP Networks” 的出现 - 基本上是MCP服务器的分散网络和使用类似区块链机制来发现,信任和奖励的代理。在这种情况下,人们可以想象一个令牌被用来奖励那些运行高质量MCP服务器的人(类似于矿工或节点运营商的激励方式)。智能合约或区块链可以促进声誉评级,可验证的计算和节点发现等功能,并具有令牌驾驶诚实的行为。这仍然是概念上的,但是MIT的NAMDA(稍后讨论)等项目正在尝试使用MCP的AI代理网络的基于令牌的激励机制。如果这些想法成熟,MCP可能会更直接地与链上的代酮组学相交,但是截至2025年核心MCP标准仍然是无令状的。
总之,MCP的“治理模型”是开放技术标准的:由社区和专家指导委员会协作,没有链子治理令牌。决策以技术优点和广泛的共识为指导,而不是硬币加权投票。这将MCP与许多Web3协议区分开来 - 它旨在通过开放的软件和标准来实现Web3的理想(权力下放,互操作性,用户授权),不是通过专有区块链或代币。用一个分析的话说, *“ Web3的承诺最终可以通过区块链和加密货币来实现,而是通过自然语言和AI代理人实现” *,将MCP定位为该愿景的关键推动者。就是说,随着MCP网络的增长,我们可能会看到混合模型,基于区块链的治理或激励机制增加了生态系统,这是一个密切关注的空间。
5。社区和生态系统
MCP生态系统在短时间内爆炸性增长,涵盖了AI开发人员,开源贡献者,Web3工程师和主要科技公司。这是一项充满活力的社区努力,与主要的贡献者和合作伙伴关系**,包括:
-
**人类:**作为创建者,通过开源MCP规格和几个参考服务器(用于Google Drive,Slack,Github等) ,人类种子为生态系统播种。 Anthropic继续领导开发(例如,Theodora Chu之类的员工担任MCP产品经理,而Anthropic的团队为规格更新和社区支持做出了巨大贡献)。 Anthropic的开放性吸引了其他人在MCP上建立,而不是将其视为单一公司工具。
-
**早期采用者(Block,Apollo,Zed,Replit,Codeium,SourceGraph):发行后的头几个月,一波早期采用者在其产品中实施了MCP。 块(以前为正方形)集成的MCP探索金融科技中的AI代理系统 - Block的CTO称赞MCP是将AI连接到现实世界应用程序的开放式桥梁。 ** Apollo (可能是Apollo GraphQl)还集成了MCP,以允许AI访问内部数据。 ** ZED(代码编辑器), REPLAIT(Cloud IDE), CONEIM(AI Coding Assistans)和 sourceGraph(代码搜索)**每个人都在添加MCP支持。例如,SourceGraph使用MCP,因此AI编码助手可以从存储库中检索相关代码以回答问题,并且Repliting的IDE代理可以在特定于项目的环境中提取。这些早期采用者提供了MCP的信誉和知名度。
-
大型技术认可 - Openai,Microsoft,Google:在一个显着的转弯处,否则竞争对手在MCP上保持一致的公司。 ** OpenAI的首席执行官Sam Altman在2025年3月公开宣布 Openai将在其产品中增加MCP支持(包括Chatgpt的桌面应用程序),说“人们喜欢MCP,我们很高兴能在我们的产品中增加支持”*。这意味着OpenAI的代理API和ChatGpt插件会说MCP,从而确保互操作性。几周后,** Google DeepMind的首席执行官Demis Hassabis 透露,Google即将推出的Gemini模型和工具将支持MCP,称其为“ AI Agesic ERA”的良好协议和开放标准。 ** Microsoft 不仅加入了指导委员会,而且与Anthropic合作,为MCP构建了官方的C#SDK,以服务于企业开发人员社区。 Microsoft的GitHub单元将MCP集成到 GitHub Copilot(vs Code的“ Copilot Labs/Agents”模式),使Copilot能够将MCP服务器用于存储库搜索和运行测试用例之类的内容。此外,Microsoft宣布Windows 11将公开某些OS功能(例如文件系统访问),因为MCP服务器可以安全地与操作系统进行交互。 Openai,Microsoft,Google和Anthropic(所有人都在MCP围绕MCP集会)之间的合作是非凡的,并强调了该标准的社区竞争精神。
-
** Web3开发人员社区:许多区块链开发人员和初创公司都接受了MCP。创建了几个社区驱动的MCP服务器**,以服务区块链用例:
-
** Alchemy (领先的区块链基础架构提供商)的团队构建了 Alchemy MCP服务器**,该服务器通过MCP提供按需区块链分析工具。这可能使AI通过使用自然语言的API获得区块链统计数据(例如历史交易,地址活动)。
- 贡献者开发了一个比特币和闪电网络MCP服务器与比特币节点和闪电支付网络进行交互,使AI代理能够读取比特币块数据,甚至通过标准工具创建闪电发票。
- Crypto Media and Education Group 无资金创建了一个** OnChain MCP服务器**专注于Web3财务互动,可能为AI助手提供了DEFI协议(发送交易,查询偏差职位等)的接口。
- 诸如** rolup.codes (以太坊第2层的知识库)之类的项目制作了一个 MCP服务器,用于滚动生态系统信息**,因此AI可以通过查询该服务器来回答有关汇总的技术问题。
- ** Chainstack **,一个区块链节点提供商,为文档,EVM链数据和Solana推出了一套MCP服务器(涵盖了前面),明确将其作为“将你的AI放在web3构建器上的区块链类固醇上”。
