Перейти к основному содержимому

1 запись с тегом "Lagrange Labs"

Посмотреть все теги

Проверяемый ИИ в движении: как динамические zk-SNARKs от Lagrange Labs обеспечивают непрерывное доверие

· 6 мин. чтения
Dora Noda
Software Engineer

В быстро сближающихся мирах искусственного интеллекта и блокчейна спрос на доверие и прозрачность никогда не был таким высоким. Как мы можем быть уверены, что результат работы модели ИИ точен и не подвергался изменениям? Как мы можем выполнять сложные вычисления на огромных ончейн-наборах данных без ущерба для безопасности или масштабируемости? Lagrange Labs решает эти вопросы напрямую с помощью своего набора инфраструктуры с нулевым разглашением (ZK), стремясь построить будущее "ИИ, который можно доказать". Этот пост представляет объективный обзор их миссии, технологий и недавних прорывов, кульминацией которых стала их последняя статья о динамических zk-SNARKs.

1. Команда и ее миссия

Lagrange Labs создает базовую инфраструктуру для генерации криптографических доказательств для любого вывода ИИ или ончейн-приложения. Их цель — сделать вычисления проверяемыми, привнося новый уровень доверия в цифровой мир. Их экосистема построена на трех основных продуктовых линейках:

  • Сеть ZK-доказателей: Децентрализованная сеть из более чем 85 узлов-доказателей, которая обеспечивает вычислительную мощность, необходимую для широкого спектра задач доказательства, от ИИ и роллапов до децентрализованных приложений (dApps).
  • DeepProve (zkML): Специализированная система для генерации ZK-доказательств выводов нейронных сетей. Lagrange утверждает, что она до 158 раз быстрее конкурирующих решений, что делает проверяемый ИИ практической реальностью.
  • ZK-сопроцессор 1.0: Первый ZK-сопроцессор на основе SQL, позволяющий разработчикам выполнять пользовательские запросы к массивным ончейн-наборам данных и получать проверяемо точные результаты.

2. Дорожная карта к проверяемому ИИ

Lagrange методично реализует дорожную карту, разработанную для поэтапного решения проблем проверяемости ИИ.

  • 3 квартал 2024 г.: Запуск ZK-сопроцессора 1.0: Этот релиз представил гиперпараллельные рекурсивные схемы, которые обеспечили среднее увеличение скорости примерно в 2 раза. Такие проекты, как Azuki и Gearbox, уже используют сопроцессор для своих потребностей в ончейн-данных.
  • 1 квартал 2025 г.: Представление DeepProve: Lagrange анонсировала DeepProve, свое решение для машинного обучения с нулевым разглашением (zkML). Оно поддерживает популярные архитектуры нейронных сетей, такие как многослойные перцептроны (MLP) и сверточные нейронные сети (CNN). Система достигает значительного, на порядок, ускорения на всех трех критических этапах: однократная настройка, генерация доказательства и верификация, при этом ускорение достигает 158x.
  • 2 квартал 2025 г.: Статья о динамических zk-SNARKs (Последняя веха): Эта статья представляет новаторский алгоритм "обновления". Вместо повторной генерации доказательства с нуля каждый раз, когда изменяются базовые данные или вычисления, этот метод может "заплатать" старое доказательство (π) в новое доказательство (π'). Это обновление может быть выполнено со сложностью всего O(√n log³n), что является значительным улучшением по сравнению с полной перегенерацией. Это нововведение особенно подходит для динамических систем, таких как постоянно обучающиеся модели ИИ, игровая логика в реальном времени и развивающиеся смарт-контракты.

3. Почему динамические zk-SNARKs важны

Введение обновляемых доказательств представляет собой фундаментальный сдвиг в модели затрат технологии с нулевым разглашением.

  • Новая парадигма затрат: Отрасль переходит от модели "полной перегенерации для каждого доказательства" к "инкрементальному доказательству, основанному на размере изменения". Это значительно снижает вычислительные и финансовые затраты для приложений, которые часто подвергаются незначительным обновлениям.

