Saltar al contenido principal

Blockchains poscuánticas: 8 proyectos en la carrera por construir criptografía a prueba de cuántica

· 10 min de lectura
Dora Noda
Software Engineer

Cuando Coinbase formó un consejo asesor post-cuántico en enero de 2026, validó lo que los investigadores de seguridad advirtieron durante años: las computadoras cuánticas romperán la criptografía actual de blockchain, y la carrera para asegurar las criptomonedas contra la computación cuántica ha comenzado. Las firmas XMSS de QRL, los STARKs basados en hashes de StarkWare y el premio de investigación de $ 2 millones de Ethereum representan la vanguardia de los proyectos que se posicionan para el liderazgo del mercado en 2026. La pregunta no es si las blockchains necesitan resistencia cuántica, sino qué enfoques técnicos dominarán cuando llegue el Q-Day.

El sector de las blockchains post-cuánticas abarca dos categorías: la adaptación de cadenas existentes (Bitcoin, Ethereum) y los protocolos nativos resistentes a la computación cuántica (QRL, Quantum1). Cada uno enfrenta desafíos diferentes. Las adaptaciones deben mantener la compatibilidad hacia atrás, coordinar actualizaciones distribuidas y gestionar las claves públicas expuestas. Los protocolos nativos comienzan desde cero con criptografía resistente a la computación cuántica, pero carecen de efectos de red. Ambos enfoques son necesarios: las cadenas heredadas albergan billones en valor que deben protegerse, mientras que las nuevas cadenas pueden optimizarse para la resistencia cuántica desde su génesis.

QRL: La blockchain pionera resistente a la computación cuántica

Quantum Resistant Ledger (QRL) se lanzó en 2018 como la primera blockchain en implementar criptografía post-cuántica desde su inicio. El proyecto eligió XMSS (eXtended Merkle Signature Scheme), un algoritmo de firma basado en hashes que proporciona resistencia cuántica a través de funciones hash en lugar de la teoría de números.

¿Por qué XMSS?: Se cree que las funciones hash como SHA-256 son resistentes a la computación cuántica porque las computadoras cuánticas no aceleran significativamente las colisiones de hash (el algoritmo de Grover proporciona una aceleración cuadrática, no exponencial como el algoritmo de Shor contra ECDSA). XMSS aprovecha esta propiedad, construyendo firmas a partir de árboles de Merkle de valores hash.

Compromisos: Las firmas XMSS son grandes (~ 2,500 bytes frente a los 65 bytes de ECDSA), lo que encarece las transacciones. Cada dirección tiene una capacidad de firma limitada: después de generar N firmas, el árbol debe regenerarse. Esta naturaleza con estado requiere una gestión de claves cuidadosa.

Posición en el mercado: QRL sigue siendo un nicho, procesando un volumen de transacciones mínimo en comparación con Bitcoin o Ethereum. Sin embargo, demuestra que las blockchains resistentes a la computación cuántica son técnicamente viables. A medida que se acerca el Q-Day, QRL podría captar atención como una alternativa probada en batalla.

Perspectivas futuras: Si las amenazas cuánticas se materializan más rápido de lo esperado, la ventaja de ser el primero de QRL será importante. El protocolo cuenta con años de experiencia en producción con firmas post-cuánticas. Las instituciones que busquen tenencias seguras frente a la computación cuántica podrían asignar fondos a QRL como un "seguro cuántico".

STARKs: Pruebas de conocimiento cero con resistencia cuántica

La tecnología STARK (Scalable Transparent Argument of Knowledge) de StarkWare proporciona resistencia cuántica como un beneficio colateral de su arquitectura de pruebas de conocimiento cero. Los STARKs utilizan funciones hash y polinomios, evitando la criptografía de curva elíptica vulnerable al algoritmo de Shor.

Por qué los STARKs son importantes: A diferencia de los SNARKs (que requieren configuraciones de confianza y utilizan curvas elípticas), los STARKs son transparentes (sin configuración de confianza) y resistentes a la computación cuántica. Esto los hace ideales para soluciones de escalabilidad (StarkNet) y migración post-cuántica.

Uso actual: StarkNet procesa transacciones para el escalado de Capa 2 (L2) de Ethereum. La resistencia cuántica es latente: no es la característica principal, sino una propiedad valiosa a medida que crecen las amenazas cuánticas.

