Chain Abstraction and Intent‑Centric Architecture in Cross-Chain UX
Introduction
The rapid growth of Layer-1 and Layer-2 blockchains has fragmented the Web3 user experience. Users today juggle multiple wallets, networks, and token bridges just to accomplish complex tasks that span chains. Chain abstraction and intent-centric architecture have emerged as key paradigms to simplify this landscape. By abstracting away chain-specific details and allowing users to act on intents (desired outcomes) rather than crafting explicit per-chain transactions, these approaches promise a unified, seamless cross-chain experience. This report delves into the core principles of chain abstraction, the design of intent-focused execution models, real-world implementations (such as Wormhole and Etherspot), technical underpinnings (relayers, smart wallets, etc.), and the UX benefits for developers and end-users. We also summarize insights from EthCC 2025 – where chain abstraction and intents were hot topics – and provide a comparative table of different protocol approaches.
Principles of Chain Abstraction
Chain abstraction refers to any technology or framework that presents multiple blockchains to users and developers as if they were a single unified environment. The motivation is to eliminate the friction caused by chain heterogeneity. In practice, chain abstraction means:
- Unified Interfaces: Instead of managing separate wallets and RPC endpoints for each blockchain, users interact through one interface that hides network details. Developers can build dApps without deploying separate contracts on every chain or writing custom bridge logic for each network.
- No Manual Bridging: Moving assets or data between chains happens behind the scenes. Users do not manually execute lock/mint bridge transactions or swap for bridge tokens; the abstraction layer handles it automatically. For example, a user could provide liquidity on a protocol regardless of which chain the liquidity resides on, and the system will route funds appropriately.
- Gas Fee Abstraction: Users no longer need to hold each chain’s native token to pay for gas on that chain. The abstraction layer can sponsor gas fees or allow gas to be paid in an asset of the user’s choice. This lowers the barrier for entry since one does not have to acquire ETH, MATIC, SOL, etc. separately.
- Network Agnostic Logic: The application logic becomes chain-agnostic. Smart contracts or off-chain services coordinate to execute user actions on whatever chain(s) necessary, without requiring the user to manually switch networks or sign multiple transactions. In essence, the user’s experience is of one “meta-chain” or a blockchain-agnostic application layer.
The core idea is to let users focus on what they want to achieve, not which chain or how to achieve it. A familiar analogy is web applications abstracting away server location – just as a user doesn’t need to know which server or database their request touches, a Web3 user shouldn’t need to know which chain or bridge is used for an action. By routing transactions through a unified layer, chain abstraction reduces the fragmentation of today’s multi-chain ecosystem.
Motivation: The push for chain abstraction stems from pain points in current cross-chain workflows. Managing separate wallets per chain and performing multi-step cross-chain operations (swap on Chain A, bridge to Chain B, swap again on Chain B, etc.) is tedious and error-prone. Fragmented liquidity and incompatible wallets also limit dApp growth across ecosystems. Chain abstraction tackles these by cohesively bridging ecosystems. Importantly, it treats Ethereum and its many L2s and sidechains as part of one user experience. EthCC 2025 emphasized that this is critical for mainstream adoption – speakers argued that a truly user-centric Web3 future “must abstract away blockchains”, making the multi-chain world feel as easy as a single network.
Intent-Centric Architecture: From Transactions to Intents
Traditional blockchain interactions are transaction-centric: a user explicitly crafts and signs a transaction that executes specific operations (calls a contract function, transfers a token, etc.) on a chosen chain. In a multi-chain context, accomplishing a complex goal might require many such transactions across different networks, each manually initiated by the user in the correct sequence. Intent-centric architecture flips this model. Instead of micromanaging transactions, the user declares an intent – a high-level goal or desired outcome – and lets an automated system figure out the transactions needed to fulfill it.
Under an intent-based design, a user might say: “Swap 100 USDC on Base for 100 USDT on Arbitrum”. This intent encapsulates the what (swap one asset for another on a target chain) without prescribing the how. A specialized agent (often called a solver) then takes on the job of completing it. The solver will determine how to best execute the swap across chains – for example, it might bridge the USDC from Base to Arbitrum using a fast bridge and then perform a swap to USDT, or use a direct cross-chain swap protocol – whatever yields the best result. The user signs one authorization, and the solver handles the complex sequence on the backend, including finding the optimal route, submitting the necessary transactions on each chain, and even fronting any required gas fees or taking on interim risk.
How Intents Empower Flexible Execution: By giving the system freedom to decide how to fulfill a request, intent-centric design enables much smarter and more flexible execution layers than fixed user transactions. Some advantages:
- Optimal Routing: Solvers can optimize for cost, speed, or reliability. For instance, multiple solvers might compete to fulfill a user’s intent, and an on-chain auction can select the one offering the best price (e.g. best exchange rate or lowest fees). This competition drives down costs for the user. Wormhole’s Mayan Swift protocol is an example that embeds an on-chain English auction on Solana for each intent, shifting competition from a “first-come” race to a price-based bidding for better user outcomes. The solver that can execute the swap most profitably for the user wins the bid and carries out the plan, ensuring the user gets the most value. This kind of dynamic price discovery is not possible when a user pre-specifies a single path in a regular transaction.
- Resilience and Flexibility: If one bridge or DEX is unavailable or suboptimal at the moment, a solver can choose an alternative path. The intent remains the same, but the execution layer can adapt to network conditions. Intents thus allow programmable execution strategies – e.g. splitting an order or retrying via another route – all invisible to the end-user who only cares that their goal is achieved.
- Atomic Multi-Chain Actions: Intents can encompass what would traditionally be multiple transactions on different chains. Execution frameworks strive to make the entire sequence feel atomic or at least failure-managed. For example, the solver might only consider the intent fulfilled when all sub-transactions (bridge, swap, etc.) are confirmed, and roll back or compensate if anything fails. This ensures the user’s high-level action is either completed in full or not at all, improving reliability.
