zkML과 암호학적 증명을 통한 검증 가능한 온체인 AI
소개: 블록체인에서 검증 가능한 AI의 필요성
AI 시스템의 영향력이 커짐에 따라 그 결과물의 신뢰성을 보장하는 것이 중요해졌습니다. 전통적인 방법은 제도적 보증(본질적으로 "그냥 우리를 믿으세요")에 의존하며, 이는 암호학적 보장을 제공하지 않습니다. 이는 블록체인과 같은 탈중앙화된 환경에서 특히 문제가 되는데, 스마트 계약이나 사용자는 무거운 모델을 온체인에서 다시 실행할 수 없이 AI가 도출한 결과를 신뢰해야 하기 때문입니다. **영지식 머신러닝(zkML)**은 ML 연산의 _암호학적 검증_을 허용함으로써 이 문제를 해결합니다. 본질적으로 zkML은 증명자가 _"출력 $Y$는 입력 $X$에 대해 모델 $M$을 실행하여 나왔다"_는 간결한 증명을 생성할 수 있게 해주며, 이때 $X$나 $M$의 내부 세부 정보는 공개하지 않습니다. 이러한 영지식 증명(ZKP)은 누구나(또는 어떤 계약이든) 효율적으로 검증할 수 있어, AI 신뢰를 "정책에서 증명으로" 전환시킵니다.
AI의 온체인 검증 가능성은 블록체인이 연산 자체를 수행하는 대신 정확한 실행 증명을 검증함으로써 고급 연산(신경망 추론 등)을 통합할 수 있음을 의미합니다. 이는 광범위한 영향을 미칩니다. 스마트 계약은 AI 예측을 기반으로 결정을 내릴 수 있고, 탈중앙화된 자율 에이전트는 자신들의 알고리즘을 따랐음을 증명할 수 있으며, 크로스체인 또는 오프체인 연산 서비스는 검증 불가능한 오라클 대신 검증 가능한 결과물을 제공할 수 있습니다. 궁극적으로 zkML은 신뢰가 필요 없고 프라이버시를 보존하는 AI로 가는 길을 제시합니다. 예를 들어, AI 모델의 결정이 개인 데이터나 독점적인 모델 가중치를 노출하지 않고 정확하고 승인되었음을 증명할 수 있습니다. 이는 안전한 의료 분석부터 블록체인 게임, DeFi 오라클에 이르기까지 다양한 애플리케이션에 핵심적입니다.
zkML의 작동 원리: ML 추론을 간결한 증명으로 압축하기
높은 수준에서 zkML은 암호학적 증명 시스템과 ML 추론을 결합하여 복잡한 모델 평가를 작은 증명으로 "압축"할 수 있도록 합니다. 내부적으로 ML 모델(예: 신경망)은 많은 산술 연산(행렬 곱셈, 활성화 함수 등)으로 구성된 회로나 프로그램으로 표현됩니다. 모든 중간 값을 공개하는 대신, 증명자는 전체 연산을 오프체인에서 수행한 다음