Ruta de integración: Ethereum podría integrar firmas basadas en STARK para la seguridad post-cuántica, manteniendo la compatibilidad hacia atrás con ECDSA durante la transición. Este enfoque híbrido permite una migración gradual.

Desafíos: Las pruebas STARK son grandes (cientos de kilobytes), aunque las técnicas de compresión están mejorando. La verificación es rápida, pero la generación de pruebas es computacionalmente costosa. Estos compromisos limitan el rendimiento para aplicaciones de alta frecuencia.

Perspectivas: Es probable que los STARKs formen parte de la solución post-cuántica de Ethereum, ya sea como un esquema de firma directa o como un envoltorio para la transición de direcciones heredadas. El historial de producción de StarkWare y la integración con Ethereum hacen que este camino sea probable.

Premio de investigación de $ 2 millones de la Fundación Ethereum: Firmas basadas en hashes

La designación de la criptografía post-cuántica como "máxima prioridad estratégica" por parte de la Fundación Ethereum en enero de 2026 fue acompañada por un premio de investigación de $ 2 millones para soluciones de migración prácticas. El enfoque se centra en las firmas basadas en hashes (SPHINCS+, XMSS) y la criptografía basada en redes (Dilithium).

SPHINCS+: Un esquema de firma basado en hashes sin estado estandarizado por el NIST. A diferencia de XMSS, SPHINCS+ no requiere gestión de estado: se pueden firmar mensajes ilimitados con una sola clave. Las firmas son más grandes (~ 16-40 KB), pero la propiedad sin estado simplifica la integración.

Dilithium: Un esquema de firma basado en redes que ofrece firmas más pequeñas (~ 2.5 KB) y una verificación más rápida que las alternativas basadas en hashes. La seguridad se basa en problemas de redes que se consideran difíciles de resolver para la computación cuántica.

El desafío de Ethereum: La migración de Ethereum requiere abordar las claves públicas expuestas de transacciones históricas, mantener la compatibilidad hacia atrás durante la transición y minimizar el aumento del tamaño de las firmas para evitar romper la economía de las L2.

Prioridades de investigación: El premio de $ 2 millones se dirige a rutas de migración prácticas: cómo realizar un fork de la red, transicionar los formatos de dirección, manejar las claves heredadas y mantener la seguridad durante la transición de varios años.

Cronograma: Los desarrolladores de Ethereum estiman de 3 a 5 años desde la investigación hasta el despliegue en producción. Esto sugiere una activación post-cuántica en la red principal alrededor de 2029-2031, asumiendo que el Q-Day no llegue antes.

BIP de Bitcoin: Enfoque conservador para la migración post-cuántica

Las Propuestas de Mejora de Bitcoin (BIP) que analizan la criptografía post-cuántica existen en etapas de borrador, pero la creación de consenso es lenta. La cultura conservadora de Bitcoin se resiste a la criptografía no probada, prefiriendo soluciones endurecidas por el tiempo.

Enfoque probable: Firmas basadas en hash (SPHINCS +) debido a su perfil de seguridad conservador. Bitcoin prioriza la seguridad sobre la eficiencia, aceptando firmas más grandes a cambio de un menor riesgo.

Integración de Taproot: La actualización Taproot de Bitcoin permite una flexibilidad de scripts que podría acomodar firmas post-cuánticas sin un hard fork. Los scripts de Taproot podrían incluir la validación de firmas post-cuánticas junto con ECDSA, permitiendo una migración voluntaria.

Desafío: Los 6,65 millones de BTC en direcciones expuestas. Bitcoin debe decidir: migración forzada (quema de monedas perdidas), migración voluntaria (riesgo de robo cuántico) o un enfoque híbrido que acepte pérdidas.

Cronograma: Bitcoin se mueve más lento que Ethereum. Incluso si los BIP alcanzan el consenso en 2026 - 2027, la activación en la red principal (mainnet) podría tardar hasta 2032 - 2035. Este cronograma asume que el Q - Day no es inminente.

División de la comunidad: Algunos maximalistas de Bitcoin niegan la urgencia cuántica, viéndola como una amenaza lejana. Otros abogan por una acción inmediata. Esta tensión frena la construcción de consenso.

Quantum1: Plataforma nativa de contratos inteligentes resistente a la computación cuántica

Quantum1 (ejemplo hipotético de proyectos emergentes) representa la nueva ola de blockchains diseñadas para ser resistentes a la computación cuántica desde su génesis. A diferencia de QRL (pagos simples), estas plataformas ofrecen funcionalidad de contratos inteligentes con seguridad post-cuántica.

