Saltar para o conteúdo principal

Blockchains Pós-Quânticas: 8 Projetos em Corrida para Construir Criptografia à Prova de Computação Quântica

· 10 min de leitura
Dora Noda
Software Engineer

Quando a Coinbase formou um conselho consultivo pós-quântico em janeiro de 2026, validou o que pesquisadores de segurança alertavam há anos: os computadores quânticos quebrarão a criptografia atual das blockchains, e a corrida para a criptografia à prova de tecnologia quântica começou. As assinaturas XMSS da QRL, os STARKs baseados em hash da StarkWare e o prêmio de pesquisa de $ 2 M da Ethereum representam a vanguarda de projetos que se posicionam para a liderança de mercado em 2026. A questão não é se as blockchains precisam de resistência quântica — é quais abordagens técnicas dominarão quando o Q-Day chegar.

O setor de blockchains pós-quânticas abrange duas categorias: a modernização de cadeias existentes (Bitcoin, Ethereum) e protocolos nativamente resistentes à computação quântica (QRL, Quantum1). Cada um enfrenta desafios diferentes. As modernizações devem manter a compatibilidade reversa, coordenar atualizações distribuídas e gerenciar chaves públicas expostas. Os protocolos nativos começam do zero com criptografia resistente à computação quântica, mas carecem de efeitos de rede. Ambas as abordagens são necessárias — as cadeias legadas detêm trilhões em valor que devem ser protegidos, enquanto as novas cadeias podem otimizar a resistência quântica desde o genesis.

QRL: A Blockchain Pioneira em Resistência Quântica

A Quantum Resistant Ledger (QRL) foi lançada em 2018 como a primeira blockchain a implementar criptografia pós-quântica desde o início. O projeto escolheu o XMSS (eXtended Merkle Signature Scheme), um algoritmo de assinatura baseado em hash que fornece resistência quântica por meio de funções de hash em vez de teoria dos números.

Por que XMSS? Acredita-se que funções de hash como SHA-256 sejam resistentes à computação quântica porque os computadores quânticos não aceleram significativamente as colisões de hash (o algoritmo de Grover fornece aceleração quadrática, não exponencial como o algoritmo de Shor contra o ECDSA). O XMSS aproveita essa propriedade, construindo assinaturas a partir de árvores de Merkle de valores de hash.

Compensações: As assinaturas XMSS são grandes (~ 2.500 bytes vs. 65 bytes para ECDSA), tornando as transações mais caras. Cada endereço tem capacidade de assinatura limitada — após gerar N assinaturas, a árvore deve ser regenerada. Essa natureza de estado (stateful) exige um gerenciamento cuidadoso das chaves.

Posicionamento de mercado: A QRL continua sendo um nicho, processando um volume de transações mínimo em comparação com Bitcoin ou Ethereum. No entanto, ela prova que as blockchains resistentes à computação quântica são tecnicamente viáveis. À medida que o Q-Day se aproxima, a QRL pode ganhar atenção como uma alternativa testada em batalha.

Perspectivas futuras: Se as ameaças quânticas se materializarem mais rápido do que o esperado, a vantagem de pioneirismo da QRL será importante. O protocolo tem anos de experiência em produção com assinaturas pós-quânticas. Instituições que buscam ativos seguros contra tecnologia quântica podem alocar na QRL como um "seguro quântico".

STARKs: Provas de Conhecimento Zero com Resistência Quântica

A tecnologia STARK (Scalable Transparent Argument of Knowledge) da StarkWare fornece resistência quântica como um benefício secundário de sua arquitetura de prova de conhecimento zero. Os STARKs usam funções de hash e polinômios, evitando a criptografia de curva elíptica vulnerável ao algoritmo de Shor.

Por que os STARKs importam: Ao contrário dos SNARKs (que exigem configurações confiáveis e usam curvas elípticas), os STARKs são transparentes (sem configuração confiável) e resistentes à computação quântica. Isso os torna ideais para soluções de escalabilidade (StarkNet) e migração pós-quântica.

Uso atual: A StarkNet processa transações para a escalabilidade de Camada 2 (L2) da Ethereum. A resistência quântica é latente — não é a característica principal, mas uma propriedade valiosa à medida que as ameaças quânticas crescem.

Caminho de integração: A Ethereum poderia integrar assinaturas baseadas em STARK para segurança pós-quântica, mantendo a compatibilidade reversa com o ECDSA durante a transição. Essa abordagem híbrida permite uma migração gradual.