- Offloading Complexity: Intents dramatically simplify the user’s role. The user doesn’t need to understand which bridges or exchanges to use, how to split liquidity, or how to schedule operations – all that is offloaded to the infrastructure. As one report puts it, “users focus on the what, not the how”. A direct benefit is user experience: interacting with blockchain applications becomes more like using a Web2 app (where a user simply requests a result, and the service handles the process).
In essence, an intent-centric architecture elevates the level of abstraction from low-level transactions to high-level objectives. Ethereum’s community is so keen on this model that the Ethereum Foundation has introduced the Open Intents Framework (OIF), an open standard and reference architecture for building cross-chain intent systems. The OIF defines standard interfaces (like the ERC-7683 intent format) for how intents are created, communicated, and settled across chains, so that many different solutions (bridges, relayers, auction mechanisms) can plug in modularly. This encourages a whole ecosystem of solvers and settlement protocols that can interoperate. The rise of intents is grounded in the need to make Ethereum and its rollups feel “like a single chain” from a UX perspective – fast and frictionless enough that moving across L2s or sidechains happens in seconds without user headache. Early standards like ERC-7683 (for standardized intent format and lifecycle) have even garnered support from leaders like Vitalik Buterin, underscoring the momentum behind intent-centric designs.
Key Benefits Recap: To summarize, intent-centric architectures bring several key benefits : (1) Simplified UX – users state what they want and the system figures out the rest; (2) Cross-Chain Fluidity – operations that span multiple networks are handled seamlessly, effectively treating many chains as one; (3) Developer Scalability – dApp developers can reach users and liquidity across many chains without reinventing the wheel for each, because the intent layer provides standardized hooks into cross-chain execution. By decoupling what needs to be done from how/where it gets done, intents act as the bridge between user-friendly innovation and the complex interoperability behind the scenes.
Technical Building Blocks of Cross-Chain Abstraction
Implementing chain abstraction and intent-based execution requires a stack of technical mechanisms working in concert. Key components include:
-
Cross-Chain Messaging Relayers: At the core of any multi-chain system is a messaging layer that can reliably carry data and value between blockchains. Protocols like Wormhole, Hyperlane, Axelar, LayerZero, and others provide this capability by relaying messages (often with proofs or validator attestations) from a source chain to one or more destination chains. These messages might carry commands like “execute this intent” or “mint this asset” on the target chain. A robust relayer network is crucial for unified transaction routing – it serves as the “postal service” between chains. For example, Wormhole’s network of 19 Guardian nodes observes events on connected chains and signs a VAA (verifiable action approval) that can be submitted to any other chain to prove an event happened. This decouples the action from any single chain, enabling chain-agnostic behavior. Modern relayers focus on being chain-agnostic (supporting many chain types) and decentralized for security. Wormhole, for instance, extends beyond EVM-based chains to support Solana, Cosmos chains, etc., making it a versatile choice for cross-chain communication. The messaging layer often also handles ordering, retries, and finality guarantees for cross-chain transactions.
-
Smart Contract Wallets (Account Abstraction): Account abstraction (e.g. Ethereum’s ERC-4337) replaces externally owned accounts with smart contract accounts that can be programmed with custom validation logic and multi-step transaction capabilities. This is a foundation for chain abstraction because a smart wallet can serve as the user’s single meta-account controlling assets on all chains. Projects like Etherspot use smart contract wallets to enable features like transaction batching and session keys across chains. A user’s intent might be packaged as a single user operation (in 4337 terms) which the wallet contract then expands into multiple sub-transactions on different networks. Smart wallets can also integrate paymasters (sponsors) to pay gas fees on the user’s behalf, enabling true gas abstraction (the user might pay in a stablecoin or not at all). Security mechanisms like session keys (temporary keys with limited permissions) allow users to approve intents that involve multiple actions without multiple prompts, while limiting risk. In short, account abstraction provides the programmable execution container that can interpret a high-level intent and orchestrate the necessary steps as a series of transactions (often via the relayers).
-
Intent Orchestration and Solvers: Above the messaging and wallet layer lives the intent solver network – the brains that figure out how to fulfill intents. In some architectures, this logic is on-chain (e.g. an on-chain auction contract that matches intent orders with solvers, as in Wormhole’s Solana auction for Mayan Swift). In others, it’s off-chain agents monitoring an intent mempool or order book (for example, the Open Intents Framework provides a reference TypeScript solver that listens for new intent events and then submits transactions to fulfill them). Solvers typically must handle: finding liquidity routes (across DEXes, bridges), price discovery (ensuring the user gets a fair rate), and sometimes covering interim costs (like posting collateral or taking on finality risk – delivering funds to the user before the cross-chain transfer is fully finalized, thereby speeding up UX at some risk to the solver). A well-designed intent-centric system often involves competition among solvers to ensure the user’s intent is executed optimally. Solvers may be economically incentivized (e.g. they earn a fee or arbitrage profit for fulfilling the intent). Mechanisms like solvers’ auctions or batching can be used to maximize efficiency. For example, if multiple users have similar intents, a solver might batch them to minimize bridge fees per user.
-
Unified Liquidity and Token Abstraction: Moving assets across chains introduces the classic problem of fragmented liquidity and wrapped tokens. Chain abstraction layers often abstract tokens themselves – aiming to give the user the experience of a single asset that can be used on many chains. One approach is omnichain tokens (where a token can exist natively on multiple chains under one total supply, instead of many incompatible wrapped versions). Wormhole introduced Native Token Transfers (NTT) as an evolution of traditional lock-and-mint bridges: instead of infinite “bridged” IOU tokens, the NTT framework treats tokens deployed across chains as one asset with shared mint/burn controls. In practice, bridging an asset under NTT means burning on the source and minting on the destination, maintaining a single circulating supply. This kind of liquidity unification is crucial so that chain abstraction can “teleport” assets without confusing the user with multiple token representations. Other projects use liquidity networks or pools (e.g. Connext or Axelar) where liquidity providers supply capital on each chain to swap assets in and out, so users can effectively trade one asset for its equivalent on another chain in one step. The Securitize SCOPE fund example is illustrative: an institutional fund token was made multichain such that investors can subscribe or redeem on Ethereum or Optimism, and behind the scenes Wormhole’s protocol moves the token and even converts it into yield-bearing forms, removing the need for manual bridges or multiple wallets for the users.