  • Последствия для ИИ:

    • Непрерывная донастройка: При донастройке менее 1% параметров модели время генерации доказательства растет почти линейно с количеством измененных параметров (Δ параметров), а не с общим размером модели.
    • Потоковый вывод: Это позволяет генерировать доказательства одновременно с самим процессом вывода. Это значительно сокращает задержку между принятием решения ИИ и его фиксацией и верификацией в блокчейне, открывая такие варианты использования, как ончейн-сервисы ИИ и сжатые доказательства для роллапов.
  • Последствия для ончейн-приложений:

    • Динамические zk-SNARKs предлагают огромную оптимизацию газа и времени для приложений, характеризующихся частыми, небольшими изменениями состояния. Это включает книги ордеров децентрализованных бирж (DEX), развивающиеся игровые состояния и обновления реестра, включающие частые добавления или удаления.

4. Взгляд на технологический стек

Мощная инфраструктура Lagrange построена на сложном и интегрированном технологическом стеке:

  • Проектирование схем: Система является гибкой, поддерживая встраивание моделей ONNX (Open Neural Network Exchange), SQL-парсеров и пользовательских операторов непосредственно в свои схемы.
  • Рекурсия и параллелизм: Сеть ZK-доказателей облегчает распределенные рекурсивные доказательства, в то время как ZK-сопроцессор использует шардинг "микросхем" для параллельного выполнения задач, максимизируя эффективность.
  • Экономические стимулы: Lagrange планирует запустить нативный токен LA, который будет интегрирован в систему двойного аукциона для рекурсивного аукциона (DARA). Это создаст надежный рынок для торгов за вычисления доказателей, дополненный стимулами и штрафами для обеспечения целостности сети.

5. Экосистема и реальное внедрение

Lagrange не просто строит в вакууме; ее технология уже интегрируется растущим числом проектов в различных секторах:

  • ИИ и МО: Такие проекты, как 0G Labs и Story Protocol, используют DeepProve для верификации результатов своих моделей ИИ, обеспечивая происхождение и доверие.
  • Роллапы и инфраструктура: Ключевые игроки, такие как EigenLayer, Base и Arbitrum, участвуют в сети ZK-доказателей в качестве узлов валидации или партнеров по интеграции, способствуя ее безопасности и вычислительной мощности.
  • Приложения NFT и DeFi: Такие бренды, как Azuki, и протоколы DeFi, такие как Gearbox, используют ZK-сопроцессор для повышения достоверности своих запросов данных и механизмов распределения вознаграждений.

6. Вызовы и путь вперед

Несмотря на впечатляющий прогресс, Lagrange Labs и более широкая область ZK сталкиваются с рядом препятствий:

  • Аппаратные узкие места: Даже при наличии распределенной сети обновляемые SNARKs по-прежнему требуют высокой пропускной способности и полагаются на криптографические кривые, дружественные к GPU, для эффективной работы.
  • Отсутствие стандартизации: Процесс сопоставления фреймворков ИИ, таких как ONNX и PyTorch, с ZK-схемами по-прежнему не имеет универсального, стандартизированного интерфейса, что создает трудности для разработчиков.
  • Конкурентная среда: Гонка за создание zkVM и обобщенных платформ zkCompute набирает обороты. Конкуренты, такие как Risc-Zero и Succinct, также добиваются значительных успехов. В конечном итоге победителем может стать тот, кто первым сможет коммерциализировать удобный для разработчиков, управляемый сообществом набор инструментов.

7. Заключение

Lagrange Labs методично меняет пересечение ИИ и блокчейна через призму проверяемости. Их подход предлагает комплексное решение:

  • DeepProve решает проблему доверенного вывода.
  • ZK-сопроцессор решает проблему доверенных данных.
  • Динамические zk-SNARKs напрямую включают потребность реального мира в непрерывных обновлениях в систему доказательства.

Если Lagrange сможет сохранить свое преимущество в производительности, решить критическую проблему стандартизации и продолжить развивать свою надежную сеть, она имеет хорошие шансы стать краеугольным камнем в развивающемся секторе "ИИ + ZK-инфраструктуры".