Arquitectura: Combina firmas basadas en redes (Dilithium), compromisos basados en hash y pruebas de conocimiento cero para contratos inteligentes que preservan la privacidad y son resistentes a la computación cuántica.

Propuesta de valor: Los desarrolladores que construyen aplicaciones a largo plazo (vida útil de más de 10 años) pueden preferir plataformas nativas resistentes a la computación cuántica en lugar de cadenas adaptadas. ¿Por qué construir en Ethereum hoy solo para migrar en 2030?

Desafíos: Los efectos de red favorecen a las cadenas establecidas. Bitcoin y Ethereum tienen liquidez, usuarios, desarrolladores y aplicaciones. Las nuevas cadenas luchan por ganar tracción independientemente de su superioridad técnica.

Catalizador potencial: Un ataque cuántico a una cadena importante impulsaría la huida hacia alternativas resistentes a la computación cuántica. Los proyectos de tipo Quantum1 son pólizas de seguro contra el fallo de los incumbentes.

Consejo Asesor de Coinbase: Coordinación Institucional

La formación de un consejo asesor post-cuántico por parte de Coinbase indica un enfoque institucional en la preparación cuántica. Como empresa que cotiza en bolsa con deberes fiduciarios, Coinbase no puede ignorar los riesgos para los activos de los clientes.

Papel del consejo asesor: Evaluar las amenazas cuánticas, recomendar estrategias de migración, coordinar con los desarrolladores de protocolos y garantizar que la infraestructura de Coinbase se prepare para la transición post-cuántica.

Influencia institucional: Coinbase posee miles de millones en criptomonedas de clientes. Si Coinbase empuja los protocolos hacia estándares post-cuánticos específicos, esa influencia importa. La participación de los exchanges acelera la adopción: si los exchanges solo admiten direcciones post-cuánticas, los usuarios migrarán más rápido.

Presión del cronograma: La participación pública de Coinbase sugiere que los cronogramas institucionales son más cortos de lo que admite el discurso de la comunidad. Las empresas públicas no forman consejos asesores para riesgos a 30 años vista.

Los 8 proyectos que se posicionan para el liderazgo

Resumen del panorama competitivo:

  1. QRL: Pionero, implementación de XMSS en producción, mercado de nicho.
  2. StarkWare / StarkNet: Resistencia cuántica basada en STARK, integración con Ethereum.
  3. Ethereum Foundation: Premio de investigación de $ 2M, enfoque en SPHINCS + / Dilithium.
  4. Bitcoin Core: Propuestas BIP, migración voluntaria habilitada por Taproot.
  5. Plataformas tipo Quantum1: Cadenas de contratos inteligentes nativas resistentes a la computación cuántica.
  6. Algorand: Explorando la criptografía post-cuántica para futuras actualizaciones.
  7. Cardano: Investigación sobre la integración de criptografía basada en redes.
  8. IOTA: Funciones hash resistentes a la computación cuántica en la arquitectura Tangle.

Cada proyecto optimiza para diferentes compensaciones: seguridad frente a eficiencia, compatibilidad con versiones anteriores frente a borrón y cuenta nueva, algoritmos estandarizados por el NIST frente a experimentales.

Qué significa esto para desarrolladores e inversores

Para desarrolladores: Al construir aplicaciones con horizontes de más de 10 años se debe considerar la migración post-cuántica. Las aplicaciones en Ethereum eventualmente necesitarán admitir formatos de dirección post-cuánticos. Planificar ahora reduce la deuda técnica futura.

Para inversores: La diversificación entre cadenas resistentes a la computación cuántica y cadenas heredadas cubre el riesgo cuántico. QRL y proyectos similares son especulativos pero ofrecen un potencial alcista asimétrico si las amenazas cuánticas se materializan más rápido de lo esperado.

Para instituciones: La preparación post-cuántica es gestión de riesgos, no especulación. Los custodios que mantienen activos de clientes deben planificar estrategias de migración, coordinar con los desarrolladores de protocolos y garantizar que la infraestructura admita firmas post-cuánticas.

Para protocolos: La ventana para la migración se está cerrando. Los proyectos que comiencen la investigación post-cuántica en 2026 no se desplegarán hasta 2029 - 2031. Si el Q - Day llega en 2035, eso deja solo de 5 a 10 años de seguridad post-cuántica. Comenzar más tarde conlleva el riesgo de no tener tiempo suficiente.

Fuentes