-
Programmable Execution Layers: Finally, certain on-chain innovations empower more complex cross-chain workflows. Atomic multi-call support and transaction scheduling help coordinate multi-step intents. For instance, the Sui blockchain’s Programmable Transaction Blocks (PTBs) allow bundling multiple actions (like swaps, transfers, calls) into one atomic transaction. This can simplify cross-chain intent fulfillment on Sui by ensuring all steps either happen or none do, with one user signature. In Ethereum, proposals like EIP-7702 (smart contract code for EOAs) extend capabilities of user accounts to support things like sponsored gas and multi-step logic even at the base layer. Moreover, specialized execution environments or cross-chain routers can be employed – e.g. some systems route all intents through a particular L2 or hub which coordinates the cross-chain actions (the user might just interact with that hub). Examples include projects like Push Protocol’s L1 (Push Chain) which is being designed as a dedicated settlement layer for chain-agnostic operations, featuring universal smart contracts and sub-second finality to expedite cross-chain interactions. While not universally adopted, these approaches illustrate the spectrum of techniques used to realize chain abstraction: from purely off-chain orchestration to deploying new on-chain infrastructure purpose-built for cross-chain intent execution.
In summary, chain abstraction is achieved by layering these components: a routing layer (relayers messaging across chains), an account layer (smart wallets that can initiate actions on any chain), and an execution layer (solvers, liquidity and contracts that carry out the intents). Each piece is necessary to ensure that from a user’s perspective, interacting with a dApp across multiple blockchains is as smooth as using a single-chain application.
Case Study 1: Wormhole – Intent-Based, Chain-Agnostic Routing
Wormhole is a leading cross-chain interoperability protocol that has evolved from a token bridge into a comprehensive message-passing network with intent-based functionality. Its approach to chain abstraction is to provide a uniform message routing layer connecting 20+ chains (including EVM chains and non-EVM chains like Solana), and on top of that, build chain-agnostic application protocols. Key elements of Wormhole’s architecture include:
-
Generic Message Layer: At its core, Wormhole is a generic publish/subscribe bridge. Validators (Guardians) observe events on each connected chain and sign a VAA (verifiable action) that can be submitted on any other chain to reproduce the event or call a target contract. This generic design means developers can send arbitrary instructions or data cross-chain, not just token transfers. Wormhole ensures messages are delivered and verified consistently, abstracting away whether the source was Ethereum, Solana, or another chain.
-
Chain-Agnostic Token Transfers: Wormhole’s original Token Bridge (Portal) used a lock-and-mint approach. Recently, Wormhole introduced Native Token Transfers (NTT), an improved framework for multichain tokens. With NTT, assets can be issued natively on each chain (avoiding fragmented wrapped tokens), while Wormhole handles the accounting of burns and mints across chains to keep supply in sync. For users, this feels like a token “teleports” across chains – they deposit on one chain and withdraw the same asset on another, with Wormhole managing the mint/burn bookkeeping. This is a form of token abstraction that hides the complexity of different token standards and addresses on each chain.
-
Intent-Based xApp Protocols: Recognizing that bridging tokens is only one piece of cross-chain UX, Wormhole has developed higher-level protocols to fulfill user intents like swaps or transfers with gas fee management. In 2023–2024, Wormhole collaborated with the cross-chain DEX aggregator Mayan to launch two intent-focused protocols, often called xApps (cross-chain apps) in the Wormhole ecosystem: Mayan Swift and Mayan MCTP (Multichain Transfer Protocol).
-
Mayan Swift is described as a “flexible cross-chain intent protocol” that essentially lets a user request a token swap from Chain A to Chain B. The user signs a single transaction on the source chain locking their funds and specifying their desired outcome (e.g. “I want at least X amount of token Y on destination chain by time T”). This intent (the order) is then picked up by solvers. Uniquely, Wormhole Swift uses an on-chain auction on Solana to conduct competitive price discovery for the intent. Solvers monitor a special Solana contract; when a new intent order is created, they bid by committing how much of the output token they can deliver. Over a short auction period (e.g. 3 seconds), bids compete up the price. The highest bidder (who offers the most favorable rate to the user) wins and is granted the right to fulfill the swap. Wormhole then carries a message to the destination chain authorizing that solver to deliver the tokens to the user, and another message back to release the user’s locked funds to the solver as payment. This design ensures the user’s intent is fulfilled at the best possible price in a decentralized way, while the user only had to interact with their source chain. It also decouples the cross-chain swap into two steps (lock funds, then fulfill on dest) to minimize risk. The intent-centric design here shows how abstraction enables smart execution: rather than a user picking a particular bridge or DEX, the system finds the optimal path and price automatically.
-
Mayan MCTP focuses on cross-chain asset transfers with gas and fee management. It leverages Circle’s CCTP (Cross-Chain Transfer Protocol) – which allows native USDC to be burned on one chain and minted on another – as the base for value transfer, and uses Wormhole messaging for coordination. In an MCTP transfer, a user’s intent might be simply “move my USDC from Chain A to Chain B (and optionally swap to another token on B)”. The source-chain contract accepts the tokens and a desired destination, then initiates a burn via CCTP and simultaneously publishes a Wormhole message carrying metadata like the user’s destination address, desired token on destination, and even a gas drop (an amount of the bridged funds to convert to native gas on the destination). On the destination chain, once Circle mints the USDC, a Wormhole relayer ensures the intent metadata is delivered and verified. The protocol can then automatically e.g. swap a portion of USDC to the native token to pay for gas, and deliver the rest to the user’s wallet (or to a specified contract). This provides a one-step, gas-included bridge: the user doesn’t have to go acquire gas on the new chain or perform a separate swap for gas. It’s all encoded in the intent and handled by the network. MCTP thus demonstrates how chain abstraction can handle fee abstraction and reliable transfers in one flow. Wormhole’s role is to securely transmit the intent and proof that funds were moved (via CCTP) so that the user’s request is fulfilled end-to-end.
