Direkt zum Hauptinhalt

Das Problem der Quantenmigration: Warum Ihre Bitcoin-Adresse nach einer Transaktion unsicher wird

· 10 Min. Lesezeit
Dora Noda
Software Engineer

Wenn Sie eine Bitcoin-Transaktion signieren, wird Ihr öffentlicher Schlüssel dauerhaft auf der Blockchain sichtbar. Seit 15 Jahren spielt dies keine Rolle – die ECDSA-Verschlüsselung, die Bitcoin schützt, ist mit klassischen Computern rechnerisch nicht zu knacken. Doch Quantencomputer ändern alles. Sobald ein ausreichend leistungsstarker Quantencomputer existiert (Q-Day), kann er Ihren privaten Schlüssel aus Ihrem offengelegten öffentlichen Schlüssel in wenigen Stunden rekonstruieren und Ihre Adresse leeren. Das unterschätzte Q-Day-Problem besteht nicht nur darin, die „Verschlüsselung zu aktualisieren“. Es geht darum, dass 6,65 Millionen BTC auf Adressen, die Transaktionen signiert haben, bereits gefährdet sind und eine Migration exponentiell schwieriger ist als die Aktualisierung von IT-Systemen in Unternehmen.

Der mit 2 Millionen US-Dollar dotierte Post-Quantum-Forschungspreis der Ethereum Foundation und die Gründung eines speziellen PQ-Teams im Januar 2026 signalisieren, dass der Status einer „obersten strategischen Priorität“ erreicht wurde. Dies ist keine Zukunftsplanung – es ist Notfallvorsorge. Project Eleven sammelte 20 Millionen US-Dollar speziell für quantenresistente Krypto-Sicherheit. Coinbase gründete einen Post-Quantum-Beirat. Der Wettlauf gegen den Q-Day hat begonnen, und Blockchains stehen vor einzigartigen Herausforderungen, die traditionelle Systeme nicht kennen: eine unveränderliche Historie, verteilte Koordination und 6,65 Millionen BTC auf Adressen mit offengelegten öffentlichen Schlüsseln.

Das Problem der Offenlegung des öffentlichen Schlüssels: Warum Ihre Adresse nach dem Signieren angreifbar wird

Die Sicherheit von Bitcoin beruht auf einer grundlegenden Asymmetrie: Die Ableitung eines öffentlichen Schlüssels aus einem privaten Schlüssel ist einfach, aber die Umkehrung ist rechnerisch unmöglich. Ihre Bitcoin-Adresse ist ein Hash Ihres öffentlichen Schlüssels, was eine zusätzliche Schutzschicht bietet. Solange Ihr öffentlicher Schlüssel verborgen bleibt, können Angreifer Ihren spezifischen Schlüssel nicht ins Visier nehmen.

Jedoch wird in dem Moment, in dem Sie eine Transaktion signieren, Ihr öffentlicher Schlüssel auf der Blockchain sichtbar. Dies ist unvermeidlich – die Signaturprüfung erfordert den öffentlichen Schlüssel. Für den Empfang von Geldern reicht Ihre Adresse (Hash des öffentlichen Schlüssels) aus. Das Ausgeben erfordert jedoch die Offenlegung des Schlüssels.

Klassische Computer können diese Offenlegung nicht ausnutzen. Das Knacken von ECDSA-256 (Bitcoins Signaturschema) erfordert das Lösen des Problems des diskreten Logarithmus, was auf 2^128 Operationen geschätzt wird – selbst für Supercomputer, die Jahrtausende lang laufen, unmachbar.

Quantencomputer brechen diese Annahme. Shors Algorithmus, der auf einem Quantencomputer mit ausreichenden Qubits und Fehlerkorrektur läuft, kann diskrete Logarithmen in polynomieller Zeit lösen. Schätzungen gehen davon aus, dass ein Quantencomputer mit ca. 1.500 logischen Qubits ECDSA-256 in wenigen Stunden knacken könnte.

Dies schafft ein kritisches Zeitfenster für Schwachstellen: Sobald Sie eine Transaktion von einer Adresse aus signieren, ist der öffentliche Schlüssel für immer on-chain offengelegt. Wenn später ein Quantencomputer auftaucht, werden alle zuvor offengelegten Schlüssel angreifbar. Die 6,65 Millionen BTC, die auf Adressen gehalten werden, die bereits Transaktionen signiert haben, liegen mit dauerhaft offengelegten öffentlichen Schlüsseln bereit und warten auf den Q-Day.