Desafios: As provas STARK são grandes (centenas de kilobytes), embora as técnicas de compressão estejam melhorando. A verificação é rápida, mas a geração da prova é computacionalmente cara. Essas compensações limitam o rendimento para aplicações de alta frequência.

Perspectiva: Os STARKs provavelmente se tornarão parte da solução pós-quântica da Ethereum, seja como esquema de assinatura direta ou como um invólucro para a transição de endereços legados. O histórico de produção da StarkWare e a integração com a Ethereum tornam esse caminho provável.

Prêmio de Pesquisa de $ 2 M da Fundação Ethereum: Assinaturas Baseadas em Hash

A designação da Fundação Ethereum em janeiro de 2026 da criptografia pós-quântica como "prioridade estratégica máxima" foi acompanhada por um prêmio de pesquisa de $ 2 milhões para soluções de migração prática. O foco são assinaturas baseadas em hash (SPHINCS+, XMSS) e criptografia baseada em rede (lattice-based).

SPHINCS+: Um esquema de assinatura baseada em hash sem estado (stateless) padronizado pelo NIST. Ao contrário do XMSS, o SPHINCS+ não requer gerenciamento de estado — você pode assinar mensagens ilimitadas com uma única chave. As assinaturas são maiores (~ 16-40 KB), mas a propriedade sem estado simplifica a integração.

Dilithium: Um esquema de assinatura baseada em rede que oferece assinaturas menores (~ 2,5 KB) e verificação mais rápida do que as alternativas baseadas em hash. A segurança depende de problemas de rede considerados difíceis para a computação quântica.

O desafio da Ethereum: Migrar a Ethereum requer abordar as chaves públicas expostas de transações históricas, manter a compatibilidade reversa durante a transição e minimizar o aumento no tamanho das assinaturas para evitar prejudicar a economia das L2s.

Prioridades de pesquisa: O prêmio de $ 2 M visa caminhos de migração práticos — como realizar o fork da rede, fazer a transição dos formatos de endereço, lidar com chaves legadas e manter a segurança durante a transição de vários anos.

Cronograma: Os desenvolvedores da Ethereum estimam de 3 a 5 anos da pesquisa até a implantação em produção. Isso sugere a ativação da resistência pós-quântica na mainnet por volta de 2029-2031, assumindo que o Q-Day não chegue antes.

BIPs do Bitcoin: Abordagem Conservadora para a Migração Pós-Quântica

As Propostas de Melhoria do Bitcoin (BIPs) que discutem criptografia pós-quântica existem em estágios de rascunho, mas a construção de consenso é lenta. A cultura conservadora do Bitcoin resiste à criptografia não testada, preferindo soluções comprovadas em batalha.

Abordagem provável: Assinaturas baseadas em hash (SPHINCS+) devido ao perfil de segurança conservador. O Bitcoin prioriza a segurança em detrimento da eficiência, aceitando assinaturas maiores para obter um risco menor.

Integração Taproot: A atualização Taproot do Bitcoin permite flexibilidade de script que poderia acomodar assinaturas pós-quânticas sem um hard fork. Os scripts Taproot poderiam incluir validação de assinatura pós-quântica juntamente com ECDSA, permitindo uma migração opcional (opt-in).

Desafio: Os 6,65 milhões de BTC em endereços expostos. O Bitcoin deve decidir: migração forçada (queima moedas perdidas), migração voluntária (riscos de roubo quântico) ou uma abordagem híbrida aceitando perdas.

Cronograma: O Bitcoin move-se mais lentamente que o Ethereum. Mesmo que as BIPs cheguem a um consenso em 2026-2027, a ativação na mainnet pode levar até 2032-2035. Este cronograma pressupõe que o Q-Day não seja iminente.

Divisão da comunidade: Alguns maximalistas do Bitcoin negam a urgência quântica, vendo-a como uma ameaça distante. Outros defendem uma ação imediata. Essa tensão retarda a construção de consenso.

Quantum1: Plataforma de Smart Contracts Nativa Resistente à Computação Quântica

A Quantum1 (exemplo hipotético de projetos emergentes) representa a nova onda de blockchains projetadas para serem resistentes à computação quântica desde a sua gênese. Ao contrário do QRL (pagamentos simples), essas plataformas oferecem funcionalidade de smart contracts com segurança pós-quântica.