-
Illustration of Wormhole’s intent-centric swap architecture (Mayan Swift). In this design, the user locks assets on the source chain and defines an outcome (intent). Solvers bid in an on-chain auction for the right to fulfill that intent. The winning solver uses Wormhole messages to coordinate unlocking funds and delivering the outcome on the destination chain, all while ensuring the user receives the best price for their swap.
- Unified UX and One-Click Flows: Wormhole-based applications are increasingly offering one-click cross-chain actions. For example, Wormhole Connect is a frontend SDK that dApps and wallets integrate to let users bridge assets with a single click – behind the scenes it calls Wormhole token bridging and (optionally) relayers that deposit gas on the target chain. In the Securitize SCOPE fund use-case, an investor on Optimism can purchase fund tokens that originally live on Ethereum, without manually bridging anything; Wormhole’s liquidity layer automatically moves the tokens across and even converts them into a yield-bearing form, so the user just sees a unified investment product. Such examples highlight the chain abstraction ethos: the user performs a high-level action (invest in fund, swap X for Y) and the platform handles cross-chain mechanics silently. Wormhole’s standard message relaying and automatic gas delivery (via services like Wormhole’s Automatic Relayer or Axelar’s Gas Service integrated in some flows) mean the user often signs just one transaction on their origin chain and receives the result on the destination chain with no further intervention. From the developer perspective, Wormhole provides a uniform interface to call contracts across chains, so building cross-chain logic is simpler.
In summary, Wormhole’s approach to chain abstraction is to provide the infrastructure (decentralized relayers + standardized contracts on each chain) that others can build upon to create chain-agnostic experiences. By supporting a wide variety of chains and offering higher-level protocols (like the intent auction and gas-managed transfer), Wormhole enables applications to treat the blockchain ecosystem as a connected whole. Users benefit by no longer needing to worry about what chain they’re on or how to bridge – whether it’s moving liquidity or doing a multi-chain swap, Wormhole’s intent-centric xApps aim to make it as easy as a single-chain interaction. Wormhole’s co-founder Robinson Burkey noted that this kind of infrastructure has reached “institutional-scale maturity”, allowing even regulated asset issuers to operate seamlessly across networks and abstract away chain-specific constraints for their users.
Case Study 2: Etherspot – Account Abstraction Meets Intents
Etherspot approaches the cross-chain UX problem from the perspective of wallets and developer tooling. It provides an Account Abstraction SDK and an intent protocol stack that developers can integrate to give their users a unified multi-chain experience. In effect, Etherspot combines smart contract wallets with chain abstraction logic so that a user’s single smart account can operate across many networks with minimal friction. Key features of Etherspot’s architecture include:
-
Modular Smart Wallet (Account Abstraction): Every user of Etherspot gets a smart contract wallet (ERC-4337 style) that can be deployed on multiple chains. Etherspot contributed to standards like ERC-7579 (minimal modular smart accounts interface) to ensure these wallets are interoperable and upgradeable. The wallet contract acts as the user’s agent and can be customized with modules. For example, one module might enable a unified balance view – the wallet can report the aggregate of a user’s funds across all chains. Another module might enable session keys, so the user can approve a series of actions with one signature. Because the wallet is present on each chain, it can directly initiate transactions locally when needed (with Etherspot’s backend bundlers and relayers orchestrating the cross-chain coordination).
-
Transaction Bundler and Paymasters: Etherspot runs a bundler service (called Skandha) that collects user operations from the smart wallets, and a paymaster service (Arka) that can sponsor gas fees. When a user triggers an intent through Etherspot, they effectively sign a message to their wallet contract. The Etherspot infrastructure (the bundler) then translates that into actual transactions on the relevant chains. Crucially, it can bundle multiple actions – e.g. a DEX swap on one chain and a bridge transfer to another chain – into one meta-transaction that the user’s wallet contract will execute step by step. The paymaster means the user might not need to pay any L1 gas; instead, the dApp or a third party could cover it, or the fee could be taken in another token. This realizes gas abstraction in practice (a big usability win). In fact, Etherspot highlights that with upcoming Ethereum features like EIP-7702, even Externally Owned Accounts could gain gasless capabilities similar to contract wallets – but Etherspot’s smart accounts already allow gasless intents via paymasters today.
-
Intent API and Solvers (Pulse): On top of the account layer, Etherspot provides a high-level Intent API known as Etherspot Pulse. Pulse is Etherspot’s chain abstraction engine that developers can use to enable cross-chain intents in their dApps. In a demo of Etherspot Pulse in late 2024, they showed how a user could perform a token swap from Ethereum to an asset on Base, using a simple React app interface with one click. Under the hood, Pulse handled the multi-chain transaction securely and efficiently. The key features of Pulse include Unified Balances (the user sees all assets as one portfolio regardless of chain), Session Key Security (limited privileges for certain actions to avoid constant approvals), Intent-Based Swaps, and Solver Integration. In other words, the developer just calls an intent like
swap(tokenA on Chain1 -> tokenB on Chain2 for user)
through the Etherspot SDK, and Pulse figures out how to do it – whether by routing through a liquidity network like Socket or calling a cross-chain DEX. Etherspot has integrated with various bridges and DEX aggregators to find optimal routes (it is likely using some of the Open Intents Framework concepts as well, given Etherspot’s involvement in the Ethereum intents community). -
Education and Standards: Etherspot has been a vocal proponent of chain abstraction standards. It has released educational content explaining intents and how “users declare their desired outcome, while solvers handle the backend process”, emphasizing simplified UX and cross-chain fluidity. They enumerate benefits like users not needing to worry about bridging or gas, and dApps gaining scalability by easily accessing multiple chains. Etherspot is also actively collaborating with ecosystem projects: for example, it references the Ethereum Foundation’s Open Intents Framework and explores integrating new cross-chain messaging standards (ERC-7786, 7787, etc.) as they emerge. By aligning with common standards, Etherspot ensures its intent format or wallet interface can work in tandem with other solutions (like Hyperlane, Connext, Axelar, etc.) chosen by the developer.