Neue Adressen ohne Transaktionshistorie bleiben bis zur ersten Verwendung sicher, da ihre öffentlichen Schlüssel nicht offengelegt sind. Aber Legacy-Adressen – Satoshis Coins, Bestände früherer Nutzer, Cold Storage von Börsen, die Transaktionen signiert haben – sind tickende Zeitbomben.

Warum die Blockchain-Migration schwieriger ist als herkömmliche Upgrades der Kryptografie

Auch traditionelle IT-Systeme sind durch Quantencomputer bedroht. Banken, Regierungen und Unternehmen verwenden Verschlüsselungen, die für Quantenangriffe anfällig sind. Ihr Migrationspfad ist jedoch unkompliziert: Verschlüsselungsalgorithmen aktualisieren, Schlüssel rotieren und Daten neu verschlüsseln. Dies ist zwar teuer und komplex, aber technisch machbar.

Die Blockchain-Migration steht vor einzigartigen Herausforderungen:

Unveränderlichkeit: Die Blockchain-Historie ist dauerhaft. Sie können vergangene Transaktionen nicht rückwirkend ändern, um offengelegte öffentliche Schlüssel zu verbergen. Einmal enthüllt, sind sie für immer über Tausende von Nodes hinweg sichtbar.

Verteilte Koordination: Blockchains fehlen zentrale Instanzen, die Upgrades anordnen können. Der Konsens von Bitcoin erfordert die Mehrheitszustimmung unter Minern, Nodes und Nutzern. Die Koordinierung eines Hard Forks für eine Post-Quantum-Migration ist politisch und technisch komplex.

Abwärtskompatibilität: Neue Post-Quantum-Adressen müssen während des Übergangs neben Legacy-Adressen koexistieren. Dies führt zu Protokollkomplexität – zwei Signaturschemata, duale Adressformate, Transaktionsvalidierung im gemischten Modus.

Verlorene Schlüssel und inaktive Nutzer: Millionen von BTC liegen auf Adressen von Personen, die ihre Schlüssel verloren haben, verstorben sind oder Krypto vor Jahren aufgegeben haben. Diese Coins können nicht freiwillig migriert werden. Bleiben sie verwundbar oder erzwingt das Protokoll eine Migration, wodurch das Risiko besteht, den Zugang endgültig zu zerstören?

Transaktionsgröße und Kosten: Post-Quantum-Signaturen sind deutlich größer als ECDSA. Die Signaturgrößen könnten je nach Schema von 65 Bytes auf über 2.500 Bytes ansteigen. Dies bläht die Transaktionsdaten auf, erhöht die Gebühren und begrenzt den Durchsatz.

Konsens über die Algorithmenwahl: Welcher Post-Quantum-Algorithmus? Das NIST hat mehrere standardisiert, aber jeder hat Vor- und Nachteile. Eine falsche Wahl könnte später eine erneute Migration bedeuten. Blockchains müssen auf Algorithmen setzen, die über Jahrzehnte sicher bleiben.

Der mit 2 Millionen US-Dollar dotierte Forschungspreis der Ethereum Foundation zielt genau auf diese Probleme ab: Wie man Ethereum auf Post-Quantum-Kryptografie umstellt, ohne das Netzwerk zu zerstören, die Abwärtskompatibilität zu verlieren oder die Blockchain durch aufgeblähte Signaturen unbrauchbar zu machen.

Das 6,65-Millionen-BTC-Problem: Was passiert mit exponierten Adressen?

Bis zum Jahr 2026 befinden sich etwa 6,65 Millionen BTC auf Adressen, die mindestens eine Transaktion signiert haben, was bedeutet, dass ihre öffentlichen Schlüssel (Public Keys) exponiert sind. Dies entspricht etwa 30 % des gesamten Bitcoin-Angebots und umfasst:

Satoshis Coins: Ungefähr 1 Million BTC, die vom Schöpfer von Bitcoin gemined wurden, bleiben unbewegt. Viele dieser Adressen haben nie Transaktionen signiert, aber andere verfügen über exponierte Schlüssel aus frühen Transaktionen.

Bestände früher Anwender: Tausende von BTC, die von frühen Minern und Adoptern gehalten werden, die diese für Cent-Beträge pro Coin angesammelt haben. Viele Adressen sind inaktiv, weisen jedoch historische Transaktionssignaturen auf.