Arquitetura: Combina assinaturas baseadas em redes (lattice-based) (Dilithium), compromissos baseados em hash e provas de conhecimento zero (zero-knowledge proofs) para smart contracts resistentes à computação quântica e que preservam a privacidade.

Proposta de valor: Desenvolvedores que constroem aplicações de longo prazo (vida útil de mais de 10 anos) podem preferir plataformas nativas resistentes à computação quântica em vez de redes adaptadas. Por que construir no Ethereum hoje apenas para migrar em 2030?

Desafios: Os efeitos de rede favorecem as chains estabelecidas. Bitcoin e Ethereum têm liquidez, usuários, desenvolvedores e aplicações. Novas chains lutam para ganhar tração, independentemente da superioridade técnica.

Catalisador potencial: Um ataque quântico em uma grande chain impulsionaria a fuga para alternativas resistentes à computação quântica. Projetos do tipo Quantum1 são apólices de seguro contra a falha dos incumbentes.

Conselho Consultivo da Coinbase: Coordenação Institucional

A formação de um conselho consultivo pós-quântico pela Coinbase sinaliza o foco institucional na preparação quântica. Como uma empresa de capital aberto com deveres fiduciários, a Coinbase não pode ignorar os riscos aos ativos dos clientes.

Papel do conselho consultivo: Avaliar ameaças quânticas, recomendar estratégias de migração, coordenar com desenvolvedores de protocolo e garantir que a infraestrutura da Coinbase se prepare para a transição pós-quântica.

Influência institucional: A Coinbase detém bilhões em criptoativos de clientes. Se a Coinbase impulsionar os protocolos em direção a padrões pós-quânticos específicos, essa influência será relevante. A participação das exchanges acelera a adoção — se as exchanges suportarem apenas endereços pós-quânticos, os usuários migrarão mais rapidamente.

Pressão do cronograma: O envolvimento público da Coinbase sugere que os cronogramas institucionais são mais curtos do que o discurso da comunidade admite. Empresas públicas não formam conselhos consultivos para riscos de 30 anos.

Os 8 Projetos que se Posicionam para a Liderança

Resumindo o cenário competitivo:

  1. QRL: Pioneiro (First mover), implementação XMSS em produção, mercado de nicho
  2. StarkWare/StarkNet: Resistência quântica baseada em STARK, integração com Ethereum
  3. Ethereum Foundation: Prêmio de pesquisa de US$ 2 milhões, foco em SPHINCS+ / Dilithium
  4. Bitcoin Core: Propostas BIP, migração opcional (opt-in) habilitada pelo Taproot
  5. Plataformas do tipo Quantum1: Chains de smart contracts nativamente resistentes à computação quântica
  6. Algorand: Explorando criptografia pós-quântica para atualizações futuras
  7. Cardano: Pesquisa sobre integração de criptografia baseada em redes (lattice-based)
  8. IOTA: Funções de hash resistentes à computação quântica na arquitetura Tangle

Cada projeto otimiza para diferentes trade-offs: segurança vs. eficiência, compatibilidade reversa vs. novo começo (clean slate), algoritmos padronizados pelo NIST vs. experimentais.

O que Isso Significa para Desenvolvedores e Investidores

Para desenvolvedores: Construir aplicações com horizontes de mais de 10 anos deve considerar a migração pós-quântica. Aplicações no Ethereum eventualmente precisarão suportar formatos de endereço pós-quânticos. O planejamento agora reduz a dívida técnica no futuro.

Para investidores: A diversificação entre chains resistentes à computação quântica e chains legadas protege contra o risco quântico. O QRL e projetos semelhantes são especulativos, mas oferecem um potencial de valorização assimétrico se as ameaças quânticas se materializarem mais rápido do que o esperado.

Para instituições: A preparação pós-quântica é gestão de risco, não especulação. Custodiantes que detêm ativos de clientes devem planejar estratégias de migração, coordenar com desenvolvedores de protocolo e garantir que a infraestrutura suporte assinaturas pós-quânticas.

Para protocolos: A janela para migração está se fechando. Projetos que iniciarem pesquisas pós-quânticas em 2026 não farão a implantação antes de 2029-2031. Se o Q-Day chegar em 2035, isso deixa apenas 5 a 10 anos de segurança pós-quântica. Começar mais tarde arrisca tempo insuficiente.

Fontes