-
Use Cases and Developer UX: For developers, using Etherspot means they can add cross-chain features without reinventing the wheel. A DeFi dApp can let a user deposit funds on whatever chain they have assets on, and Etherspot will abstract the chain differences. A gaming app could let users sign one transaction to claim an NFT on an L2 and have it automatically bridged to Ethereum if needed for trading. Etherspot’s SDK essentially offers chain-agnostic function calls – developers call high-level methods (like a unified
transfer()
orswap()
) and the SDK handles locating user funds, moving them if needed, and updating state across chains. This significantly reduces development time for multi-chain support (the team claims up to 90% reduction in development time when using their chain abstraction platform). Another aspect is RPC Playground and debugging tools Etherspot built for AA flows, which make it easier to test complex user operations that may involve multiple networks. All of this is geared towards making integration of chain abstraction as straightforward as integrating a payments API in Web2.
From the end-user perspective, an Etherspot-powered application can offer a much smoother onboarding and daily experience. New users can sign in with social login or email (if the dApp uses Etherspot’s social account module) and get a smart account automatically – no need to manage seed phrases for each chain. They can receive tokens from any chain to their one address (the smart wallet’s address is the same on all supported chains) and see them in one list. If they want to perform an action (swap, lend, etc.) on a chain where they don’t have the asset or gas, the intent protocol will automatically route their funds and actions to make it happen. For example, a user holding USDC on Polygon who wants to participate in an Ethereum DeFi pool could simply click “Invest in Pool” – the app (via Etherspot) will swap the USDC to the required asset, bridge it to Ethereum, deposit into the pool contract, and even handle gas fees by taking a tiny portion of the USDC, all in one flow. The user is never confronted with “please switch to X network” or “you need ETH for gas” errors – those are handled behind the scenes. This one-click experience is exactly what chain abstraction strives for.
Etherspot’s CEO, Michael Messele, spoke at EthCC 2025 about “advanced chain abstraction” and highlighted that making Web3 truly blockchain-agnostic can empower both users and developers by enhancing interoperability, scalability, and UX. Etherspot’s own contributions, like the Pulse demo of single-intent cross-chain swaps, show that the technology is already here to drastically simplify cross-chain interactions. As Etherspot positions it, intents are the bridge between the innovative possibilities of a multi-chain ecosystem and the usability that end-users expect. With solutions like theirs, dApps can deliver “frictionless” experiences where chain differences disappear into the background, accelerating mainstream adoption of Web3.
User & Developer Experience Improvements
Both chain abstraction and intent-centric architectures are ultimately in service of a better user experience (UX) and developer experience (DX) in a multi-chain world. Some of the notable improvements include:
-
Seamless Onboarding: New users can be onboarded without worrying about what blockchain they’re on. For instance, a user could be given a single smart account that works everywhere, possibly created with a social login. They can receive any token or NFT to this account from any chain without confusion. No longer must a newcomer learn about switching networks in MetaMask or safeguarding multiple seed phrases. This lowers the barrier to entry significantly, as using a dApp feels closer to a Web2 app signup. Projects implementing account abstraction often allow email or OAuth-based wallet creation, with the resulting smart account being chain-agnostic.
-
One-Click Cross-Chain Actions: Perhaps the most visible UX gain is condensing what used to be multi-step, multi-app workflows into one or two clicks. For example, a cross-chain token swap previously might require: swapping Token A for a bridgeable asset on Chain 1, going to a bridge UI to send it to Chain 2, then swapping to Token B on Chain 2 – and managing gas fees on both chains. With intent-centric systems, the user simply requests “Swap A on Chain1 to B on Chain2” and confirms once. All intermediate steps (including acquiring gas on Chain2 if needed) are automated. This not only saves time but also reduces the chances of user error (using the wrong bridge, sending to wrong address, etc.). It’s akin to the convenience of booking a multi-leg flight through one travel site versus manually purchasing each leg separately.
-
No Native Gas Anxiety: Users don’t need to constantly swap for small amounts of ETH, MATIC, AVAX, etc. just to pay for transactions. Gas fee abstraction means either the dApp covers the gas (and maybe charges a fee in the transacted token or via a subscription model), or the system converts a bit of the user’s asset automatically to pay fees. This has a huge psychological impact – it removes a class of confusing prompt (no more “insufficient gas” errors) and lets users focus on the actions they care about. Several EthCC 2025 talks noted gas abstraction as a priority, e.g. Ethereum’s EIP-7702 will even allow EOA accounts to have gas sponsored in the future. In practice today, many intent protocols drop a small amount of the output asset as gas on the destination chain for the user, or utilize paymasters connected to user operations. The result: a user can, say, move USDC from Arbitrum to Polygon without ever touching ETH on either side, and still have their Polygon wallet able to make transactions immediately on arrival.