Cold Storage von Börsen: Kryptobörsen halten Millionen von BTC im Cold Storage. Während Best Practices die Rotation von Adressen vorsehen, verfügen ältere Cold Wallets oft über exponierte öffentliche Schlüssel aus vergangenen Konsolidierungstransaktionen.

Verlorene Coins: Schätzungsweise 3–4 Millionen BTC sind verloren (Besitzer verstorben, Schlüssel vergessen, Festplatten entsorgt). Viele dieser Adressen haben exponierte Schlüssel.

Was passiert mit diesen Coins am Q-Day? Mehrere Szenarien sind denkbar:

Szenario 1 – Erzwungene Migration: Ein Hard Fork könnte die Übertragung von Coins von alten Adressen auf neue Post-Quantum-Adressen innerhalb einer Frist vorschreiben. Coins, die nicht migriert werden, werden unbrauchbar. Dies „verbrennt“ verlorene Coins, schützt das Netzwerk jedoch vor Quantenangriffen, die die Bestände leeren könnten.

Szenario 2 – Freiwillige Migration: Benutzer migrieren freiwillig, aber exponierte Adressen bleiben gültig. Risiko: Quantenangreifer leeren anfällige Adressen, bevor die Besitzer migrieren können. Dies löst eine Panik im Sinne eines „Wettlaufs um die Migration“ aus.

Szenario 3 – Hybrider Ansatz: Einführung von Post-Quantum-Adressen bei gleichzeitiger unbegrenzter Aufrechterhaltung der Abwärtskompatibilität. Man akzeptiert, dass anfällige Adressen nach dem Q-Day schließlich geleert werden, und betrachtet dies als natürliche Selektion.

Szenario 4 – Notfall-Einfrierung: Bei der Erkennung von Quantenangriffen werden anfällige Adresstypen über einen Notfall-Hard-Fork eingefroren. Dies verschafft Zeit für die Migration, erfordert jedoch eine zentralisierte Entscheidungsfindung, gegen die sich Bitcoin sträubt.

Keines dieser Szenarien ist ideal. Szenario 1 zerstört rechtmäßig verlorene Schlüssel. Szenario 2 ermöglicht Quanten-Diebstahl. Szenario 3 akzeptiert Verluste in Milliardenhöhe. Szenario 4 untergräbt die Unveränderlichkeit (Immutability) von Bitcoin. Die Ethereum Foundation und Bitcoin-Forscher ringen bereits jetzt mit diesen Kompromissen, nicht erst in ferner Zukunft.

Post-Quantum-Algorithmen: Die technischen Lösungen

Mehrere kryptografische Post-Quantum-Algorithmen bieten Resistenz gegen Quantenangriffe:

Hash-basierte Signaturen (XMSS, SPHINCS+): Die Sicherheit beruht auf Hash-Funktionen, die als quantenresistent gelten. Vorteil: Gut verstanden, konservative Sicherheitsannahmen. Nachteil: Große Signaturgrößen (2.500+ Bytes), was Transaktionen teuer macht.

Gitterbasierte Kryptografie (Lattice-based cryptography; Dilithium, Kyber): Basiert auf Gitterproblemen, die für Quantencomputer schwierig sind. Vorteil: Kleinere Signaturen (~2.500 Bytes), effiziente Verifizierung. Nachteil: Neuer, weniger praxiserprobt als hash-basierte Verfahren.

STARKs (Scalable Transparent Arguments of Knowledge): Zero-Knowledge-Proofs, die gegen Quantenangriffe resistent sind, da sie auf Hash-Funktionen und nicht auf Zahlentheorie basieren. Vorteil: Transparent (kein Trusted Setup), quantenresistent, skalierbar. Nachteil: Große Proof-Größen, rechenintensiv.

Multivariate Kryptografie: Sicherheit durch das Lösen von multivariaten Polynomgleichungen. Vorteil: Schnelle Signaturerstellung. Nachteil: Große öffentliche Schlüssel, weniger ausgereift.

Code-basierte Kryptografie: Basiert auf fehlerkorrigierenden Codes. Vorteil: Schnell, gut untersucht. Nachteil: Sehr große Schlüsselgrößen, unpraktisch für die Blockchain-Nutzung.

Die Ethereum Foundation untersucht hash-basierte und gitterbasierte Signaturen als die vielversprechendsten für die Blockchain-Integration. QRL (Quantum Resistant Ledger) leistete 2018 Pionierarbeit bei der XMSS-Implementierung und demonstrierte die Machbarkeit, akzeptierte jedoch Kompromisse bei Transaktionsgröße und Durchsatz.