此外,以Web3为中心的社区在MCP周围涌现。例如,** pulsemcp 和鹅**是社区倡议,称为帮助建立MCP注册表。我们还看到与AI代理框架的交叉授粉:Langchain社区集成的适配器,因此所有MCP服务器都可以用作Langchain-Power驱动代理中的工具,以及Hugging Face TGI(Text-Generation-generation-interference)的开源AI平台都在探索MCP兼容性。结果是一个丰富的生态系统,几乎每天都会宣布新的MCP服务器,从数据库到IoT设备的所有内容。
-
**采用量表:可以在一定程度上量化牵引力。到2025年2月(发布后仅三个月),社区已经建造了1,000多个MCP服务器/连接器。这个数字只有增长,表明整个行业的一体化。迈克·克里格(Mike Krieger)(拟人化的首席产品官)于2025年春季指出,MCP已成为“蓬勃发展的公开标准,具有成千上万的集成和成长” **。官方的MCP注册表(于2025年9月在预览中启动)正在对公开可用的服务器进行分类,从而更容易发现工具。注册表的开放API允许任何人搜索“以太坊”或“概念”并找到相关的MCP连接器。这降低了新进入者的障碍,并进一步燃烧增长。
-
**合作伙伴关系:**我们已经谈到了许多隐式合作伙伴关系(与Microsoft等人的拟人化)。重点介绍几个:
-
**人类与Slack **:通过Slack合作,通过MCP将Claude与Slack的数据集成在一起(Slack拥有官方MCP服务器,使AI能够检索Slack消息或发布警报)。
- 云提供商:Amazon(AWS)和Google Cloud已与Anthropic合作以主持Claude,并且很可能在这些环境中支持MCP(例如,AWS Bedrock可能允许MCP连接器用于企业数据)。尽管没有明确的引用,但这些云伙伴关系对于企业采用至关重要。
- 学术合作:MIT和IBM研究项目NAMDA(下一个讨论)代表了学术界与行业之间 的合作伙伴关系,以在分散的环境中推动MCP的限制。
- ** GitHub&vs Code **:增强开发人员体验的合作伙伴关系 - 例如,VS代码的团队积极地为MCP做出了贡献(注册表维护者之一来自VS代码团队)。
- 许多初创企业:许多AI启动(代理启动,工作流动自动化启动)正在MCP上构建,而不是重新发明轮子。这包括新兴的Web3 AI初创公司希望提供“ AI为DAO”或自主经济代理商。
总体而言,** MCP社区的多样化和迅速扩展**。它包括核心科技公司(用于标准和基础工具),Web3专家(带来区块链知识和用例)以及独立的开发人员(他们通常为其喜欢的应用程序或协议贡献连接器)。这种精神是协作的。例如,对第三方MCP服务器的安全问题促使社区讨论和最佳实践的贡献(例如,为MCP服务器开展安全工具的Stacklok贡献者)。社区快速迭代的能力(MCP在几个月内看到了几次规范升级,添加流媒体响应和更好的auth等功能)证明了广泛的参与度。
特别是在Web3生态系统中,MCP培养了**“ AI + Web3” 项目的迷你生态系统。这不仅是使用协议;它催化了新想法,例如AI驱动的Daos,AI分析的链链治理以及跨域自动化(例如将链上事件与AI通过AI联系起来)。 Limechain的Zhivko Todorov 的存在 - 例如 Zhivko Todorov 表示“ MCP表示AI和区块链的不可避免的整合” - 表明,区块链退伍军人正在积极倡导它。 AI和区块链公司之间的合作伙伴关系(例如人类和区块之间的合作伙伴,或微软的Azure Cloud,使MCP易于与区块链服务一起部署)暗示了 AI代理和智能合约手工工作**的未来。
可以说,MCP点燃了AI开发人员社区与Web3开发人员社区的第一个真正的融合。现在,黑客马拉松和聚会以MCP曲目为特色 。 As a concrete measure of ecosystem adoption: by mid-2025, OpenAI, Google, and Anthropic – collectively representing the majority of advanced AI models – all support MCP, and on the other side, leading blockchain infrastructure providers (Alchemy, Chainstack), crypto companies (Block, etc.), and decentralized projects are building MCP hooks.这个双面网络效果非常好,可以使MCP成为持久的标准。
6。路线图和发展里程碑
MCP的开发节奏很快。在这里,我们概述了迄今为止的主要里程碑,而前方的路线图从官方来源和社区更新中收集到:
- ** 2024年末 - 初始版本:** ** 2024年11月25日**,拟人化正式宣布了MCP并开源了规格和初始SDK。除了规格外,他们发布了一些用于通用工具的MCP服务器实现(Google Drive,Slack,Github等),并在Claude AI Assistant(Claude Desktop App)中增加了支持,以连接到本地MCP服务器。这标志着MCP的1.0发布。拟人化的早期概念验证集成展示了Claude如何使用MCP读取文件或以自然语言查询SQL数据库,从而验证了概念。
- ** Q1 2025 - 快速采用和迭代:在2025年的前几个月,MCP看到了广泛的行业采用**。 ** 2025年3月**,OpenAI和其他AI提供者宣布了支持(如上所述)。此期间还看到了** Spec Evolution :拟人更新的MCP,包括流式功能**(允许大量结果或连续数据流逐步发送)。该更新于2025年4月注明了C#SDK新闻,表明MCP现在支持诸如张大响应或实时供稿集成之类的功能。社区还以各种语言(Python,JavaScript等)建立了参考实现