-
Unified Asset Management: For end-users, having a unified view of assets and activities across chains is a major quality-of-life improvement. Chain abstraction can present a combined portfolio – so your 1 ETH on mainnet and 2 ETH worth of bridged stETH on Optimism might both just show as “ETH balance”. If you have USD stablecoins on five different chains, a chain-agnostic wallet could show your total USD value and allow spending from it without you manually bridging. This feels more like a traditional bank app that shows a single balance (even if funds are spread across accounts behind the scenes). Users can set preferences like “use cheapest network by default” or “maximize yield” and the system might automatically allocate transactions to the appropriate chain. Meanwhile, all their transaction history could be seen in one timeline regardless of chain. Such coherence is important for broader adoption – it hides blockchain complexity under familiar metaphors.
-
Enhanced Developer Productivity: From the developer’s side, chain abstraction platforms mean no more writing chain-specific code for each integration. Instead of integrating five different bridges and six exchanges to ensure coverage of assets and networks, a developer can integrate one intent protocol API that abstracts those. This not only saves development effort but also reduces maintenance – as new chains or bridges come along, the abstraction layer’s maintainers handle integration, and the dApp just benefits from it. The weekly digest from Etherspot highlighted that solutions like Okto’s chain abstraction platform claim to cut multi-chain dApp development time by up to 90% by providing out-of-the-box support for major chains and features like liquidity optimization. In essence, developers can focus on application logic (e.g. a lending product, a game) rather than the intricacies of cross-chain transfers or gas management. This opens the door for more Web2 developers to step into Web3, as they can use higher-level SDKs instead of needing deep blockchain expertise for each chain.
-
New Composable Experiences: With intents and chain abstraction, developers can create experiences that were previously too complex to attempt. For example, cross-chain yield farming strategies can be automated: a user could click “maximize yield on my assets” and an intent protocol could move assets between chains to the best yield farms, even doing this continuously as rates change. Games can have assets and quests that span multiple chains without requiring players to manually bridge items – the game’s backend (using an intent framework) handles item teleportation or state sync. Even governance can benefit: a DAO could allow a user to vote once and have that vote applied on all relevant chains’ governance contracts via cross-chain messages. The overall effect is composability: just as DeFi on a single chain allowed Lego-like composition of protocols, cross-chain intent layers allow protocols on different chains to compose. A user intent might trigger actions on multiple dApps across chains (e.g. unwrap an NFT on one chain and sell it on a marketplace on another), which creates richer workflows than siloed single-chain operations.
-
Safety Nets and Reliability: An often under-appreciated UX aspect is error handling. In early cross-chain interactions, if something went wrong (stuck funds in a bridge, a transaction failing after you sent funds, etc.), users faced a nightmare of troubleshooting across multiple platforms. Intent frameworks can build in retry logic, insurance, or user protection mechanisms. For example, a solver might take on finality risk – delivering the user’s funds on the destination immediately (within seconds) and waiting for the slower source chain finality themselves. This means the user isn’t stuck waiting minutes or hours for confirmation. If an intent fails partially, the system can rollback or refund automatically. Because the entire flow is orchestrated with known steps, there’s more scope to make the user whole if something breaks. Some protocols are exploring escrow and insurance for cross-chain operations as part of the intent execution, which would be impossible if the user was manually jumping through hoops – they’d bear that risk alone. In short, abstraction can make the overall experience not just smoother but also more secure and trustworthy for the average user.
All these improvements point to a single trend: reducing the cognitive load on users and abstracting away blockchain plumbing into the background. When done right, users may not even realize which chains they are using – they just access features and services. Developers, on the other hand, get to build apps that tap liquidity and user bases across many networks from a single codebase. It’s a shift of complexity from the edges (user apps) to the middle (infrastructure protocols), which is a natural progression as technology matures. EthCC 2025’s tone echoed this sentiment, with “seamless, composable infrastructure” cited as a paramount goal for the Ethereum community.
Insights from EthCC 2025
The EthCC 2025 conference (held in July 2025 in Cannes) underscored how central chain abstraction and intent-based design have become in the Ethereum ecosystem. A dedicated block of sessions focused on unifying user experiences across networks. Key takeaways from the event include:
-
Community Alignment on Abstraction: Multiple talks by industry leaders echoed the same message – simplifying the multi-chain experience is critical for the next wave of Web3 adoption. Michael Messele (Etherspot) spoke about moving “towards a blockchain-agnostic future”, Alex Bash (Zerion wallet) discussed “unifying Ethereum’s UX with abstraction and intents”, and others introduced concrete standards like ERC-7811 for stablecoin chain abstraction. The very title of one talk, “There’s No Web3 Future Without Chain Abstraction”, encapsulated the community sentiment. In other words, there is broad agreement that without solving cross-chain usability, Web3 will not reach its full potential. This represents a shift from previous years where scaling L1 or L2 was the main focus – now that many L2s are live, connecting them for users is the new frontier.
-
Ethereum’s Role as a Hub: EthCC panels highlighted that Ethereum is positioning itself not just as one chain among many, but as the foundation of a multi-chain ecosystem. Ethereum’s security and its 4337 account abstraction on mainnet can serve as the common base that underlies activity on various L2s and sidechains. Rather than competing with its rollups, Ethereum (and by extension Ethereum’s community) is investing in protocols that make the whole network of chains feel unified. This is exemplified by the Ethereum Foundation’s support for projects like the Open Intents Framework, which spans many chains and rollups. The vibe at EthCC was that Ethereum’s maturity is shown in embracing an “ecosystem of ecosystems”, where user-centric design (regardless of chain) is paramount.
-
Stablecoins & Real-World Assets as Catalysts: An interesting theme was the intersection of chain abstraction with stablecoins and RWAs (Real-World Assets). Stablecoins were repeatedly noted as a “grounding force” in DeFi, and several talks (e.g. on ERC-7811 stablecoin chain abstraction) looked at making stablecoin usage chain-agnostic. The idea is that an average user shouldn’t need to care on which chain their USDC or DAI resides – it should hold the same value and be usable anywhere seamlessly. We saw this with Securitize’s fund using Wormhole to go multichain, effectively abstracting an institutional product across chains. EthCC discussions suggested that solving cross-chain UX for stablecoins and RWAs is a big step toward broader blockchain-based finance, since these assets demand smooth user experiences for adoption by institutions and mainstream users.