Bitcoin wird sich aufgrund seiner konservativen Sicherheitsphilosophie wahrscheinlich für hash-basierte Signaturen (SPHINCS+ oder ähnlich) entscheiden. Ethereum könnte die gitterbasierte Variante (Dilithium) wählen, um den Größen-Overhead zu minimieren. Beide stehen vor der gleichen Herausforderung: Signaturen, die 10–40x größer sind als ECDSA, blähen die Blockchain-Größe und die Transaktionskosten massiv auf.

Der Zeitplan: Wie lange bis zum Q-Day?

Die Schätzung des Q-Day (wenn Quantencomputer ECDSA knacken) ist spekulativ, aber die Trends sind eindeutig:

Optimistischer Zeitplan (für Angreifer): 10–15 Jahre. IBM, Google und Startups machen schnelle Fortschritte bei der Qubit-Anzahl und der Fehlerkorrektur. Wenn der Fortschritt exponentiell anhält, könnten 1.500+ logische Qubits bis 2035–2040 verfügbar sein.

Konservativer Zeitplan: 20–30 Jahre. Das Quantencomputing steht vor immensen technischen Herausforderungen – Fehlerkorrektur, Qubit-Kohärenz, Skalierung. Viele glauben, dass praktische Angriffe noch Jahrzehnte entfernt sind.

Pessimistischer Zeitplan (für Blockchains): 5–10 Jahre. Geheime Regierungsprogramme oder bahnbrechende Entdeckungen könnten die Zeitpläne beschleunigen. Eine umsichtige Planung geht von kürzeren, nicht von längeren Zeiträumen aus.

Die Tatsache, dass die Ethereum Foundation die Post-Quantum-Migration im Januar 2026 als „oberste strategische Priorität“ eingestuft hat, deutet darauf hin, dass interne Schätzungen kürzer ausfallen, als der öffentliche Diskurs zugibt. Man stellt keine 2 Millionen US-Dollar bereit und bildet keine engagierten Teams für Risiken, die erst in 30 Jahren relevant werden. Man tut dies für Risiken in 10–15 Jahren.

Die Kultur von Bitcoin sträubt sich gegen Eile, aber führende Entwickler erkennen das Problem an. Vorschläge für ein Post-Quantum-Bitcoin existieren bereits (BIP-Entwürfe), aber die Konsensbildung dauert Jahre. Wenn der Q-Day 2035 eintritt, muss Bitcoin bis 2030 mit der Migration beginnen, um Zeit für Entwicklung, Tests und den Netzwerk-Rollout zu haben.

Was Einzelpersonen jetzt tun können

Während Lösungen auf Protokollebene noch Jahre entfernt sind, können Einzelpersonen ihr Risiko reduzieren:

Regelmäßig auf neue Adressen migrieren: Nachdem Sie von einer Adresse ausgegeben haben, verschieben Sie das verbleibende Guthaben auf eine neue Adresse. Dies minimiert die Expositionszeit des öffentlichen Schlüssels.

Multi-Signatur-Wallets verwenden: Quantencomputer müssten mehrere Signaturen gleichzeitig knacken, was die Schwierigkeit erhöht. Dies ist zwar nicht quantensicher, verschafft aber Zeit.

Adresswiederverwendung vermeiden: Senden Sie niemals Gelder an eine Adresse, von der Sie bereits etwas ausgegeben haben. Jede Ausgabe legt den öffentlichen Schlüssel erneut offen.

Entwicklungen beobachten: Verfolgen Sie die PQ-Forschung der Ethereum Foundation, Updates des Coinbase-Beirats und Bitcoin Improvement Proposals im Zusammenhang mit Post-Quanten-Kryptographie.

Bestände diversifizieren: Wenn Sie das Quantenrisiko beunruhigt, diversifizieren Sie in quantenresistente Chains (QRL) oder weniger exponierte Assets (Proof-of-Stake-Chains lassen sich leichter migrieren als Proof-of-Work).

Dies sind Notbehelfe, keine Lösungen. Die Behebung auf Protokollebene erfordert koordinierte Netzwerk-Upgrades über Milliardenwerte und Millionen von Nutzern hinweg. Die Herausforderung ist nicht nur technischer Natur – sie ist sozial, politisch und wirtschaftlich.

Quellen