-
Developer Excitement and Tooling: Workshops and side events (like Multichain Day) introduced developers to the new tooling available. Hackathon projects and demos showcased how intent APIs and chain abstraction SDKs (from various teams) could be used to whip up cross-chain dApps in days. There was a palpable excitement that the “Holy Grail” of Web3 UX – using multiple networks without realizing it – is within reach. The Open Intents Framework team did a beginner’s workshop explaining how to build an intent-enabled app, likely using their reference solver and contracts. Developers who had struggled with bridging and multi-chain deployment in the past were keen on these solutions, as evidenced by the Q&A sessions (as reported informally on social media during the conference).
-
Announcements and Collaboration: EthCC 2025 also served as a stage for announcing collaborations between projects in this space. For example, a partnership between a wallet provider and an intent protocol or between a bridge project and an account abstraction project were hinted at. One concrete announcement was Wormhole integrating with the Stacks ecosystem (bringing Bitcoin liquidity into cross-chain flows) which wasn’t directly chain abstraction for Ethereum, but exemplified the expanding connectivity across traditionally separate crypto ecosystems. The presence of projects like Zerion (wallet), Safe (smart accounts), Connext, Socket, Axelar, etc., all discussing interoperability, signaled that many pieces of the puzzle are coming together.
Overall, EthCC 2025 painted a picture of a community coalescing around user-centric cross-chain innovation. The phrase “composable infrastructure” was used to describe the goal: all these L1s, L2s, and protocols should form a cohesive fabric that applications can build on without needing to stitch things together ad-hoc. The conference made it clear that chain abstraction and intents are not just buzzwords but active areas of development attracting serious talent and investment. Ethereum’s leadership in this—through funding, setting standards, and providing a robust base layer—was reaffirmed at the event.
Comparison of Approaches to Chain Abstraction and Intents
The table below compares several prominent protocols and frameworks that tackle cross-chain user/developer experience, highlighting their approach and key features:
Project / Protocol | Approach to Chain Abstraction | Intent-Centric Mechanism | Key Features & Outcomes |
---|---|---|---|
Wormhole (Interop Protocol) | Chain-agnostic message-passing layer connecting 25+ chains (EVM & non-EVM) via Guardian validator network. Abstracts token transfers with Native Token Transfer (NTT) standard (unified supply across chains) and generic cross-chain contract calls. | Intent Fulfillment via xApps: Provides higher-level protocols on top of messaging (e.g. Mayan Swift for cross-chain swaps, Mayan MCTP for transfers with gas). Intents are encoded as orders on source chain; solved by off-chain or on-chain agents (auctions on Solana) with Wormhole relaying proofs between chains. | • Universal Interoperability: One integration gives access to many chains. • Best-Price Execution: Solvers compete in auctions to maximize user output (reduces costs). • Gas & Fee Abstraction: Relayers handle delivering funds and gas on target chain, enabling one-click user flows. • Heterogeneous Support: Works across very different chain environments (Ethereum, Solana, Cosmos etc.), making it versatile for developers. |
Etherspot (AA + ChA SDK) | Account abstraction platform offering smart contract wallets on multiple chains with unified SDK. Abstracts chains by providing a single API to interact with all user’s accounts and balances across networks. Developers integrate its SDK to get multi-chain functionality out-of-the-box. | Intent Protocol (“Pulse”): Collects user-stated goals (e.g. swap X to Y cross-chain) via a high-level API. The backend uses the user’s smart wallet to execute necessary steps: bundling transactions, choosing bridges/swaps (with integrated solver logic or external aggregators), and sponsoring gas via paymasters. | • Smart Wallet Unification: One user account controls assets on all chains, enabling features like aggregated balance and one-click multi-chain actions. • Developer-Friendly: Pre-built modules (4337 bundler, paymaster) and React TransactionKit, cutting multi-chain dApp dev time significantly. • Gasless & Social Login: Supports gas sponsorship and alternative login (improving UX for mainstream users). • Single-Intent Swaps Demo: Showcased cross-chain swap in one user op, illustrating how users focus on “what” and let Etherspot handle “how”. |
Open Intents Framework (Ethereum Foundation & collaborators) | Open standard (ERC-7683) and reference architecture for building intent-based cross-chain applications. Provides a base set of contracts (e.g. a Base7683 intent registry on each chain) that can plug into any bridging/messaging layer. Aims to abstract chains by standardizing how intents are expressed and resolved, independent of any single provider. | Pluggable Solvers & Settlement: OIF doesn’t enforce one solver network; it allows multiple settlement mechanisms (Hyperlane, LayerZero, Connext’s xcall, etc.) to be used interchangeably. Intents are submitted to a contract that solvers monitor; a reference solver implementation is provided (TypeScript bot) that developers can run or modify. Across Protocol’s live intent contracts on mainnet serve as one realization of ERC-7683. | • Ecosystem Collaboration: Built by dozens of teams to be a public good, encouraging shared infrastructure (solvers can service intents from any project). • Modularity: Developers can choose trust model – e.g. use optimistic verification, a specific bridge, or multi-sig – without changing the intent format. • Standardization: With common interfaces, wallets and UIs (like Superbridge) can support intents from any OIF-based protocol, reducing integration effort. • Community Support: Vitalik and others endorse the effort, and early adopters (Eco, Uniswap’s Compact, etc.) are building on it. |
Axelar + Squid (Cross-Chain Network & SDK) | Cosmos-based interoperability network (Axelar) with a decentralized validator set that passes messages and tokens between chains. Abstracts the chain hop by offering a unified cross-chain API (Squid SDK) which developers use to initiate transfers or contract calls across EVM chains, Cosmos chains, etc., through Axelar’s network. Squid focuses on providing easy cross-chain liquidity (swaps) via one interface. | “One-Step” Cross-Chain Ops: Squid interprets intents like “swap TokenA on ChainX to TokenB on ChainY” and automatically splits it into on-chain steps: a swap on ChainX (using a DEX aggregator), a transfer via Axelar’s bridge, and a swap on ChainY. Axelar’s General Message Passing delivers any arbitrary intent data across. Axelar also offers a Gas Service – developers can have users pay gas in the source token and it ensures the destination transaction is paid, achieving gas abstraction for the user. | • Developer Simplicity: One SDK call handles multi-chain swaps; no need to manually integrate DEX + bridge + DEX logic. • Fast Finality: Axelar ensures finality with its own consensus (seconds) so cross-chain actions complete quickly (often faster than optimistic bridges). • Composable with dApps: Many dApps (e.g. decentralized exchanges, yield aggregators) integrate Squid to offer cross-chain features, effectively outsourcing the complexity. • Security Model: Relies on Axelar’s proof-of-stake security; users trust Axelar validators to safely bridge assets (a different model from optimistic or light-client bridges). |
Connext (xCall & Amarok) | Liquidity-network bridge that uses an optimistic assurance model (watchers challenge fraud) for security. Abstracts chains by providing an xcall interface – developers treat cross-chain function calls like normal function calls, and Connext routes the call through routers that provide liquidity and execute the call on the destination. The goal is to make calling a contract on another chain as simple as calling a local one. | Function Call Intents: Connext’s xcall takes an intent like “invoke function F on Contract C on Chain B with data X and send result back” – effectively a cross-chain RPC. Under the hood, liquidity providers lock bond on Chain A and mint representative assets on Chain B (or use native assets if available) to carry out any value transfer. The intent (including any return handling) is fulfilled after a configurable delay (to allow fraud challenges). There isn’t a solver competition; instead any available router can execute, but Connext ensures the cheapest path by using a network of routers. | • Trust-Minimized: No external validator set – security comes from on-chain verification plus bonded routers. Users don’t cede custody to a multi-sig. • Native Execution: Can trigger arbitrary logic on the destination chain (more general than swap-focused intents). This suits cross-chain dApp composability (e.g. initiate an action in a remote protocol). • Router Liquidity Model: Instant liquidity for transfers (like a traditional bridge) without waiting for finality, since routers front liquidity and later reconcile. • Integration in Wallets/Bridges: Often used under the hood by wallets for simple bridging due to its simplicity and security posture. Less aimed at end-user UX platforms and more at protocol devs who want custom cross-chain calls. |
(Table legend: AA = Account Abstraction, ChA = Chain Abstraction, AMB = arbitrary messaging bridge)
Each of the above approaches addresses the cross-chain UX challenge from a slightly different angle – some focus on the user’s wallet/account, others on the network messaging, and others on the developer API layer – but all share the goal of making blockchain interactions chain-agnostic and intent-driven. Notably, these solutions are not mutually exclusive; in fact, they often complement each other. For example, an application could use Etherspot’s smart wallet + paymasters, with the Open Intents standard to format the user’s intent, and then use Axelar or Connext under the hood as the execution layer to actually bridge and perform actions. The emerging trend is composability among chain abstraction tools themselves, ultimately building toward an Internet of Blockchains where users navigate freely.
Conclusion
Blockchain technology is undergoing a paradigm shift from siloed networks and manual operations to a unified, intent-driven experience. Chain abstraction and intent-centric architecture are at the heart of this transformation. By abstracting away the complexities of multiple chains, they enable a user-centric Web3 in which people interact with decentralized applications without needing to understand which chain they’re using, how to bridge assets, or how to acquire gas on each network. The infrastructure – relayers, smart accounts, solvers, and bridges – collaboratively handle those details, much like the Internet’s underlying protocols route packets without users knowing the route.
The benefits in user experience are already tangible: smoother onboarding, one-click cross-chain swaps, and truly seamless dApp interactions across ecosystems. Developers, too, are empowered by higher-level SDKs and standards that dramatically simplify building for a multi-chain world. As seen at EthCC 2025, there is a strong community consensus that these developments are not only exciting enhancements but fundamental requirements for the next phase of Web3 growth. Projects like Wormhole and Etherspot demonstrate that it’s possible to retain decentralization and trustlessness while offering Web2-like ease of use.
Looking ahead, we can expect further convergence of these approaches. Standards such as ERC-7683 intents and ERC-4337 account abstraction will likely become widely adopted, ensuring compatibility across platforms. More bridges and networks will integrate with open intent frameworks, increasing liquidity and options for solvers to fulfill user intents. Eventually, the term “cross-chain” might fade away, as interactions won’t be thought of in terms of distinct chains at all – much like users of the web don’t think about which data center their request hit. Instead, users will simply invoke services and manage assets in a unified blockchain ecosystem.
In conclusion, chain abstraction and intent-centric design are turning the multi-chain dream into reality: delivering the benefits of diverse blockchain innovation without the fragmentation. By centering designs on user intents and abstracting the rest, the industry is taking a major step toward making decentralized applications as intuitive and powerful as the centralized services of today, fulfilling the promise of Web3 for a broader audience. The infrastructure is still evolving, but its trajectory is clear – a seamless, intent-driven Web3 experience is on the horizon, and it will redefine how we perceive and interact with blockchains.
Sources: The information in this report was gathered from a range of up-to-date resources, including protocol documentation, developer blog posts, and talks from EthCC 2025. Key references include Wormhole’s official docs on their cross-chain intent protocols, Etherspot’s technical blog series on account and chain abstraction, and the Ethereum Foundation’s Open Intents Framework release notes, among others, as cited throughout the text. Each citation is denoted in the format 【source†lines】 to pinpoint the original source material supporting the statements made.